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1 Introduction 

The mathematical motivation for studying vector bundles comes from the 
example of the tangent bundle T M of a manifold M. Recall that the tangent 
bundle is the union of all the tangent spaces TmM for every m in M. As 
such it is a collection of vector spaces, one for every point of M. 

The physical motivation comes from the realisation that the fields in 
physics may not just be maps <P : M -+ eN say, but may take values in 
different vector spaces at each point. Tensors do this for example. The 
argument for this is partly quantum mechanics because, if <P is a wave function 
on a space-time M say, then what we can know about are expectation values, 
that is things like: 

and to define these all we need to know is that <P( x) takes its values in a 
one-dimensional complex vector space with Hermitian inner product. There 
is no reason for this to be the same one-dimensional Hermitian vector space 
here as on Alpha Centuari. Functions like <fy, which are generalisations of 
complex valued functions, are called sections of vector bundles. 

We will consider first the simplest theory of vector bundles where the 
vector space is a one-dimensional complex vector space -line bundles. 

1.1 Definition of a line bundle and examples 

The simplest example of a line bundle over a manifold M is the trivial bundle 
C x M. Here the vector space at each point m is C x { m} which we regard as 
a copy of C. The general definition uses this as a local model. The definition 
starts with a manifold L and a map 1r : L -+ M. This map is required to be 
onto and to have onto derivative (i.e. be a submersion). Moreover each of 
the fibres 1r-1 ( m) = Lm is required to be a complex one-dimensional vector 
space in such a way that scalar multiplication and addition are smooth. To 
phrase this precisely for scalar multiplication is easy. We just note that scalar 
multiplication defines a map 

CxL-+L 

and we require that this be smooth. For addition we introduce the space 
L EB L = {(v,w) E LX L l1r(v) = 1r(w)}. The condition that the projection 
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1r is a submersion makes L EB L a submanifold of L x L and addition defines 
a map 

L ffi L ---+ L 

and we require that this is smooth. Lastly we would like L to look 'locally' 
like C X M. That is for every m E M there should be an open set U E M 
and a smooth map cp : 1r-1(U) ---+ U X C such that cp(Lm) C {m} x C 
for every m and that moreover the map cp ILm : Lm ---+ { m} X C is a linear 
isomorphism. In such a case we say that we can locally trivialise L. In the 
quantum mechanical example this means that at least in some local region 
like the laboratory we can identify the Hermitian vector space where the 
wave function takes its values with C. 

Examples: 

1. C x M the trivial bundle 

2. Recall that if u E S 2 then the tangent space at u to S 2 is identified with 
the set TuS2 = { v E R 3 I (v, u) = 0}. We make this two dimensional 
real vector space a one dimensional complex vector space by defining 
(a+ i(J)v = a.v + (J.u X v. We leave it as an exercise for the reader 
to show that this does indeed make TuS2 into a complex vector space. 
What needs to be checked is that [(a+i(J) (o+i'"Y)]v = (a+i(J) [(o+i')')]v 
and because TuS2 is already a real vector space this follows if i(iv) = 
-v. Geometrically this follows from the fact that we have defined 
multiplication by i to mean rotation through 1r /2. We will prove local 
triviality in a moment. 

3. If I; is any surface in R 3 we can use the same construction as in (2). 
If X E I; and nx is the unit normal then Txl:; = n;. We make this a 
complex space by defining (a+ i(J)v = av + f3nx X v. 

1.2 Isomorphism of line bundles 

It is useful to say that two line bundles L ---+ M, 1 ---+ M are isomorphic if 
there is a smooth map cp : L ---+ 1 such that cp(Lm) C 1m for every m E M 
and such that the induced map 'PILm : Lm ---+ 1m is a linear isomorphism. 

We define a line bundle L to be trivial if it is isomorphic to M X C the 
trivial bundle. Any such isomorphism we call a trivialization of L. 
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Figure 1: A line bundle. 

1.3 Sections of line bundles 

A section of a. line bundle L is like a vector field. That is it is a map 
rp : M ---+ L such that rp( m) E Lm for all m or more succinctly rr o rp = idm. 

Examples: 

1. L = C x M. Every section rp looks like rp( x) 
function f. 

2. T S 2 . Sections are vector fields. 

(f(x),x) for some 

The set of all sections, denoted by r( M, L), is a vector space under point
wise addition and scalar multiplication. I like to think of a line bundle as 
looking like Figure 1. 

Here 0 is the set of all zero vectors or the image of the zero section. The 
curve s is the image of a section and thus generalises the graph of a function. 

We have the following result: 

Proposition 1.1 A line bundle L is trivial if and only if it has a nowhere 
vanishing section. 
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Proof: Let r_p: L---+ M x e be the trivialization then rp- 1 (m, 1) is a nowhere 
vanishing section. 

Conversely if s is a nowhere vanishing section then define a trivialization 
M x e---+ L by (m, J\) c-+ J\s(m). This is an isomorphism. a 

Remark. The condition of local triviality in the definition of a line bundle 
could be replaced by the existence of local nowhere vanishing sections. This 
shows that T S 2 is locally trivial as it clearly has local nowhere-vanishing 
vector fields. Recall however the so called 'hairy-ball theorem' from topology 
which tells us that S 2 has no global nowhere vanishing vector fields. Hence 
T S 2 is not trivial. We shall prove this result a number of times. 

1.4 Transition functions and the clutching construc
tion 

Consider how we might try to find a global nowhere vanishing section. We 
can certainly cover llif with open sets Uex on which there are nowhere vanish
ing sections sex. If we had a global nowhere vanishing section~ then it would 
satisfy tlu" = to:sa for some to: : Uex ---+ ex where by ex we mean the multi
plicative group consisting of the complex numbers without zero. Conversely 
We could manufacture such an S if we could find to: such that (asa = tf3S(3 for 
all a, {3. It is useful to define go:{3 : Uex n u{3 ---+ ex by Sex = gaf3Sf3. Then the 
collection of functions (a define a section if on any intersection Ua n U13 we 
have t 13 = gexf3(a. The go:f3 are called the transition functions of L. We shall 
see in a moment that they determine L completely. The transition functions 
satisfy three conditions: 

(1) go:a = 1 

(2) gcxf3 = g{3cx 

(3) gcxf3 gf37 g7 a = 1 on Ua n Uf3 n U7 

The last condition (3) is called the cocycle condition. 

Proposition 1.2 Given an open cover {UoJ of M and functions gaf3 : Uex n 
Uf3 ---+ ex satisfying (1) (2) and (3) above we can find a line bundle L---+ M 
with transition functions the go:f3. 
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Proof: Consider the disjoint union M of all the e x Ua. We stick these 
together using the 9af3· More precisely let I be the indexing set and define 
Mas the subset of I X M of pairs (a,m) such that mE Ua. Now consider 
e X M whose elements are triples (A, m, a) and define (A, m, a) rv (f.L, n, (3) 
if m = n and 9af3(m).A = fl· We leave it as an exercise to show that "' is 
an equivalence relation. Indeed ((1) (2) (3) give reflexivity, symmetry and 
transitivity respectively.) 

Denote equivalence classes by square brackets and define L to be the 
set of equivalence classes. Define addition by [(A, m, a)] + [(f.L, m, a)] = 
[(.A+ f.L,m,a)] and scalar multiplication by z[(.A,m,a)] = [(z.A,m,a)]. The 
projection map is 1r([(.A, m, a)]) = m. We leave it as an exercise to show 
that these are all well-defined. Finally define sa(m) = [(l,m,a)]. Then 
Sa (m) = [(l,m,a)] = [(9af3 (m),m,(J)] = 9af3 (m)sf3 (m) as required. 

Finally we leave it as another exercise to show that L can be made into a 
differentiable manifold in such a way that it is a line bundle and the sa are 
smooth. The trick is to manufacture local trivialisations out of the sa. These 
then give a cover of L by open sets Wa which are identified with Ua X e and 
hence are manifolds. All that remains is to show that the manifold structure 
on each of the Wa patches together to make M a manifold and this follows 
from the fact· that the functions 9af3 are smooth. • 

The construction we have used here is called the clutching construction. 
It follows from this proposition that the transition functions capture all the 
information contained in L. However they are by no means unique. Even if 
we leave the cover fixed we could replace each sa by has a where hex : Ua -+ ex 
and then 9af3 becomes ha9af3h~ 1 . If we continued to try and understand this 
ambiguity and the dependence on the cover we would be forced to invent 
Cech cohomology and show that that the isomorphism classes of complex 
line bundles on Mare in bijective correspondence with the Cech cohomology 
group H 1 (M, ex). We refer the interested reader to [11, 8]. 

Example: The tangent bundle to the two-sphere. Cover the two sphere by 
open sets U0 and U1 corresponding to the upper and lower hemispheres but 
slightly overlapping on the equator. The intersection of U0 and U1 looks like 
an annulus. We can find non-vanishing vector fields s0 and s1 as in Figure 2. 

If we undo the equator to a straightline and restrict s0 and s1 to that we 
obtain Figure 3. 
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Figure 2: Vector fields on the two sphere. 

so >i!ll ' t I 110' I )I " + ' 
sl t ' <il ill' / t 

l • "" 
gO! = 1t n/2 0 3n!2 n n/2 1 3n12 :n: 

Figure 3: The sections s0 and s 1 restricted to the equator. 
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If we solve the equation s0 = 901 s 1 then we are finding out how much we 
have to rotate s1 to get So and hence defining the map 9o1: Uo n u1 -+ ex 
with values in the unit circle. Inspection of Figure 3 shows that as we go 
around the equator once s0 rotates forwards once and s 1 rotates backwards 
once so that thought of as a point on the unit circle in ex 901 rotates around 
twice. In other words 901 : U0 n U1 -+ ex has winding number 2. This two 
will be important latter. 

2 Connections, holonomy and curvature 

The physical motivation for connections is that you can't do physics if you 
can't differentiate the fields! So a connection is a rule for differentiating sec
tions of a line bundle. The important thing to remember is that there is no 
a priori way of doing this - a connection is a choice of how to differentiate. 
Making that choice is something extra, additional structure above and be
yond the line bundle itself The reason for this is that if L -+ M is a line 
bundle and 1 : ( -e:, e:) -+ Af a path through 1(0) = m say and s a section of 
L then the conventional definition of the rate of change of s in the direction 
tangent to ry' that is: 

lim= s(r(t))- s(r(O)) 
t--?0 t 

makes no sense as s (r ( t)) is in the vector space L-y( t) and s (r ( 0)) is in the 
different vector space L-y(O) so that we cannot perform the required subtrac
tion. 

So being pure mathematicians we make a definition by abstracting the 
notion of derivative: 
3.1. Definition. A connection \7 is a linear map 

\7: f(M, L)-+ f(M, T* M ® L) 

such that for all s in f( M, L) and f E coo( M, L) we have the Liebniz rule: 

\7 (f s) = df ® s + f\1 s 

If X E TxM we often use the notation V xs = (V s )(X). 

Examples: 
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1. L = C x M. Then identifying sections with functions we see that 
(ordinary) differentiation d of functions defines a connection. If V 
is a general connection then we will see in a moment that V s - ds is a 
1-form. So all the connections on L are of the form V = d +A for A a 
1-form on M (any 1-form). 

2. TS2 . If sis a section then s: S 2 -t R 3 such that s(u) E TuS2 that is 
(s(u),u) = 0. As s(u) E R 3 we can differentiate it in R 3 but then ds 
may not take values in TuS2 necessarily. We remedy this by defining 

V ( s) = ?T ( ds) 

where 1T is orthogonal projection from R 3 onto the tangent space to x. 
That is 1r(v) = v- (x,v)x. 

3. A surface I; in R 3 . We can do the same orthogonal projection trick as 
with the previous example. 

The name connection comes from the name infinitesimal connection which 
was meant to convey the idea that the connection gives an identification of 
the fibre at a point and the fibre at a nearby 'infinitesimally close' point. 
Infinitesimally close points are not something we like very much but we shall 
see in the next section that we can make sense of the 'integrated' version of 
this idea in as much as a connection, by parallel transport, defines an iden
tification between fibres at endpoints of a path. However this identification 
is generally path dependent. Before discussing parallel transport we need to 
consider: 

Two technical asides. 

( 1) We will need to know below that connections exist on any line bundle. 
They do. I will not give the proof but if you know about partitions of unity 
it is straightforward. You use local triviality to construct 'local' connections 
and patch them together with a partition of unity. 
(2) We want to consider what a connection looks like locally. To do that we 
need to be able to apply it to local sections and from the definition this is not 
immediately possible. However it is possible to show, using bump functions, 
the following: if U C M open and V is a connection on L then there is 
a unique connection vu on Llu such that if s E r(M,L) then (vs)iu = 
yU(slu). From now on I will just denote vu by \7. 
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Let L ----+ M be a line bundle and Sa : Ua ----+ L be local nowhere vanishing 
sections. Define a one-form Aa on Ua by 'Vsa = Aa 0 Sa. If~ E r(M,L) 
then ~lua = ~aSa where ~a : Ua ----+ C and 

(2.1) 
d~aSa +~a \7 Sa 
(d~a + Aa~a)Sa· 

Recall that Sa = gaf3Sf3 son \7 Sa = dgaf3Sf3 + gaf3 \7 S[J and hence Aasa = 
g;;_Jdgaf3gaf3Sa + saAf3· Hence 

(2.2) 

The converse is also true. If {Aa} is a collection of 1-forms satisfying the 
equation (2.2) on UanUf3 then there is a connection \7 such that \7 Sa= Aasa. 
The proof is an exercise using equation (2.1) to define the connection. 

2.1 Parallel transport and holonomy 

If 1 : [0, 1] ----+ M is a path and \7 a connection we can consider the notion 
of moving a 'vector in L 1(o) to L"f(l) without changing it, that is parallel 
transporting a vector from L"'(o), L"f(l)· Here change is measured relative to 
\7 so if ~(t) E L"'(t) is moving without changing it must satisfy the differential 
equation: 
(2.3) \7 ~~ = 0 

where 1 is the tangent vector field to the curve I· Assume for the moment 
that the image of 1 is inside an open set Ua over which L has a nowhere 
vanishing section sa. Then using (2.3) and letting ~(t) = ~a(t)sa(r(t)) we 
deduce that 

d~ 
dt = -Aa(l)~ 

or 

(2.4) ~(t) = exp( -lot Aa(r(t))~(O) 
This is an ordinary differential equation so standard existence and uniqueness 
theorems tell us that parallel transport defines an isomorphism L"'(o) ~ L"'(t)· 
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Figure 4: Parallel transport on the two sphere. 

Moreover if we choose a curve not inside a special open set like Uo: we can 
still cover it by such open sets and deduce that the parallel transport 

is an isomorphism. In general P1 is dependent on 1 and V. The most notable 
example is to take 1 a loop that is 1(0) = 1(1). Then we define hol(r, V), 
the holonomy of the connection V along the curve 1 by taking any s E L'Y(o) 

and defining 
P,-y(s) = hol (r, V).s 

Example: A little thought shows that Von the two sphere preserves lengths 
and angles, it corresponds to moving a vector so that the rate of change is 
normal. If we consider the 'loop' in Figure 4 then we have drawn parallel 
transport of a vector and the holonomy is exp(iO). 

2.2 Curvature 

If we have a loop 1 whose image is in Uo: then we can apply (2.4) to obtain 

hol (V,1) =exp (-1 Ao:)· 
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If 1 is the boundary of a disk D then by Stokes' theorem we have 

(2.5) hol (\?,1) = exp-k dAc,. 

Consider the two-forms dAc,. From (2.2) we have 

dAc, dA{3 + d (g;;Jdg01{3) 

dA{3- g;;Jdg01{3g;;J 1\ dg01{3 + g;;Jddg01{3 

dAf3. 

So the two-forms dA01 agree on the intersections of the open sets in the cover 
and hence define a global two form that we denote by F and call the curvature 
of \7. Then we have 

Proposition 2.1 If L -t M is a line bundle with connection V' and :E is a 
compact submanifold of M with boundary a loop 1 then 

hol (\?,1) = exp - k F 

Proof: Notice that (2.5) gives the required result if :E is a disk which is 
inside one of the U01 • Now consider a general :E. By compactness we can 
triangulate :E in such a way that each of the triangles is in some U01 • Now we 
can apply (2.5) to each triangle and note that the holonomy up and down 
the interior edges cancels to give the required result. • 

Example: We calculate the holonomy of the standard connection on the 
tangent bundle of S 2 • Let us use polar co-ordinates: The co-ordinate tangent 
vectors are: 

a 
ao 
a 
a¢ 

(- sin( 0) sin(¢), cos( 0) sin(¢), 0) 

(cos(O) cos(¢), sin(O) cos(¢),- sin(¢)) 

Taking the cross product of these and normalising gives the unit normal 

n (cos(O) sin(¢), sin(O) sin(¢), cos(¢)) 

sin(¢)~¢ x ~O 
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To calculate the connection we need a non-vanishing section s we take 

s = (-sin(B),cos(B),O) 

and then 
ds = (-cos( B),- sin( B), O)dB 

so that 

\7 s = 7r(ds) 

ds- < ds,n > n 
(-cos( B),- sin( B), O)dB 

+sin( <P) (cos( B) sin( <P), sin( B) sin( <P ), cos( <P ))dB 
(-cos( B) cos2 (</>),- sin( B) cos2 (</>), cos(</>) sin(<f>))dB 

cos(<f>)n x s 

i cos( <P )s 

Hence A = i cos( <P )dB and F = i sin( <P )dB 1\ d<f>. To understand what this two 
form is note that the volume form on the two-sphere is vol = -sin( <P )dB 1\ d<f> 
and hence F = ivol The region bounded by the path in Figure 4 has area B. 
If we call that region D we conclude that 

exp(-k F) = exp iB. 

Note that this agrees with the previous calculation for the holonomy around 
this path. 

2.3 Curvature as infinitesimal holonomy 

The equation hol(- \7, 8D) = exp (- fv F) has an infinitesimal counterpart. 
If X and Y are two tangent vectors and we let Dt be a parallelogram with 
sides tX and tY then the holonomy around Dt can be expanded in powers 
oft as 
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3 Chern classes 

In this section we define the Chern class which is a (topological) invariant of 
a line bundle. Before doing this we collect some facts about the curvature. 

Proposition 3,1 The curvature F of a connection V satisfies: 

{i) dF = 0 

(ii) If \7, v' a?'e two connections then v 
F\7 = F\7' +dry. 

V' + ry for ry a 1-form and 

(iii) If 2.: is a closed surface then z~i f"'B F\7 is an integer independent of \7. 

Proof: 
(i) dFiu(Y = d(dA(Y) = 0. 
(ii) Locally + rya as ryo: = A~ - A(Y. But A;3 = A(Y - g;;_Jdga;3 
and A~ = A~ - g;;_JdgCY/i so that ry;3 = ry(Y. Hence ry is a global 1-form and 
F\7 = dAa so F:.;, = F\7 +dry. 
(iii) If 2.: is a closed surface then 82.: = 0 so Stokes' theorem J"'B F\7 = J"'B F-i:;. 
Now choose ~ family of disks D1 in 2.: whose limit as t ---+ 0 is a point. For 
any t the holonomy of the connection around the boundary of D1 can be 
calculated by integrating the curvature over D1 or over the complement of 
D1 in 2.: and using Proposition 2.1. Taking into account orientation this gives 
us 

exp( [ F) = exp(- j F) 
j"'B-Dt Dt 

and taking the limit as t ---+ 0 gives 

exp(h F)= 1 

which gives the required result. • 

The Chern class, c( L), of a line bundle L ---+ 2.: where 2.: is a surface is 
defined to be the integer 2~i Jr,F\7 for any connection V. 

Examples: 
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1. For the case of the two sphere previous results showed that F 
-ivol5 2. Hence 

. . 

c(T S 2 ) = -. vol = -. 4?T = -2. -l l -l 

2?Tz 52 2?Tz 

Some further insight into the Chern class can be obtained by consider
ing a covering of S 2 by two open sets U0 , U1 as in Figure 2. Let L --t S2 

be given by a transition for g01 : U0 n U1 --t ex. Then a connection is 
a pair of 1-forms A0 , Ar, on U0 , U1 respectively, such that 

A1 = Ao + dgwg]2 on Uo n U1. 

Take A0 = 0 and A1 to be any extension of dg10g101 to U1 . Such an 
extension can be made by shrinking U0 and U1 a little and using a 
cut-off function. Then F = dA0 = 0 on U0 and F = dA1 on U1. To 
find c( L) we note that by Stokes theorem: 

f F = f F = f Al = f dgwgl(}. Js2 Ju, JBu, JBu, 

But this is just 27fi the winding number of g10 • Hence the Chern class 
of Lis the winding number of g10 . Note that we have already seen that 
for T S 2 the winding number and Chern class are both -2. It is not 
difficult to go further now and prove that isomorphism classes of line 
bundles on S 2 are in one to one correspondence with the integers via 
the Chern class but will not do this here. 

2. Another example is a surface ~g of genus g as in Figure 5. We cover 
it with g open sets U1 , ... , as indicated. Each of these open sets 
is diffeomorphic to either a torus with a disk removed or a torus with 
two disks removed. A torus has a non-vanishing vector field on it. If 
we imagine a rotating bicycle wheel then the inner tube of the tyre 
(ignoring the valve!) is a torus and the tangent vector field generated 
by the rotation defines a non-vanishing vector field. Hence the same is 
true of the open sets in Figure 5. There are corresponding transition 
functions g12 , g23 , ... , g9 _ 19 and we can define a connection in a manner 
analogous to the two-sphere case and we find that 

g-1 

c(T~9 ) = L winding number(gi,i+l)· 
i=l 
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g holes 

Figure 5: A surface of genus g. 

All the transition functions have winding number -2 so that 

c(T'E.9 ) = 2- 2g. 

This is a form of the Gauss-Bonnet theorem. It would be a good exer
cise for the reader familiar with the classical Riemannian geometry of 
surfaces in R 3 to relate this result to the Gauss-Bonnet theorem. In 
the classical Gauss-Bonnet theorem we integrate the Gaussian curva
ture which is the trace of the curvature of the Levi-Civita connection. 

So far we have only defined the Chern class for a surface. To define it for 
manifolds of higher dimension we need to recall the definition of de Rham 
cohomology [4]. If M is a manifold we have the de Rham complex 

where nP(M) is the space of all p forms on M, the horizontal maps are d the 
exterior derivative and m = dim(M). Then d2 = 0 and it makes sense to 
define: 

HP(M) = kernel d: np (M) -t np+l (M) 
imaged: nP-1 (M) -t np (M) 

This is the pth de Rham cohomology group of M - a finite dimensional vector 
space if M is compact or otherwise well behaved. 

The general definition of c(L) is to take the cohomology class in H2 (M) 
containing 2~;Fv for some connection. 
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It is a standard result [4] that if M is oriented, compact, connected and 
two dimensional integrating representatives of degree two cohomology classes 
defines an isomorphism 

where [w] is a cohomology class with representative form w. Hence we recover 
the definition for surfaces. 

4 Vector bundles and gauge theories 

Line bundles occur in physics in electromagnetism. The electro-magnetic 
tensor can be interpreted as the curvature form of a line bundle. A very 
nice account of this and related material is gien by Bott in [3]. More inter
esting however are so-called non-abelian gauge theories which involve vector 
bundles. 

To generalize the previous sections to a vector bundles E one needs to 
work through replacing e by en and ex by GL(n, C). Now non-vanishing 
sections and local trivialisations are not the same thing. A local trinalisa
tion corresponds to a local frame, that is n local sections sh ... , sn such that 
s 1 ( m), ... , sn ( m) are a basis for Em all m. The transition function is then 
matrix valued 

9o:f3: n U.e---+ GL(n, C). 

The clutching construction still works. 
A connection is defined the same way but locally corresponds to matrix 

valued one-forms Ao:. That is 

and the relationship between Af3 and Ao: is 

-1 = 9o:(3 

The correct definition of curvature is 
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where the wedge product involves matrix multiplication as well as wedging 
of one forms. Vve find that 

and that F is properly thought of as a two-form with values in the linear 
operators on E. That is if X and Y are vectors in the tangent space to M 
at m then F(X, Y) is a linear map from Em to itself. 

We have no tin1e here to even begin to explore the rich geometrical theory 
that has been built out of gauge theories and instead refer the reader to some 
references [1, 2, 6, 7]. 

We conclude with some remarks about the relationship of the theory we 
have developed here and classical Riemannian differential geometry. This is 
of course where all this theory began not where it ends! There is no reason in 
the above discussion to work with complex vector spaces, real vector spaces 
would do just as well. In that case we can consider the classical example of 
tangent bundle T M of a Riemannian manifold. For that situation there is 
a special connecLevin, the Levi-Civita connection. If ( x1 , ... , xn) are local 
co-ordinates on the manifold then the Levi-Civita connection is often written 
in terms of the Christoffel symbols as 

The connection one-forms are supposed to be matrix valued and they are 

The curvature F is the Rieman curvature tensor R. As a two-form with 
values in matrices it is 

ij 
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