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A. HAUSDORFF MEASURE 

In a sentence, the idea behind geometric measure theory is to generalize the 
notion of "n-dimensional submanifold", allowing one to consider limits and subse
quently to obtain existence (compactness) theorems. (More extensive motivation 
is given in the notes of Maria Athanassenas and Frank Morgan, contained in these 
Proceedings). Our intention here is to to give some of the underlying measure
theoretic constructions needed for this generalization procedure. 

The fundamental notion is that of the n-dimensional volume of a (possibly nasty) 
subset of JRP. (Recall from [TheHutchl,§l.2] that Lebesgue measure, [,P, gives 
a notion of p-dimensional volume in JRP, but Lebesgue gives no notion of lower 
dimensional volume in JRP). This is the role played by n-dimensional Hausdorff 
measure, Hn. To motivate the definition, consider a curve c in R2 . 

Covering c by balls 

() 

disks), we can hope that 

Length (c) ~ L diam ( B j) . 
j=l 

There are two obvious problems with this approximation to Length (c): 

(i) The sum may be too because of wasted overlap or placed balls. 
To compensate for this we need to take an over possible coverings. Of 
course this issue also arises in the definition of Lebesgue measure. 

(ii) The sum may be two small because one big ball can cover a lot of lengthy 
wriggling of c (e.g. Bk in the picture . To compensate for this we need 
to progressively consider coverings of c consisting of smaller and smaller sets. 
This issue does not arise in the definition of Lebesgue measure. 

We note also: 

For a technical reason it is helpful to consider coverings by arbitrary sets 
Cj rather than just balls Bj. (See Remark (b) after Theorem 1 below). 

(iv) In approximating/defining n-dimensional volume, the quantity diamBj is 
replaced by wn(dia';'CJ )n, where Wn =.en (B1(0)) = Vol(unit n-ball). (To 
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see this quantity is reasonable, consider Cj a ball cutting off a piece of 
n-plane that passes through the centre of Cj ). 

( v) For non-compact sets we want to allow a covering to contain countably 
infinitely many sets. 

Juggling all this motivation, we come up with ([EG,§2],[Mo,§2.3],[Si,§2]): 

Definition (H:5'-app:roximating measure, 1in-measure). 

Suppose n 2: 0, 0 < 8 ::;; oo and A<;:; JRP. Then we define 

{ 

00 
( diam C · ) n 

H[j (A) = inf f; Wn \ 2 J . 

Hn (A) = lim H[j (A) 
8->0+ 

Remarks. 

(a) Since H';s (A) increases as 8 decreases, Hn (A) is well-defined. 
(b) We take w0 = L This is justified by Theorem below. 
(c) n need not be an integer in the above definitions, though it usually will be 

for us. \Vhen n is not an integer we take Wn to be any positive constant. 
(For consistency, it is reasonable to take wn = /f( ~ + 1) where r is the 
gamma function - see [St,pp394-395]). 

(d) It should be clear that Hausdorff measure can be similarly defined on any 
metric space. Much of our discussion below applies in this more general 
setting, but we shaH not make further comment on this. 

The following accumulation of facts shows that Hausdorff measure in general is 
well-behaved and in particular agrees with other notions of n-dimensional volume 
in familiar special cases. 

Theorem 1 (Fundamental properties of Hausdorff measure)" 

(i) 7-lb' is a measure {i.e. an outer measure}. 
(ii) 7-ln is a Borel regular measure. 1-{n will not in general be Radon, but if 

E C JRP is Hn -measurable with 1tn (E) < = then the restriction Hn L E is 
Radon. 

(iii) Suppose m > n. Then 

{ 
Hn (A) < = ==? Hm (A) = 0, 

Hm (A) > 0 ==? Hn (A) = oo. 

1-{n is invariant under isometries. 
Generalizing {iv), iff: JRP---> Rq is Lipschitz and if A<;:; JRP then 
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~ 

(Recall that f is Lipschitz if there is a constant K < oo such that lf(x)
f(y)l:::; Klx- Yl for all x,y E ~P. Lipf is the best such constant K). 
1-{0 is counting measure: 

{ 
number of elements in A 

H 0 (A)= 
00 

A is finite, 

A is infinite. 

~(vii) 1-[P = [.P on JR:P. 

If Mn ~ JR;P is an embedded n-dimensional C 1-submanifold then t.viii) 

Hn (M) = Vol (M) (e.g. by "fg"-definition}. 

Remarks. 

(a) The import of (iii) is that for A~ JR:P there is at most onel!ponent n such 
that 0 < Hn(A) < oo. No such exponent need exist (see z: ), but we can 
always define the Hausdorff Dimension of A by 

dimA = sup{n:Hn(A)=oo} = inf{m:Hm(A)=O}. 

Also, by (vii), A~ JR;P ===? dim A:::; p. More generally, (viii) implies that 
(separable) immersed n-submanifolds of JR:P are Hausdorff n-dimensional. 

(b) A proof of ( v) will clearly involve using f to transform coverings of A to 
f(A). Notice than even if we begin with a covering of A by balls, the 
transformed covering need not consist of balls. It is for this reason that we 
allow coverings arbitrary sets in the definition of H{;. 

(c) The proof of (vii) is quite involved- in particular one needs an application 
?f tk Vitali Covering Theorem, the statement and proof of which is given 
m 'Gl_. 

(d) The proof of (viii) is not difficult, given (v), (vii) and the chang~fvariables 
formula for Lebesgue integration: see ([TheHutch1,§3.2]) and ~. (viii) is 
in fact a special case of an important result, the Area Formula, which we 
now describe. 

Suppose p :2': n and f : Rn ---> ~P is C 1 . Given a E llln consider the derivative 
D f(a), which we think of as both a linear map and asap x n matrix. Since D f(a) 
is not square (unless p = n) we cannot obtain a Jacobian factor by taking the 
determinant. However, we can write 

t(+) Df(a) =poa 

where a : JRn --+ Rn is linear and p : JRn ---> JR;P is a linear and orthogonal injection. 
Now we have 
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Definition. The Jacobian J f(a) off at a E ~n is defined by 

Jf(a) = ideto-1 . 

J§p Remarks. 

~ (a) The decomposition(+) is not unique, but Jf(a) is independent of the de
composition chosen. 

(b) It is clear that when p = n the above definition of Jf(a) reduces to the 
~ usual one. 
~ (c) Note that 

Jf(a) = 0-{=} rank(Df(a)) < n. 

t Theorem 2 (Area Formula). Suppose U ~ ~n is open with f: U----+ JRP a C 1 

function. If A~ U is .en -measurable and f is injective on A then 

1tn (f(A)) = i Jf d.Cn 

e\o<:~• 

4:Remarks. 

~ (a) Suppose </> : U----+ !Rn is a coordinate map for an embedded C 1 sub manifold 
Mn c ~P ([BartMan,§2],[Bo,p73]). Let f = ¢-1 and set (as usual) 9ij = 
{Dd,Dif) and g = det(9ij). Then Jf = ..;g, and so Theorem l(viii) is a 
special case of the Area Formula. 

(b) Theorem 2 is more general than Theorem l(viii) because there is no as
sumption that D f has rank n. In fact, from Remark (c) above, 

1tn (f ( {a : rank ( D f (a)) < n})) = 1tn (f ( {a : J f (a) = 0})) = 0 . 

This is an important special case (combined with (c) below). 
(c) There are a number of natural generalizations of the area formula. One 

possibility is to allow f to be non-injective, and we note th1f, the claim 
in the previous remark continues to hold in this setting: see Q (~t 5). 
Fg, other generalizations, see [EG,§3.3], [Mo,§3.7], [Si,§§8,12], and ~and 
~below. 
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B. CouNTABLY n-RECTIFIABLE SETS 

Given M <;;; JRP and n E z+, we have a notion of M being n-dimensional (Re
mark (a) after Theorem 1), but this is too weak to give a useful generalization of 
n-manifolds. For one thing, M being n-dimensional does not imply; anything about 
the positivity or local finiteness (or a-finiteness) of 11.n (M) (see ~ ·). Moreover, 
even if 0 < Hn (M) < oo, there is simply no reason why M should ~ess any weak 
manifoldish properties: see, for example, the Besicovitch Set below. Instead, we 
consider the much more restricted class of countably n-rectifiable sets, the funda
mental objects of study in geometric measure theory ([Mo,§3],[Si,Ch3]). There are 
a number of equivalent definitions one can make: we start with the (apparently) 
weakest one. 

Definition. A set M <;;; JRP is countably n-rectifiable (or rectifiable for short) if we 
can write 

00 

M = Mo u U fj(Oj) 
j=l 

where 11.n (Mo) ~ 0, each Oj<;;;RP, and each fJ:flr-+RP is Lipschitz. 

~ Clearly (separable) C 1 sub manifolds are rectifiable. As well, the space of rec
~ifiable sets is closed under the taking of subsets, countable unions and Lipschitz 

1mages. 

Warning. 
Our very first comment in §A might lead the reader to believe that the space of 

rectifiable sets has compactness properties, but this is not the case. The objects 
of study in geometric measure theory are defined in terms of rectifiable sets, but 
determining the precise spaces for which compactness theorems holds takes much 
more work. See [Mo,§5] and [Si,§32]. 

Example. 
We give an example to show how bad rectifable sets can be; for another, similarly 

nasty, see [Mo,pp30-31]. Let { aj }~1 C lll2 be an enumeration of the points with 
rational coordinates .. Let Sj be the circle (not the disk) of radius 1/2j about aJ. 

Now letS= UJSJ (see the picture on the following page). Sis obviously 1-rectifiable 
but, topologically, S is pretty disgusting. Note that S = R2 and that this is not 
changed by removing any set of 11.n-measure zero from S. S is not a set you would 
want to take home to meet your mother. 
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Non-non-example. We want give a non-example, a set which is not rectifiable. 
We first point out that the Cantor set C ([TheHutchl,§l.2.3]) is a non-non-example: 
since 7t1 (C) = £ 1 (C) = 0, the Cantor set is trivially and boring~ !-rectifiable. 
(For the calculation of the dimension of C, and of its variants, see ®J_· 
Non-example (due to Besicovitch). Let Do be the closed (filled-in) equilateral 
triangle of sidelength L Let D 1 C D 0 be the union of three triangles of sidelength 
1/3, as pictured. Proceeding iteratively, DJ C Dj-l consists of 3j triangles of 
sidelength lj31 placed in the obvious manner. We then define the Besicovitch Set 
to beD= nJD1. 

We first prove 7t1 (D) = 1, implying D is relevant to the discussion. For any 8, 
consider j with 31J ::= 8. Using the obvious covering of D1, we obtain 

7t1s (D) ::: 1-1.10 (D1) < 1 

==? 7t1 (D) ::: 1 (letting t5 --> 0) 

This is the easy direction- because H~ is an inj, upper bounds for Hausdorff measure 
are usually not difficult to obtain. In general, obtaining a good (sometimes any) 
lower bound can be difficult (see ~· Here, however, we can use a trick. Let 
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1r: R2 -+ lR be orthogonal projection onto the x1-axis. Noting that Lipn 1, 
Theorem 1(v), (vii) give 

1£1 (D) 2 1£1 {n(D)) = 1f.1 {[0, 1]) = .C1 ([0, 1]) = 1. 

This gives us the desired conclusion that 1£1 (D) = 1. (In this calculation, some 
work is hidden in the reference to Theorem 1(vii) and in the use of information 
about Lebesgue measure). 

D certainly looks quite non-rectifiable. To clarify matters, we introduce a new 
notion ([Si,§13],[HS,p28]): 

Definition. 
p c JRP is purely n-unrectifiable if 1in ( p n M) 

rectifiable set M. 
0 for every countably n-

One can show directly that the Besicovitch set is purely 1-unrectifiable. Alter
natively, this will follow from our density theorems below (see Corollary 10). In 
general we have 

~Theorem 3 (Decomposition Theorem). 
~ Suppose A5:RP with 1in (A)< oo. Then 

A=MUP 

where M is countably n-rectijiable, P is purely n-unrectifiable and M n P = 0. This 
decomposition is unique up to sets of zero fin -measure. 

We shall not consider them further, but there are some beautiful and important 
theorems on purely unrectifiable sets; we note in particular Federer's Structure The
orem ([Si,Th13.2],[Ma,§6],[Ros]). The best references for such material are probably 
[Fa] and [MaJ. 

Returning to the study of rectifiable sets, we want to show that such sets are 
not as bad as one might initially be led to believe. We do this by showing that 
Lipschitz functions are quite well behaved. To begin, we have 

-t=" Theorem 4 (Lipschitz Extension Theorem). Suppose f25:Rn and f: f!-+JRP ®v is Lipschitz. Then there is a Lipschitz function g: Rn-+ JRP such that f = g on f2. 

tT-0<::'. 

The obvious consequence of Theorem 4 is 

(M 5:: JRP is n-rectifiable) 

( 

00 
{ 1-{n (M ) - 0 ) 

<¢:::::::} M 5:: Mo U U Ji(Rn) with J· .lli>n ° :P L" h"t 
j=1 3 .J& -+J& 1psc 1 z 
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Next, we investigate the differentiability properties of Lipschitz functions; from 
Sobolev space theory we know that Lipschitz functions are weakly differentiable 
with L 00 weak derivatives ([TheHutch1,§4.4],[EG,pl31],[Z,Th2.1.4]); however, it is 
real-live classical derivatives we are interested in here. Of course a Lipschitz function 
need not be everywhere differentiable, as is illustrated by the function f(x) = \x\, 
but the next theorem indicates that this is almost the case. 

l Theorem 5 (Rademacher's Theorem). 
Suppose f: IR:.n--. ]~P is Lipschitz. Then f is (classically} differentiable .en -almost 

everywhere. 

In fact, more than just being "almost differentiable", Lipschitz functions are 
~ "almost C 1 ": 

-~Theorem 6 (Whitney's Extension Theorem). 
Suppose f : IR:.n --. IR:.P is Lipschitz and let E > 0. Then there is a C 1 funciion 

g: IR:.n --t IR:.P and a closed set C <;;: Rn such that: 

(i) .cn(IR:.n ""'C) ::; e; 
(ii) f=g andDf=Dg onC. 

Combining with the Area Formula (non-injective version: see Remarks (b) and 
. c) after Theorem 2), we have 

orollary 7. 
M <;;: IR:.P is countably n-rectifiable iff 

00 

M <;;: NoU UNj, 
j=l 

where Hn(No) = 0 and each, for each j ::; 1, Nj is ann-dimensional regularly 
and properly embedded C1 submanifold with boundary.* 

There is a general Littlewoodish Principle ((TheHutch1,§2.1.3]) at work here: 

C 1 fact } 

EB ===;. Lipschitz fact. 

Whitney 

*By the term "regularly embedded" we mean Nj is embedded in the nicest possible sense: for 
each a in the interior of Nj there is an open U ~ JP?.P containing a and a chart ¢ : U ---+ V for JP?.P 
such that <f>(Nj n U) = Rn n ¢(V); see [Bo,§3.5]. The charts around boundary points of Nj, if they 
exist, are similarly defined; of course, by Theorem l(iii),(viii), the 1-ln-measure of the boundary 
will be zero. 
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~ As another instance of this principle, we have 

~orollary 8. The Area Formula (any version) holds for Lipschitz func~ions. 

,.<><:?• 

Geometric measure theory arguments are often based on the following general
ization of this principle: 

Mani: fact} 

w ===> Rectifiable fact. 

Whitney 

Illustrations of this principle are given in the following two sections. 

C. DENSITIES 

Generalizing the notion of densities for Lebesgue measure ([EG,p45]), we have 

Definition. 
Suppose M~JRP and a E JRP. Then then-dimensional density of Mat a is 

where Br(a) is the closed ball of radius r about a. 

From our Lebesgue knowledge ([EG,p45], or [TheHutchl, Th3.4] applied to f = 
XM) we know that if M ~ Rn is .en-measurable then 

(en (M, = 1 

ten (M,a) = 0 

for 1-tn-a.e. a EM, 

We remark that the meaBurability of M is only needed for the second of these 
~density results; see ~· 
@_ Using the Area Formula, one sees that these results also hold (more easily) if M 

1s a properly and regularly embedded submanifold with boundary ([Bo,p77]. Note 
Example (b) below). 
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In general these equations need not hold; in fact, the density of M need not even 
be well-defined at any a E Jv[ (see Example (a) below). We are forced to consider 
the upper density and lower density of M ~ JR.P, these quantities given respectively 
by 

8~ a) = lim H.n(M n ~r(a)) 
r-->0 Wnr 

J1p Examples. 

~ (a) It is not hard to show that for the Besicovitch Set D 

{ 
8h (D,a);:::: 1/2 

for all a ED. e: (D, a) ::; 1/2 

\/Vith a bit of work, the estimate on the lower density can be improved to 

130 for 7-{1-almost all a E D. Consequently the 1-density of D is undefined 
at almost all points in D. 

(b) Let A = U~1 (JR. x {1/j}) C R2 . Clearly 8 1 (A,a) = oo for every a E 

JR. X {0}. 

I \ 

' -

This second example shows that for nice density results we need some finiteness 
condition on Hn(A), even for rectifiable sets. (Local finiteness is enough, but we 
won't spell that out each time). 
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~Theorem 9. 
~ Suppose M C JRP with 1-{n (M) < oo. Then 

(i) 2~ S en*(M, a) S 1 for Hn-a.e. a EM, 
(ii) lfM isHn-measurablethenGn(M,a)=OforHn-a.e. aE~M. 

Remarks. ~ 

(a) The proofs of these results involve the Vitali Covering Theorem (see -~ 
.Jb- and ~ ). 
~(b) The prevwusly mentioned density results for Lebesgue measure follow easily 

from Theorem 9 (ii). 
(c) [Fe, §3.3.19] shows that the lower bound 2~ is optimal. The Besicovitch set 

also shows that the bound 2~ does not hold for lower densities. In fact no 

non-trivial lower bound exists: one can construct a Besicovitch-type set f5 
for which 8i(D, a)= 0 for all a ED. 

As a simple corollary to Theorem 9, we conclude that, densitywise. rectifiable 
. sets behave like manifolds: 

Corollary 10. 
Suppose M ~s countably n-rectifiable and 1-{n-measurable w~th 1-{n (ll1) < oo. 

Then 

{
en (M,a) = 1 

en (M,a) = 0 

for 1-ln-a.e. a EM 

forHn-a.e. aE~.M 

Remarks. 

(a) 

(b) 

t(c) 
It is worth noting that, as is the case for Lebesgue density, the measurability 
of M is only needed for the second of these density results. See the proof 
of~. 
We iJso point out that only Theorem 9(ii) is used in the proof of Corollary 
10. Thus, in the context of rectifiable sets, we need not actually deal with 
upper and lower densties. 
The pure 1-u,H.ectifiability of the Besicovitch Set follows readily from Corol
lary 10 and~ 

D. TANGENT PLANES 

Continuing our analysis of rectifable sets as approximate manifolds, we consider 
the existence of tangent planes. Of course we cannot in general hope for the ex
istence of classical tangent planes: the rectifiable set given in §B will not have a 
classical tangent at any point, even if we ignore sets of 1-{1-measure zero. We must 
instead consider a weak, measure-theoretic notion of tangency ([Si,§ll], [HS,§2.3]). 

12 



Given M ~ JRP, a E JRP and an n-plane P ~ JRP passing through a, we shall define 
the notion of P being an approximate tangent plane to M at a. For notational 
simplicity, we'll consider a = 0 and P passing through 0. Given a compactly sup
ported test-function¢ E C0 (RP), integrating¢ over M (with respect to 1in) should 
approximately be the same as integrating ¢ over P; if we scale M (i.e. replace M 
by A.M with>.. large) then the approximation should become better and better. 

p 

Definition. 
P is an approximate tangent plane to M at 0 if 

(t) for all ¢ E C0(JRP) 

Remarks. 

(a) We can write (+)as the weak convergence of measures ([HS,p22],[EG,§1.9]): 

(b) Scaling ¢ instead of A, we can \Orrite ( t) as 

(c) 
(d) 

;x.n JM ¢(A.x)d1in(x) --+ l ¢d1in. 

For tangents at a general a E JRP, the appropriate scaled set is a+.A(M -a). 
The poin~ need not be in M for M to have a tangent plane at a. Note, 
however, 11!! below. 
If the tangent plane to M at a exists then it is unique. 
It is not hard to see that classical tangent planes to regularly embedded 
submanifolds are also approximate tangent planes. It is also easy to see 
the converse is false, since approximate tangent planes ignore sets of Hn-
measure zero. 

(g) More generally, one has the very important notion of a tangent cone to a 
given set. See (Mo,§9] and [Si,§35]. 
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There are close ties between tangent planes and densities. Choosing the test 
function ¢ to approximate the characteristic function of a ball, it is not hard to 

~how: 

m M has an approximate tangent plane at a ===> en (M, a) = 1. 

~ ~::~:p:~~antly, 
~ Suppose M,A <::; ~P, a E JR.P, and suppose en(MrvA,a) = en(ArvM,a) = 0. 

Then M has an approximate tangent plane at a iff P does, and the tangent planes 
agree. 

This lemma, together with Theorem 9(ii), is quite powerful. In particular, it is easy 

~to prove 

~Theorem 13. 
Supppose M <::; JR.P is countably n-rectifiable and 1in-measurable with 1in(M) < 

oo. Then M has an approximate tangent plane at 1in-a.e. a EM. In fact, in the 
notation of Corollary 7, the tangent plane to M is the same as the tangent plane 
to NJ at almost all points of M n NJ . 

... ~~. The converse is true, though less routine: 

~Theorem 14. 
~ Supppose M <::; ~n is 1in-measurable with 1in(M) < oo, and suppose M has an 

approximate tangent plane at 1in -a. e. a E M. Then M is countably n-rectifiable. 

inal Remarks. 

(a) These results make concrete the Decomposition Theorem: if A <::; ~P is 1in
measurable with 1in(A) < oo then the rectifiable part of A is exactly the 
set of points in A at which A has an approximate tangent plane. 

(b) A very important consequence of Theorem 13 is that if M <::; ~P is countably 
n-rectifiable and f: M--> ~P is Lipschitz then, at 1-ln a.e. a E M, we can 
define the tangential derivative DM f of f at a. As a consequence we can 
define a suitable Jacobian factor JMf, and we have the appropriate Area 
Formula: 

(A C M, f injective) 

The fact that rectifiable sets obey such an area formula, together with other 
results of a similar nature, is what allows us to successfully treat such sets 
analytically. 
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E. APPENDIX 

&_ [EG,p6!J. 

The issue, of course, is to show that 1i'5 is countably subadditive ([TheHutchl, 
§1.3]); the proof is identical to that for Lebesgue measure. Suppose A<;;; UkAk and, 
for each k, let {CJk} be a covering of Ak. Given E > 0, we can choose the CJk so 
that diam C1k ::; 15 and 

~ (diamCjk)n 'Lin(A ) ~ 
~ Wn 2 :::: ItS k + 2k . 
j=l 

Then, since A<;;;uC1k, 

00 

H6(A) :::: L H6(Ak) + E. 

k=l 

Letting E--+ 0 gives the desired result. 

~ [EG,pp61-63], [Si,p7]. 

. Letting 15--+ 0, it easily follows from a that Hn is a measure. To prove Hn is 
Borel, we apply the Caratheodory Criterion ([EG,Thl.l.5],[Si,Thl.2],[TheHutchl, 
p6]): the point is to prove 

dist(A, B) > 15 ==> 1i/5(A U B) = 1i/5(A) + H'5(B), 

(which is easy), and then let 15--+ 0. 
To show that 1-{n is regular ([TheHutchl,§l.4.1]), first note that in the definition 

of 1i'l; we need only consider coverings of a given A by closed sets (because, for any 
set C, diam( C) = diam C). This implies that for any k E N, we can find a Borel 
set Dk :2 A for which 

(Dk can be a countable union of closed sets from a suitable covering of A). Setting 
D = nDk, we see D2A is Borel with H.n(D) = 1-{n(A). 

For n > p, 1-{n will not be Radon on JRP ([TheHutchl,§l.4.2]), as Theorem l(vii) 
implies that 1-{n will not be finite on compact sets. The fact that Hn LA will be 
Radon for suitable A follows from the definitions: see [EG,§l.l]. 

~ [EG,p65]. 

The critical (and not difficult) fact is 
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H8(A) :S; Wm (~)m-n H6(A). 
Wn 2 *

4 
~e desired results now follow by letting {j __, 0. 

~ [EG,p63]. 

If A<;;;UCj then f(A)<;;;uj(Cj)· Also diam(f(C1)):::; (Lipf)(diamCj)· Thus, 

H(Lipflb ((f(A)) :S; H6(A). 

Letting 6--> 0 gives the result. 

~ [EG,p63]. 

1. The desired result 

This one takes work. We shall actually prove that, for any 8 E (0, oo), 116 = £n 
on ~n. The proof will be in four parts, followed by the proof of two subsidiary 
results: 

Part 1 

Part 2 

Part 3 

B a closed ball of diameter :::; 8. 

Part 4 

H6(A) :::; £n(A) 

*PROOF OF PART 1. 
We need a big fact: of all sets with a given diameter d < oo, the ball of radius 

d/2 has the largest volume. That is, 
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.cn(C) ::; ( di7C) n Wn CeRn. 

We prove this result, called the Isodiametric Inequality, after Part 4 below. Given 
the Isodiarnetric Inequality, Part 1 is easy. Covering A by sets Ci of diameter at 
most 8, 

Taking the inf over all possible coverings gives the result. * PROOF OF PART 2. 
Consider, for Lebesgue purposes, a covering of A by (unequal-sided) cubes. By 

cutting up the cubes, we can assume that 

~ diam(I) < {j for each cube I. 
~ Each cube I is close to having sides of equal length, say that the longest 

side of I is no longer than twice the shortest side of I. Consequently 

Taking the inf over such coverings, it easily follows that 

from which Part 2 follows immediately. 
* PROOF OF PART 3. 

By definition of wn, and since Lebesgue measure scales, 

.cn(B) = ( dia~B) n Wn. 

Covering B by itself, Part 3 follows immediately. 
* PROOF OF PART 4 (the idea}. 

We want to decompose A into a set E of zero Lebesgue measure and a disjoint 
union of small balls Bj, after which we can apply Parts 2 and 3. To do this we 
need a covering theorem. 

Definition. 
A fine covering K, of A~ Rn is a collection of sets such that, for each a E A, 

inf{diamB: a E BE K} = 0. 

Vitali Covering Theorem. 
Suppose A~ Rn is covered by a collection K, of closed balls of uniformly bounded 

and non-zero diameter. Then there is a pairwise disjoint countable subcollection 
B C K, having the following property: 
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( +) For any C E IC there is a B E B with C n B =F 0 and C s;; 5B. 

(Here, 5B is the ball concentric with B of 5 times the radius). 
Consequently 

(a) 

A c U 5B (Unsubtle Vitali Lemma}; 
BEB 

(b) If K is a fine covering of A then for any finite subcollection :J C B, 

(Subtle Vitali Lemma}; 

(c) If IC is a fine covering of A then 

(Vitali Theorem}. 

The proof of Vitali is given below, after that for the Isodiametric Inequality. * PROOF OF PART 4 (the work}. 
Given As;; ~n, let E > 0 and choose an open W ;::2 A such that £N (W) < £n (A) +E. 

(We can do this because £n is Radon: see [EG,pp6-8],[Si,§l.3],[TheHutch1,§1.5]). 
Let 

lC = { B : B C W is a closed ball of non-zero diameter :::; 8} . 

K is certainly a fine covering of A. Thus, by the Vitali Theorem, there is a 
countable pairwise disjoint subcollection { B3} with 

Thus, using Theorem l(i), 

00 

= £n(u1B 1) 

:::; £n(W) 

:::; £n(A) + E 

Letting E->0, we get the desired result. 

(Parts 1 and 2) 

( { Bj} pairwise disjoint) 

(Choice of W). 
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* PROOF OF THE ISODIAMETRIC INEQUALITY ([EG,§2.2], [Mo, Cor2.8J). 
Increasing the diameter of C by E and letting E--> 0 at the end of the argumei:it, 

we can assume that Cis open. We now consider the Steiner Symmetrization Sn~C) 
of C with respect the nth coordinate Xn: first, given a E JRn-1 , define 

l(a) = 1{1 ({t: (a,t) E C}). 

Now define 

Sn(C) = { (a,t): \t\ < ~l(a)}. 

Note that: 

.,. Sn(C) is symmetric with respect to Xn
(Obvious) . 

.,. Sn(C) is open 
(This comes from the fact that the function a~--+ l (a) is continuous, which 
itself follows easily from the fact that A is open) . 

.,. .cn(Sn(C)) =.en( C). 
(By Fubini ([EG,§1.4],[TheHutch1,§3.1]). Note that C and Sn(C) are open 
and thus measurable) . 

.,. diam Sn (C) :::; diam C. 
(If (a1, tl), ( a2, t2) E Sn( C) then \h - t2\ < ~(l(a1) + l( a2) ). But it is clear 
that, for any E > 0, there exist 81 and 8 2 such that (a1, 81), (a2 , 82) E C and 
\81- 82\ > ~(l(a1) + l(a2)- E)). 

We can perform this symmetrization with respect to any coordinate Xj, and it 
follows easily from the definition that 

... sj and sk commute. 

Thus the set 

is symmetric with respect to all coordinates, and thus is symmetric with respect to 
the origin. Since diam S (C) :::; diam C, this implies that 

S(C) ~ Bdiamc (0). 
2 

Since we also have .en( C)= .cn(S(C)), this establishes the Isodiametric Inequality. * PROOF OF THE VITALI THEOREM ([Mo,pp27-29], [Si,ppll-12]). 
Consider those pairwise disjoint subcollections g of JC with the following prop

erty: 
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( 0) If C E J( with C n (UQ) =1- 0 then C ~ 5B for some B E Q with C n B =1- 0. 

The uniform bound on the diameters promises the existence of at least one 
such subcollection: if B E JC satisfies diam B ;::: ~ sup{ diam C : C E JC} then Q = 
{B} satisfies (0). As well, any union of subcollections satisfying (0) also satisfies 
( 0 ). We can therefore apply the Hausdorff Maximal Principle to obtain a maximal 
subcollection B satisfying ( 0). 

By maximality, it is clear that B satisfies ( +) in the statement of the Vitali 
Theorem. Also, since the diameters of the balls are non-zero, B must be countable. 
It is also immediate that B satisfies (a). 

To see (b), note that U.:T is closed. So if a E A~ .:1 then, by the fineness of 
JC, a E C for some C E JC with C n (U.:T) = 0. So, by ( + ), a E C ~ 5B for some 
B E B ~ .:1. (b) follows. 

To prove (c), first intersect A with an arbitrary ball BR(O) and let B* ~ B be 
the collection of balls B E B for which 5B intersects An BR(O). Notice that UB* 
is bounded and thus, In particular, 

L .cn(B) = .cn(uB*) < oo. 
BEB* 

It is enough to show that 

(~) 

Now, by (b), for any finite :TeE 

.cn(A- U.:l) :::; .en ( U 5B) :::; L .cn(5B) = 5n L .cn(B). 
B•~.:J B•~.:J B·~.:J 
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But, by (A), 

L C(B) ~ 0 as :J / B, 
B•"-{7 

and (-<!!~) follows. 

~ [EG,pp102-103]. 

This ie a epecial cMe of the Acea Focmnla, noting Theoce_m !(vii). See~ 
Zj;_ [EG,p87], [Si,p46]. 

We have Df(a): IP!.n-+ JP!.P. The image V of IP!.n under Df(a) is at most n

dimensional, and so there is a linear isometry L: JP!.P -+JE.P with L(V) <;:: IP!.n. Then 

D f(a) = t- 1 o (to D f(a)) 

= poCJ, 

where CJ =to (Df(a)):Rn-+Rn and p = t- 1 :Rn-+RP. This is a decomposition of 
D f (a) of the desired type. 

~ [EG,p88]. 

One can show directly that Jf(a) is independent of the decomposition but, for 
work below, it is worthwhile to first give an equivalent definition of the Jacobian. 

Given a linear map A : Rn -+ JP!.P, let A* : JP!.P -+ Rn be the adjoint map (or 
transpose). Then.\* o .A:Rn->Rn, and thus we can define 

[..:\] = vdet(.\*o..\). 

We shall show that 

(A) Jf(a) = [Df(a)]. 

Of course the independence of J f (a) is immediate from (A). 
To prove (A), we write 

(Df(a))*oDf(a) = CJ*op"opoCJ, 

where CJ and p are as in t_. Now p* o p is easily seen to be the identity on Rn, 
and clearly det CJ* = det CJ; (A) follows immediately. 

~ [Mo,§3.6]. 

This follows immediately from the decomposition definition of J f(a). 
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~ (EG,§3.3j, [Mo,pp25-27J. 
We give here a complete proof of the Area Formula, including, for completeness, 

a proof of the change of variables formula for Lebesgue integration (Part 3). 
*PART 1: f: !Rn _.JRn LINEAR. 

In the case that f: !Rn _,JRn is linear we want to show 

(.A) C(f(A)) = I det JIC(A) 

The key to proving this is write f = p o do q where p, q : !Rn _... !Rn are linear 
isometrics and d:JRn_.JRn satisfies d(x1, ... ,xn) = (dlxl, ... ,dnxn). It is clear 
that Ln = 7-{n is invariant under p and q; it is also clear that, under d, Ln scales 
by ld1 · d2 · · · dnl = I det fl. This establishes (A). 
*PART 2: MEASURABILITY LEMMA 

Parts 3 and 4 below involve decomposing f(A) into small pieces and then sum
ming estimates made on these pieces. In order to sum the estimates we need to 
know that the pieces of f(A) are measurable. The fact we need is: 

f : A_... JRP is Lipschitz} 
A TIJ)n • Ln bl ===} f(A) is 7-{n-measurable. 

<;;: u" 1s -measura e 

(We have worded this to be general enough to satisfy all our measurability needs. 
Notice that, by the Mean Value Theorem, a C 1 function is at least locally Lipschitz, 
and thus the Lemma is certainly applicable to the functions we are considering here). 

To prove the Lemma, we use the fact Ln is Radon. This allows us to write A= 
A0 UU Kj where 7-in(Ao) = 0 and each Kj is compact (see [TheHutchl,p5],[EG,p8]). 
Now 

!IP 7-in(f(Ao)) = 0 (by Theorem l(v)), and so f(A 0 ) is 7-{n-measurable; 
11>- Each f(Kj) is compact'* closed'* 7-{n-measurable. 

Thus f(A) = f(Ao) U U f(Kj) is 1-{n-measurable, as desired. * PART 3: CHANGE OF VARIABLES FORMULA. 
If U <;;: !Rn is open and f: U _.JRn is a C 1 diffeomorphism between U and f ( U), 

then we want to show 

('f) .en (f (A)) = L1 det D f 1 den A<;;: U £n-measurable. 

To see this, fixE> 0. For a E U let /\(x) = f(a) + Df(a) · (x- a) be the affine 
approximation to fat a. Then, for 15 = 15(a, E) small enough, we have 

{ 
Lip(! 0 _>..- 1 ) ::; 1 + E 

· Lip(A.or 1):s;l+t: 

(1-t:)ldetDf(a)l::; ldetDfl::; (l+t:)ldetDf(a)l 
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(These results follow easily from the continuity of D f and the fact that D(f o 
)_-1 )(a) =I). 

Applying these inequalities, together with Theorem l(v) and (A) above, one 
readily obtains 

Et::;:.Bc5(a) measurable. 

Chopping A into small pieces and applying the Measurability Lemma, we obtain 
the same inequalities for any £n-measurable A t::;:_ U. (A suitable chopping of A 
exists, e.g., by the local compactness of U). Finally, letting E-+0, we obtain (v). 

PART 4: f: lftn-+ IftP NONSINGULAR. 
Here we prove the Area Formula, 

At::;:_ U t::;:_ ~n measurable, 

under the assumption that f: U-+ IftP is injective on A and rank D f = n everywhere. 
Given a E U, write D f(a) = p o a as in the definition of J f(a). Let -rr: IftP-+ Rn 

be orthogonal projection onto Rn and define g: lftn-+ Rn by 

g = 7r 0 p-1 0 f. 

g 

Then 

il'> Jf(a) = idetal = ldetDg(a)l-
11>- Jf(x) :::=: ldetD(g)(x)l for any x E U. 

(To see the inequality, write D f(x) = Px o ax and notice that I det(-rr o p- 1 o Px)l :S 
(Lip(-rr 0 p- 1 o Px))n :S; 1). 

Given E > 0, it follows that for 8 = 8(a, e) small enough 

!If> Jf(x) :S (1 + e)l detD(g)(x)l for any x E B5(a). 
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Now, the fact that f is nonsingular means, choosing 8 smaller if need be, we can 
apply the Inverse Function Theorem tog on B0(a) ([Bo:§1I.6]); it follows that p- 1 o 

f(B0 (a)) can be written as a graph over g(B0 (a)). Abusing notation slightly, we 
refer to the graph function as 7f-l, and we note that D7r- 1 (g(a)) = 0. Therefore, 
making 8 smaller again, we can assume 

li'> Lip1r- 1 ::; 1 +Eon g(B0 (a)). 

Combining the change of variables formula for g, the above estimates and Theorem 
l(v), we find that 

E~B0 (a) £n_ measurable. 

Chopping up and applying the Measurability Lemma, we find the same estimate 
holds for measurable A~ U, noting the injectivity assumption for f on A. Then, 
letting E----?O,we obtain (t). 
*PART 5: GENERAL f. 

We want to show ( +) holds for general injective f. We do this by setting 

Z ={a:Jf(a)=O} 

and showing that 

(0) 

Of course, working locally, we can assume that f is Lipschitz and that £n(z) < oo. 
However, our proof of ( 0) will not rely upon any injectivity assumption on f. 

FixE> 0 and define g: U ----?RP x Rn by g(x) = (f(x), Ex). Then 

a E Z. 

(To see this, notice that there is some vERn for which Df(a) · v = 0, and thus 
IDg(a) ·vi = E; in any other direction, Dg(a) stretches by at most J(Lip f)2 + t 2 ). 

g is injective and nonsingular. So, applying ( +) to g and using Theorem l(v), we 
find that 

~Letting E----? 0, we obtain ( 0), completing the proof. 

~ [EG,pl02]. 

Noting the expression for Jf(a) in~ above, the result follows from the calcu
lation 

p p 

((Df)* o Df)iJ = ~(Df);k(Df)kJ = ~(Ddk)(DJfk) = 9iJ. 
k=l k=l 
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The only part which takes some thought is the claim that the Lipschitz image 
of a rectifiable set is rectifiable, This follows from: 

11o> The composition of Lipschitz functions is Lipschitz; 
11>- The Lipschitz image of a set of 1-{n-measure zero has measure zero (by 

Theorem 1 ( v)), 

[Si,p70]. 

Let K = sup{Hn(A n R) : R is rectifiable}. For each j, let Mj be a rectifiable 
set with Hn(An Mj) 2: K -1/j. Then set M =An (UjMj) and P = A~M. It is 
clear that this gives the desired decomposition and that it is unique up to sets of 
H" measure zero. 

~ [EG,p80], [Si,Th5.1]. 

If j:f2->lR (i.e. p = 1) then we can define 

g(x) = inf {!(a)+ (Lip f)lx- ai} . 
aEfl 

g 

It is easy to check that g is a Lipschitz extension of f with Lip g = Lip f. For 
general f : n --> JRP, we can apply this argument to each component of f, giving a 
Lipschitz extension g with Lip g :::; fo Lip f, 

It can in fact be shown that a Lipschitz extension g exists with Lip g = Lip f, 
but the proof is difficult; see [Fe,§2.10.43], 

a_ [EG,§3.1], [Mo,§3.2], [Si,Th5.2]. 
First note that Raemacher's Theorem is standard if n = p = 1: if f: lR--> lR 

is Lipschitz then f is absolutely continuous. Furthermore, in this case f' is _en_ 
measurable and 
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(.&.) J j' dLn = f(b)- f(a) a, b, E lR. 

(See [Roy,§5A]. Note the application of the Vitali Theorem (§5.1)). 
Now dealing with coordinate functions, it is enough to consider f: !Rn-+ lR (i.e. 

p = 1). By a standard argument, one can show that the partial derivatives Djf are 
measurable on the sets where they are defined ([EG,p82]). Then, applying Fubini's 
Theorem and (.&.),we find that: 

(T) 

.,.. The partial derivatives Djf exist Ln-almost everywhere; 

.,.. Integration by parts holds for Lipschitz functions; if k: !Rn-+ lR is Lipschitz 
with compact support then 

j = 1, ... ,n. 

(Note that (T) states that f has weak derivatives in the sense of [TheHutch1,§4.4]. 
Note also that Rademacher's theorem states more than just the partial derivatives 
off exist almost everywhere: we have to show the existence of affine approximations 
to f). 

More generally, for v E sn~l, we can consider the directional derivative 

D f( ) = 1. f(a+tv)- f(a) 
v a _ 1m . 

t-->0 t 
By the rotational in variance of £n = Hn, it follows that Dv exists £n-almost 
everywhere, is £n-measurable, and 

for any k: !Rn-+ lR Lipschitz with compact support. 
The proof is now completed in two steps: 

(0) 

(1) For any fixed v = (vl, 0 •• 'Vn) E sn~l' we show 

n 

Dvf(a) = LDjf(a)vj 
j=l 

(2) Let D<:::;§n~l be countable and dense. Then, for £n-almost all a E !Rn, (<~!!) 
holds for every v E D. We show that f is differentiable at any such a. 

To see (1), notice first that ( 0) holds for any C 1 function k, being a special case 
of the chain rule. Applying this, together with ('f) and ( ~), we find that 

J kDvf d£n = J k t Djj(a)vj d£n 
J=l 
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( 0) holding almost everywhere now follows by a standard argument, using the 
arbitrariness of k. 

To prove ( 2), Let a be such that ( 0) holds for all v E D. Fixing E > 0, we show 
that, for h = (h1 , ... , hh) ERn suitably small, 

n 

(t) f(a +h)- f(a)- L Djf(a)h.i ::; M!h!E, 
j=1 

where M is a constant independent of h. 
Since §n- 1 is compact, we can choose a finite F CD for which 

§n-1 C::: u Bc(w). 
wEF 

So, for any h =/= 0, there will be some v = v(h) = (v1 , ... , vn) E F for which 

lh- IJl!vl < Ejhj. 

Now, by (0), 

n 

f(a +h)- f(a)- L DJf(a)hJ < If( a+ h)- J(a + lhlv)l 
j=l 

n 

+ lf(a + lhlv)- f(a) -lhiDvf(a)l + L IDJf(a)(lhlvJ- hj )I 
j=l 

It is easy to see that first term is bounded by (Lip !)!hiE, and that the third term 
is bounded by (I; IDJf(a)l)jhjE. Finally, using the finiteness ofF, the second term 
is bounded by jhjE for small h. Together, these estimates give ( + ), completing the 

~o~. [EG,pp245-252], [WJ, [Z,§§3.3.5-6J. 
'4'whitney's Theorem, in its full glory, is much more general than our Theorem 
6: see [W], [Z] or [Fe,§3.1.14]). 

The proof given here, as is that in [EG], is based upon that in (Fe]. The proof is 
divided into six parts: in Part 1 we define the set C, f being particularly nice on 
C; in Part 2 we define a well-behaved locally finite covering of A = Rn ~ C, and in 
Part 3 we construct a correspondingly well-behaved partition of unity subordinate 
to this covering; in Part 4 we define g; finally, in Part 5 we show g is differentiable 
with D f = Dg on C, and in Part 6 we show Dg is continuous. 
*PART 1: DEFINITION OF C. 

We assume throughout that f: Rn----+ JR. (i.e. p = 1). Now, by Rademacher's The
orem and Lusin's Theorem ([TheHutch1,§2.1.4],[EG,p15]), there is a closed GC:::Rn 
with £(JR.n-G) < E/2, and such that f is differentiable on G with D fie continuous. 
Next, for k E N, define hk: Rn----+ JR. by 
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hk(c) = sup 
O<lx-cl<i-

lf(x)- f(c)- Df(c) · (x- c)J 
Jhl 

hk -+0 pointwise on G. So, by Egoroff's Theorem ([TheHutchl, §2.1.5],[EG,pl6]) 
there is a closed C c.;;_ G with £n ( G ~C) < E and such that 

(.&) hk ----+ 0 uniformly on bounded subsets of C. 

* PART 2: COVERING OF !Rn ~C. 
Let 

A= !Rn ~ C, 

and for x E A define 

dx = dist(x, A). 

By the Unsubtle Vitali Lemma (~'There is a countable De A such that 

(6) A= U B<i:J,_(b) 
4 

bED 

and such that the collection {B<i:J,_ (b)}bED is pairwise disjoint. (Notice that 0 < 
20 

dx ::; (E/wn)* for all x E A, by the hugeness of C). We now want to prove that 
this covering of A is locally finite. Specifically, defining 

Dx ==: Dn{b:B~(x)nB-"f(b)#0} 
we shall show that 

( 0) Card(Dx) :S: N, 

where N is a constant depending only upon n. 
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To prove ( <)), notice that for any x, b E A, 

(") 

(To see the first inequality, apply the hypothesis together with the general fact 
that idx- dbl S: lx- bl; the second inequality follows easily from the first). 

It follows that 

Thus, considering .en on the disjoint collection {B'.!b. (b)}bED, we find that 

and (0) follows, with N = (180)n 
*PART 3: PARTITION OF UNITY. 

20 

{ VbhED is to be a C 1 partition of unity subordinate to { B '.!b. (b) hED; thus, each 
2 

Vb 2::0 is to be C\ supported inside B'.!b.(b), and such that 
2 

(v) on A. 

The existence of partitions of unity is standard ([Bo,§V.4],[Z,p53]), but we want to 
ensure that { Vb} has the extra property that 

( <l) 

where M is a constant depending only upon n. To do this, begin with a C 1 function 
¢: ~n---+ ~ 2:: 0 satisfying 

We can then define 

{ 
<P = 1 

¢=0 

ID¢1 s: 2 

on B1 (0), 

on ~n "'B2 (0), 

on ~n. 

{ 
¢b(x) = ¢ ( 4(xd~ b)) ' 

<P(x) L¢b(x), 
bED 
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and, finally, 

X E A, 

X E C. 

Clearly 

(D) 

So, by ( 6) and ( 0), 

0 ::::; Vb ::::; 1 ::::; <f> < oo on A, 

and { vb} is a well-defined partition of unity. It is also clear that 

8 
sup JD¢bl ::::; db, 

and ( <l) follows easily, with M = 16(1 + N). 
*PART 4: DEFINITION OF g. 

For each b E D choose b* E C with 

and let Ab: llln----> R be the affine approximation to f at b*: 

Ab(x) = f(b*) + D f(b*) · (x- b*). 

Now define 

X E C, 

X EA. 

Trivially, g = f on C and Dg is continuous on A. Now we show the hard bits. 
*PART 5: DIFFERENTIABILITY OF g. 

We want to show that g is differentiable at c E C with Dg(c) = Df(c). Since f 
is differentiable on C, we need only worry about c E 8C, and we need only worry 
about x approaching c with x EA. The key point is that g(x) is defined in terms 
of approximations to f about points b* close to c. In fact, from (D) and (v), 

(+) 
vb(x) -=/= 0 ==* Jx- bJ ::::; 2\x- cJ 

==* lx- b*J ::::; 5Jx- c\. 
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(As the definition of b* gives jb- b*l < jb- cj, this follows from the triangle 
inequality). 

Also for, for x E 

jg(x)- g(c)- Df(c) · (x- c)i 

=I (2:: Ab(x)vb(x)J- f(c)- Df(c) · (x- c)l 
bED I 

:::_:: (2:: V&(x) i>-b(x)- f(x)j) + if(x)- f(c)- Df(c) · (x- c)i. 
bED 

Therefore, if k E N and jx - cj < A, then ( 0) gives 

jg(x)- g(c)- Df(c) · (x- c)i 

:::_:: N(sup hk(b*))jx- b*j + if(x)- f(c)- Df(c) · (x- c)j , 
b 

where hk is from Part 1 and the sup is over those b with vb(x) =/=- 0. By any 
such b satisfies jb- cj :::_:: 3jx- cj, and is thus in a fixed compact set for x close to 
c. The fact that Dg( c) exists and equals D f (c) now follows from (A) and (.). 
*PART 6: CONTINUITY OF Dg. 

Vile want to show Dg is continuous. Since D f1c is continuous, we need only 
worry about continuity at c E 80 and x dose to c with x E A. Now 

xE A. 
bED bED 

As x ---> c, the first sum appproaches D f (c), by ( t) and the continuity of D f at 
c. On the other hand, using L, Dvb = D(L, vb) = 0, together with ( <J), we have 

IL Ab(x)Dvb(x)l = 12)>-b(x)- f(x))Dvb(x) 
bED bED 
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The sum is over those b for which vb(x) i 0, and we note that we then also have 
lx- b*l::::; ~- So, if lx- ci < 5

1k then(+) and (0) imply 

IL Ab(x)Dvb(x)l ::::; 3~N suphk(b*). 
bED b 

Aplying (i.) and returning to (~), we find that Dg is continuous at c, as desired. 

*PART 7. 
~nd in the Seventh Part, We Rested. 

~ [Mo,p30], [Si,p59]. 

The ".;=" direction is trivial. For the "=>" direction, we may as well assume, 
by Theorem 4, that M <;;;; f(Rn) with f: Rn-----> RP Lipschitz. Applying Whitney's 
Theorem with E = -k' we obtain C 1 functions gk: Rn-----> RP such that 

00 

M <;;;;No U U gk(Rn). 
k=l 

Next, set 

By the Area Formula, 

(We are using here the non-injectiv!rersion of the area formula. See Remark (c) 
after Theorem 2 and the proof of 1 ). On the other hand, by Remark (b) after 
Theorem 2, gk(Rn '""Zk) is an immerse C1 submanifold and can thus be written as 
a countable union of regularly and properly embedded submanifolds with boundary. 
Combining with ( + ), this gives the desired covering of M. 

~ [EG,§3.3], [Mo,pp25-27], [Si,§12]. 

We shall prove Lipschitz versions of the Area Formula as stated in Theorem 2 
and the subsequent Remark (b). (In [EG] and [Mo], the Area Formula is proved 
directly for Lipschitz functions, rather than by first establishing a C1 version). 

Suppose A<;;;; Rn is .en-measurable and f: A-----> RP is Lipschitz. Considering the 
two distinct cases, we want to show 

{ 
f injective on A ==? Hn(f(A)) = l J f dC, 

Jf = 0 on A==? Hn(f(A)) = 0. 
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First note that by the Lipschitz Extension Theorem, we may assume that f 
is defined and Lipschitz on all of lRn; then, by Rademacher's Theorem, Jf(a) is 
well-defined, and independent of the extension chosen, on almost all of A. 

By Whitney's Theorem there is a C1 function g : JRn -+ JRP such that g = f 
and Dg = D f on a closed C ~ JRn with .cn(JRn "'C) ::::; t:. Furthermore, by the 
arbitrariness oft:, we may as well assume that 

A~C. 

(One proves ( +) with A< = An C in place of A. There is then no problem in taking 
the limit as t:-+0). But now we see the result is trivial: clearly Jg = Jf on A, and 
( +) is immediate from applying the Area Formula to g. 

~ 
The picture is clear: it is just a question of defining the type of embedding 

carefully enough to rule out naughtiness. 
If a E JRP "'M then the properness of the embedding of M ensures that there is 

an open U~JRPrvM containing a, and thus en(M,a) = 0 trivially. Points on the 
boundary of M can be ignored since, by Theorem l(iii),(viii), these points form a 
set of 1in-measure zero. Finally, if a is a point in the interior of M, we want to 
show that en(M, a)= 1. The easiest approach is to write a small piece of M about 
a as a graph {(x,f(x))} with a= (O,f(O)) and Df(O) = 0: the regularity of the 
embedding allows us to ignore the rest of M. 

f 

For any t: > 0 we can find 8 such that Lip f::::; t: on B6(0). Theorem l(v) now 
gives 

{ 
1in (M n Brv'f+<) 2:: Wnrn 

1in (M n Br)::::; Wn(l + t:)nrn 
r < 8. 

(For the first inequality consider the orthogonal projection 1r : JRP -+ JRn, and for 
the second inequality consider the lift x ~---+ (x,f(x)). Letting t:-+0, we obtain the 
desired density result. 
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We refer to the notation and diagram used in the definition of the Besicovitch 
Set. Fix a E D for consideration. For any k, the ball B ~ (a) contains all of one 

particular triangle making up Dk and does not interesect any of the other triangles 
at this scale (except, maybe, at one point). 

Therefore, for all n, we have 

Thus consideration of the sequence of radii Tk = 31n proves both density esti
mates. 

We now want to show that for 1i1-almost all a E D the lower density estimate 
can be improved to 130 • To see this, suppose that a is in the upper triangle of both 
Dk and Dk+l· Then the radius -ire can be improved to give 

'H1 (nnE s (a)) = ~k. 
3k+1 3 

This estimate shows that if, for infinitely many k, a lies in the same-type triangle 
of Dk and Dk+l then e~(D, a) ::; 130 • We just have to show that almost all a satisfy 
this same-triangle condition. 

Let E s;:; D be the set of a such that, for all but finitely many k, a lies in different
type triangles of Dk and Dk+l· We want to show that 1i1(E) = 0. To see this first 
write E = UEm where Ems;:; D is the set of a which are in different-type triangles 
of Dk and Dk+l for all k 2:: m; so, we just have to fix m and show 'H1 (Em) = 0. 

Each triangle of Dm contains three triangles of Dm+l, only two of which can 
contain any points from Em. Thus 
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Next, considering any triangle from Dm+b we note that it contains three triangles 
from Dm+2 , only two of which can interesect Em. So, combining with the previous 
inequality, we find that 

Proceeding inductively, we have, for any k, 

Letting k-+ 0 gives H 1 (Em) = 0, as desired. 

~ [EG,§2.3J, [Si,§3]. 
There are three claims in the statement of Theorem 9, the first of which is not 

too difficult and we prove directly in Part 1. In Part 2 we prove a lemma, from 
which the other claims follow quite simply (Parts 3 and 4). 
*PART 1. 

We consider M c ~P and we assume that H';(M) < oo for all/5 > 0 (which is all 
we need here). Then we show Gn*(M, a) 2: 2~ for n_n-a.e. a E M. To do this, fix 
t < 2~, and set 

A = M n a : < t for 0 < r < 15 . { n_n(M n Br(a)) } 
Wnrn 

We shall show that 1in(A) = 0: since A is measurable, we can take limits (first in 
8 then in t), giving the desired result. 

Fix E > 0 and let { Cj} be a covering of A by sets of diameter at most 15 and for 
which 

~ (diamCj)n n L.,wn 2 ::S: 1{0 (A)+ E. 

J 

We can assume that each C1 contains some a1 E A, and then we note 

Therefore, 

n';(A) ::S: 2:H6 (AnBdiamc1 (aJ)) 
j 

::s: t L Wn ( diam cj) n 

j 
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Letting E -4 0, we obtain a contradiction unless 1i6(A) = 0 for every 8, implying 
1-ln(A) = 0. 
*PART 2. 

Supposing t > 0 we show that 

(+) 

Fixing 8 > 0, we apply the Subtle Vitali Lemma, giving a countable pairwise disjoint 
collection B of balls B satisfying 

diam(5B) < 8, 

( diamB)n 1in(A n B)> twn - 2-

A c UJu U (5B) J C B finite. 
BE&->J 

Then 

< ~ L 1in(MnB) + stn L 1in(MnB) 
BEJ BEBNJ 

< ~1-ln(M) + sn "'\"' 1-ln(M n B)' 
t t ~ 

BE&->J 

where we have used the fact that 1in l M is a Borel measure to estimate the first 
sum (the measure is Borel even if M is not measurable: see [EG,p2]). For the same 
reason, the second sum is bounded by 1in(M) < oo, and thus converges to 0 as 
J -4B. Finally, letting D-40, we obtain(+). 
*PART 3. 

Suppose 7-ln(M) < oo. Fixing t > 1, set 

A= Mn {a: en*(M,a) > t}. 

We want to show 1in(A) = 0, implying the second claim of Theorem 9(i). To do 
this, fix E > 0 and choose an open V :;2 A with 

1in(V n M) ::::; 1in(A) +E. 

(Letting B ::2M be a Borel set with 1in(B) = 1-ln(M) < oo, V exists because the 
measure JinLB is Radon: see [EG,p5]). 

Since V is open, 

for a E A, 
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Thus, by(+), 

Letting E-J>O, we obtain a contradiction unless Hn(A) = 0. 

*PART 4-
Suppose M is 1in-measurable with 1in(M) < oo. Fixing t > 0, set 

A="-' Mn {a: en*(M,a) > t}. 

We want to show Hn(A) = 0, implying Theorem 9(ii). 
FixE> 0. By the hypotheses on M, the measure HnLM is Radon ([EG,p5]), 

and thus we can find a closed C ~ M with 

Notice that 

for a EA. 

So, by (A), 

Letting E--+0, we obtain Hn(A) = 0, as desired. 

~ 
Theorem l(vii) and Theorem 9(ii) immediately imply the second Lebesgue den

sity result: 

for £n-a.e. a ErvM, M~JR.n measurable. 

(Note that M automatically has locally finite measure, since £n is Radon). Ap
plying this result to JR.P rv M and noting, 

we get the other density result as well: 

for £n-a.e. a EM, M~JR.n measurable. 

In the final remarks of we show how to eliminate the measurability hypoth-

[

0

' t:, ::~,d[:::: 7], [The1Iutch2, Th5.3]. ~ 
We give two variations of the Besicovitch Set: the first, D, will have the property 

that e;(.B, a) = 0 for 1{1- almost all a E f5 (removing the set of measure zero, we 
can get the lower density to be zero at all points of the set); the second, D, will 
be 1-dimensional but will fail to have finite 1i1- measure in any neighbourhood of 
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any point in D (addressing our remark at the beginning of §B}. We also give an 
example of a 1-dimensional set E for which H 1(E) = 0: this can also be done using 
variations of the Besicovitch Set, but starting with the Cantor Set is a little easier, 
and so that will be our strategy. 
*PART 1. 

Let {Nk} be a sequence of odd integers ~ 3 and Do the equilateral triangle of 
sidelength 1. Dk is defined in terms of Dk-1 , as for the Besicovitch Set, but each 
triangle of Dk_ 1 is replaced by Nk triangles scaled by ~k, placed as indicated. (So, 

for the Besicovitch Set, Nk = 3). Set D = nkDk· 

The projection argument gives H 1 (D) = 1, just as for the Besicovitch Set. We 
now impose the condition 

lim Nk = oo. 
k--KX> 

Thus, for large k, points in the "top triangle" of Dk are very isolated (at that scale). 
In fact, it is easy to show that any a E D which is in infinitely many top triangles 
must satisfy e;(D,a) = o. ~The argument is the same as tha~ for a_, keeping in 
mind that each triangle of Dk contains the same amount of D). 

We now impose a further condition on {Nk} to ensure that almost all points in 
~ ~ 
D are in infinitely many top triangles. In fact, arguing as in ~ it is clear that 
the measure of the set of points which are in no top triangles after the m'th stage 
is the infinite product 

fi (N~~ 1). 
k=m+l 

Thus, if we Nk---*00 slowly enough so that IT)()(l- ~J = 0, then D will have 
the desired property. 
*PART 2. 

Let { tk} be a sequence of real numbers with 0 ::; tk < ~. We define i5 exactly 
as for the Besicovitch Set except, at the k'th stage, the triangles are scaled by the 
factor l~tk. (So tk = 0 for the Besicovitch Set). The standard projection argument 
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shows that H 1 (D) ~ 1, and thus D is at least 1-dimensional. Next, under the 

assumption that tk--+0 fast enough, we show that, for s > 1, H 8 (D) = 0, implying 
that Hn(iJ) is precisely 1-dimen~ional_:_ To see this, fix 8 > 0, take m large and 

consider the natural covering of Dm 2D- This gives 

~= ~m(l-s) (g (1 + tk)) s 

Thus D will be 1-dimensional if 

m 

II (1 + tk) = 0 ( (3 s~l )m) as m--+ oo, for each s > L 
k=l 

(This will be true, e.g., if fr(l + tk) = O(logm))
We now show that if 

00 

then 7{1 (D n T) = oo for any triangle T of any Dm- Going to the m + n'th stage, 
jj nTis contained in 3n triangles of diameter flm+n 1"itk- Applying the projection 
argument to each of these triangles, we find that 

1 m+n 

H 1(D n T) ~ 3n 3m+n II (1 + tk)-

Letting n--+oo gives the desired result. * PART3. 

k=l 

In principle, E is the easiest set to construct: let Ej be any trdimensional set 
with tj / 1, and define E = UjEj- Clearly E is 1-dimensional with H1 (E) = 0, 
and so the only problem is to show the Ej exist. This, however, is not trivial (our 
projection argument only works for integer dimensions), and we have to perform 
some honest labour. 

Fixings> 2, we define a Cantorlike set C* = nCJ;: we set C0 = [0, 1], and Ck+l 
is obtained by replacing each interval of ck by two intervals scaled by ~- (so s = 3 
gives the standard Cantor Set: see [TheHutch1,§L2.3]). 

J K 
, 

J 

39 



Settin~ 

w~show that 

(tJ 

log2 
t = --, 

togs 

implying c· is t-dimensional 
Taking the obvious covering of Cj;, and considering fj < -}1;, we have 

nt (C*} < r-e (C*\ < w zk (-.1 ·)t 6 . - 6 k ~ - t zsk 

Wt 

= 2t (since st = 2). 

Letting fj-+ 0, we obtain one half of ( + ). 
To show the reverse inequality, we have to show that the obvious coverings are 

the best. Suppose {Ij} is a covering of C*. Referring to the previous calculation, 
it is enough to show 

(A) )' (diamJ1)t 2: 1. 
£....d 

j 

Now we can actually assume that {Ij} is quite special: we can assume 

19>- Each Ij is an interval. 
(Taking the "convex hull" of Ij does not increase diam Ij). 

19>- Each 11 is open with endpoints in ~c·. 
(Increase the size of each 11 slightly, and note that C* has no interior). 

ill> { Ij} is finite. 
(C* is compact). 

Let d be the minimum distance from C* to the boundary points of the Ij, and let 
k be large enough so that -}1; ::; d. Then every interval of CJ: is contained in some 
Ij. If each Ij is contained at most one such interval, then (A) would be clear. To 
reduce to this case, consider an Ij which contains more than one interval from Ck_; 
then 11 also contains an interval K Crv Ck_. Choosing K to be as large as possible, 
the construction of Ck_ shows that we <:an_ assume 

1;t= JUKUY 

wliere J and- J! are each intervals· containing an interval of c;_, aoo for which 

(s-- 2}max(diamJ,diamJ') ::; diamK _ 

Thus 
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( diam Ij) t :2: ( ~ diam J + ~ diam J') t = 2 ( ~ diam J + ~ diam J') t 

:2: (diamJ)t + (diamJ')t, 

where the last line follows from the concavity of the function x ~-+ xt. Thus it is 
more efficient to replace Ij by J and J', and repeated application of the argument 
eventually gives ( &. ) . 

~ [Mo,Prop3.12], [Si,§ll]. 

We only need to prove the first statement: 

(+) en (M, a) 

By Corollary 7, we can write 

1 for 1-tn-a.e. a EM. 

00 

M C N 0 u UNj, 
j=l 

where Hn(N0 ) = 0 and, for j :2: 1, Nj is a regularly embedded C 1 submanifold with 
boundary. It is enough to focus on points in M n N1 , and we will show 

(0) en (M, a) 1 for 1-tn-a.e. a E MnN1. 

N3 
N2 

N4 N:J.. 

MnN2 

Write 
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Then we have 

8n(N1,a) = 1, 

en(N1 rvM,a) = 0, 

en(N,a) = o. 

(..,..)follows from ~-see also its proof; (~) and (i.) follow from Theorem 9(ii). 
( ..,..) and (~) imply 

(;.) implies 

Combining these last two results gives ( 0), and thus ( +). 
Finally, we want to show that ( +) continues to holds even if M is not measurable. 

By the Borel regularity of Hn, we can find a Borel set R ::::2M satisfying Hn(R) = 
Hn(M). Notice that if M is rectifiable then we can takeR to be rectifiable as well, 
and in fact this must be the case. Notice also that 

(LI) for any measurable E. 

Now, by ( +), en(R, a) = 1 for 1tn-a.e. a E R. Applying (LI) withE= Br(a), 
the same result must hold forM. 

~ 
Let M be the rectifiable part of the Besicovitch set D. By Corollary 10 

{ 
8 1 (M,a) = 1 

for H 1-a.e. a E M. 
8 1 (DrvM,a) = 0 =tj.,. 

~t follows that 8 1 (D, a)= 1 for H 1-a.e. a EM, and thus 7i1 (M) = 0 by ~-

~ [Si,§l1.3]. 

Consider two different n-planes P and Q through a. All we need to do is come 
up with a¢ E C0(JRP) such that 

This is easy. 
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l), We can assume that a = 0 and write M near a as a graph {(x, f(x)}, as in 
@.., . Expanding by>.., the graph becomes {(y,,\f(yj.\))} (with x +-+ yj>..). Now, 
as .\ -1> oo, we have >..J(yj.\) -1> 0 uniformly on compact subsets of !Rn (using 
D f(O) = 0). The result now follows easily. 

~ [HS,p22]. 

We can assume a= 0 and that !Rn is tangent toM at 0. Now set r = Jxl and let 
¢ = ¢(r) be an approximation to the characteristic function of B1(0), as pictured. 

1 :L+ € 

Then 

Hn (MnB:l-(o)) ::; JM ¢(.\r)d1in(r)::; Hn (MnBf(o)). 

Dividing by wn/ >.. n and letting .\ -1> oo, Remark (b) after the definition of tangent 
plane gives 

[""ult now follow' by letting ,~o. 

Take a= 0. Let E~JRP and¢ E Co(JE.P), and suppose¢ is supported in BR(O). 
Then 

Thus, if en(E,O) = 0 then >,.n fs¢(>..x)d1in(x) -l> 0 as .\-J>oo. Applying this with 
E = M .-vA and E = A.-vM, the result follows. 
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[Mo,Prop3.12], [Si,§11.6]. 

This follows readily from Corollary 7, Theorem 9(ii) and Lemma 12. The argu
ment is the same as that given in the the proof of Corollary 10. 

~ [HS, Th 2.5], [Si, TH 11.8], [Ros, Th 11.7]. 

The proof here follows [Ros] and is based upon [Fe2,§3.3.6]. There are a number 
of parts: note the use of Lemma 12 and Theorem 9(ii) in Part 1, in order to fine-tune 
the hypotheses on A, making it easier to see A as rectifiable. 
*PART 1: GRASSMAN MANIFOLD PRELIMINARIES. 

Given an n space V ~ JFtP, let 7rV: JFtP--+ JFtP be orthogonal projection onto V. We 
can then define a metric on the space G(n,p), the space of n-subspaces of JFtP, by 

d(V, W) = ll1rv- 7rwii-

Thus we are identifying G(n,p), the so-called Grassman Manifold, with a space 
{ 7rv} of linear maps on JFtP - see [Bo,p63]. Note that { 7rv} = G ( n, p) is compact: 
this is quite easy to see by writing 

7rv = Pv 0 rr 0 (pv) -l 

where 7r = 7fJRn is projection onto lEn and pv is a linear isometry of JFtP 
The point of all this is that we can assume 

ill> All tangent planes V +a to A satisfy d(V, IRn) < ~-
This follows easily from ~, Theorem 9(ii) and Lemma 12, together with the 
compactness of G(n,p) and its obvious symmetries. * PART 2: CONE DENSITIES. 

We shall show, in a moment, that 

(t) en(An (X +a), a)= 0 aEA 

where X is the cone defined by 

v 
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This is the only use we make of the existence of tangent planes, and thus we 
actually show that any measurable set A of finite measure satisfying ( +) is rectifiable. 

To make ( +) more concrete, let M = M ( n) be a constant to be chosen later. 
Then, by ~' we can assume the existence of a fixed 8 > 0 such that 

1in(A n (X+ a) n Br(a)) < _!._ 
rnwn - M 

for a E A and 0 < r < 8 . 

To prove ( + ), we may as well assume that a = 0, and let V be the tangent plane 
to A there. It follows easily from the definition that 

d(V, Rn) < ~ ===? V C {X: J7r(x)J 2:: ~lxl} · 
Now choose¢ E C0 (Rn) satisfying¢= 1 on (X n (B2(0) "'B1(0)) with spt¢c 

{x : J1r(x)l < jJxJ}. Then, from the definition of tangent plane and arguing as in 
~ we find that 

Recalling the definition of density, and summing up the estimates on the annuli 
Bt rv B .t with t = r j21, we easily obtain ( +). 

2 * PART3: UNRECTIFIABLE FORMULATION. 
Since we want to use ( & ) to show A is rectifiable, we may as well subtract off 

the rectifiable part of A, and thus we can assume 
IJJo A is purely unrectifiable. 

So, now our task is to show that 1-ln(A) = 0. As a simplification for later, recall 
that 1inLA is Radon (Theorem l(ii)); thus, by* , Theorem 9(ii) and Lemma 12, 
we may as well assume ~ 

IJJo A is closed. 
Now, our plan is to show the existence of a constant N = N(n) such that 

('f) a EA. 

Then, choosing M = 2n+ 1 N, the fact that 1in (a) = 0 will follow immediately from 
Theorem 9(i). 
* PART 4: GEOMETRY OF CONES AND CYLINDERS. 

Fix a E A, r < £, and set 

Ar =An Br(a). 

('f) will follow if we can show 

( ... ) 
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Define a sharper cone X by 

and set 

R = Ar n {a : Ar n (X + a) = f/J} . 

Notice that 7TIR is injective and that Lip(7T1R)- 1 ::; 9. Consequently, R is rectifiable 
and thus, by our unrectifiability assumption on A, 

(0) 

Next, for x E Ar ~ R, choose x* E Ar n (X + x) such that 

[x-x*l = h(x) = max{lx-z[:zEArn(X+x)}. 

Now define the cylinder 

Cx = l~.P n { z: [7T(z- x)[ ::; h~x)} 
We shall show that 

X E Ar~R. 

(t>) Ar n Cx ~ Bh(xJ(x*) n B2h(x·J(x) n ((X+ x) u (X+ x*)) 
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To see this, consider z E Ar n Cx. First, if iz- xi > h(x) then z- x EX, 
and then the definition of h(x) ensures that iz- xi :::; h(x) in any case. Thus 
z E Bh(x)(x), and then z E B2h(x)(x*) also, by the triangle inequality. Finally, 
suppose z ~ X + x*. Then 

iz-x*i :S: 3i?r(z-x*)i 

:::; 3 (i1r(z- x)i + i1r(x- x*)i) 

2h(x) 
<--

3 
(since z E Cx and x* EX). 

Thus, by the triangle inequality, iz -xi > h~). Then, since z E Cx, we get 
z- x EX, as desired. 
*PART 5: VITALI COVERING ARGUMENT. 

Noting h(x) :::; 2r < ~' (.t.) and (6) imply 

1in(Ar n Cx) :S: (1 + :)wn (h(x)t X E Ar"'R. 

We now establish ( ~) by a Vitali argument. Define the thinner cylinder 

Cx = { z: i1r(z- x)i < h~~)} . 
Applying the Unsubtle Vitali Lemma ( ~ to 1ri_Ar "'R), we obtain a countable 
ScAr"'R such that Ar"'R~UxESCx and with {Cx}xES pairwise disjoint. Noting 
that each 1r(Cx)~1r(B2r(a)), we calculate 

xES 

where N = gon(l + 2n)wn. This establishes (<1111), and we can rest. g: 
Let M be the points in A where A has an approximate tangent plane. (Notice 

A may have tangent planes at points outside of A but, by~ ~and Theorem 9(ii), 
these form a set of measure zero). Let P = A "' M. We w~o show that M is 
rectifiable and that P is purely unrectifiable. 

By Theorem 9(ii) and Lemma 12, M has an approximate tangent plane at almost 
all points in M. Thus, by Theorem 14, M is rectifiable. 

The proof that P is purely unrectifiable is similar. Let R ~ P be rectifiable: we 
want to show that 1in(R) = 0. By Theorem 13, R has a tangent plane at almost 
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all points of R. Thus, by Theorem 9(ii) and Lemma 12, M has a tangent plane at 
almost all points of R. By the definition of P, Hn(R) = 0, as desired. 

~ [Mo,p31], [Si,§§8,11]. 

We start with the Area Formula as given in ~ 
A~ Rn .en -measurable. 

Here f: Rn---> RP is Lipschitz and either fiA is injective or J f1A = 0. We now give 
generalizations of(+): for functions (Part 1); for manifolds (Part 2); and, finally, 
for rectifiable sets (Part 3). 
*PART 1: FUNCTIONS. 

With f as above, we show that 

(A) f gdHn = f (gof)JfdC. 
jf(A) }A 

Here g: f(A)---> R is noimegative and measurable. To prove (A), first assume g :<:; M. 
Then 

where we inductively define 

{ 
M . k- 1 M } 

Ck = f(A)n x:g(x)2:: 2k + ~ 2jxci(x) · 

Recalling, The Measurability Lemma of t , (A) now follows by summing in ( +) 
and applying the Monotone Convergence Theorem ([EG,p20], [TheHutchl,p16]). 
By another application of the Monotone Convergence Theorem, we can dispense 
with the hypothesis that g is bounded. 
*PART 2: MANIFOLDS. 

Now we consider f : Mn ---> JftP Lipschitz where Mn ~ RN is an n-dimensional 
C 1-submanifold. It is enough to focus upon a particular coordinate chart ¢: U---> 
Rn. Writing h = q;- 1 , we note that f o ¢ is differentiable almost everywhere 
(Rademacher's Theorem), and thus we can define the derivative DMf(a) :TaM -->RP 
by 

h(O) =a. 

By the usual manifoldish calculations, DM f is independent of the chart ¢ and is 
a linear map ([Bartman,§3],[Bo,§4.1)). TaM also has the natural (induced) metric, 
and we can write 
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DMJ(a)=poa 

where a : TaM ---+ TaM is linear and p : TaM ---+ JRP is a linear and orthogonal 
injection. Then we define the Jacobian JMf(a) off as 

We now prove the Area Formula: with the usual hypotheses on f, 

(~) A~ M 1-ln -measurable. 

In fact, from ( +) and (A), we have 

and 

{ JMf d'H.n = 1 (JM(f o h))Jhd.Cn. 
j A 4>(A) 

Thus we just have to show 

J(f o h)(O) = JMf(a) · Jh(O) h(O) =a. 

To see this, first note that Jh = I det Dhl (That is, considering h : U--+ !Rn or 
h:U -+M gives rise to the same Jacobian). Therefore, since D(f o h)= DMf o Dh, 
we have 

J(foh)(O) = jdetaoDh(O)I = jdetai·idetDh(O)I=JMf(a)·Jh(O), 

as desired. * PART 3: RECTIFIABLE SETS. 
Finally, we want to prove (~) continues to hold when M is a rectifiable set. 

The proof is similar to that for Corollary 8, except we use Theorem 13 in place of 
Whitney's Theorem. Writing M ~ N0 U Ui Ni as in Corollary 7, we can (almost 
everywhere) define 

JMf =: JNif. 

Then, applying (~) to each An Nj and summing, (~) for M follows. 
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