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1 Introduction 

The theory of minimal submanifolds is a fascinating field in differential geometry. The 
simplest, one-dimensional minimal submanifold, the geodesic, has been studied quite 
exhaustively, yet there are still a lot of interesting open problems. In general, minimal 
submanifold theory deeply involves almost all major branches of mathematics; analysis, 
algebraic and differential topology, geometric measure theory, calculus of variations, 
and partial differential equations, to name just a few of them. 

In these lecture notes our aim is quite modest. We discuss minimal surfaces in 
R 3 , and concentrate on the class of the embedded complete minimal surfaces of finite 
topological type. 

I intend to introduce minimal surfaces with the minimum preliminary requirements. 
A student who has basic knowledge of differential geometry of curves and surfaces in 
R 3 and of complex analysis will be able to understand and grasp the material supplied 
in these notes. I hope these notes will introduce one into a very old but still rapidly 
growing field of mathematics, and via it to go much further. 

We begin with the definition of minimal surfaces in the setting of parametrised 
surfaces. We define minimal surfaces as conformal harmonic immersions from two di­
mensional manifolds to R 3 . Then we give the proof of the equivalence of this definition 
to that that the mean curvature of the surface is zero everywhere. After that, we in­
troduce the first variation of surface area, also in the setting of parametrised surfaces, 
to show that a surface is minimal if and only if it is a stationary point of the area 
functional. Then we introduce the minimal surface equation and use it to prove several 
classical theorems of minimal surfaces, such as the maximum principle, the extension 
theorem, the reflection and rotation theorem, etc. One of the most important features 
of the theory of minimal surfaces in R 3 , which is quite different from the general case 
of minimal submanifolds in Riemannian manifolds (even in Rn, n > 3), is the Enneper­
Weierstrass representation. This representation connects minimal surfaces in R 3 to one 
variable complex analysis. We introduce the Enneper-Weierstrass representation imme­
diately after the necessary preparations and try to use it consistently throughout these 
notes. 

The most interesting minimal surfaces in R 3 are complete and are divided into two 
groups according to whether the total curvature is finite or infinite. We mainly discuss 
complete minimal surfaces of finite total curvature. We prove the classical theorem of 
Osserman (Theorem 10.8) about such surfaces. Then we further discuss the annular 
ends of such surfaces. After introducing the concept of flux (a formula based on Stokes' 
theorem), we prove a theorem of Lopez and Ros about uniqueness of the catenoid. 

A major part of these notes is devoted to the work of Hoffman and Meeks about 
global properties of complete minimal surfaces in R 3 . In particular, we introduce the 
Halfspace Theorem, the Cone Lemma, the standard barriers and the Annular End 
Theorem, and the partial classification of the conformal type of such surfaces. 

An annular end of a complete minimal surface is a minimal annulus with compact 
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boundary. In the last part of these notes we discuss minimal annuli. We first introduce 
.. results of Osserman and Schiffer, including the isoperimetric inequality for minimal an­

nuli. Then we concentrate on minimal annuli in a slab, proving Shiffman's theorems and 
some generalisations. For this we first introduce the second variation of area functional 
and the concept of stability of minimal surfaces. We finish these notes with Nitsche's 
conjecture and two partial results. Recently, Pascal Collin [6] gives a proof of Nitsche's 
conjecture, I am regret that I cannot add it to these notes since the proof is quite 
involved and Collin's paper has not been published yet. 

To help readers not familiar with PDE, we include an appendix on the eigenvalue 
problem of linear second order elliptic differential operators. 

In these notes, we emphasize the close relation between minimal surfaces in R 3 and 
complex analysis. This makes the theory of minimal surfaces in R 3 both much simpler 
and more beautiful. But the draw back is that the methods are hardly generalisable to 
the study of general minimal submanifolds in Riemannian manifolds. Nevertheless, by 
its simplicity and beauty, the complex analysis method, via the Enneper-Weierstrass 
representation, deserves to be emphasized. Thus we work with isothermal coordinates 
and whenever possible, we try to express and analyse geometric quantities via the 
Enneper-Weierstrass representation. Using the Enneper-Weierstrass representation, we 
are able to give new proofs of the total curvature formula of a complete minimal surface 
of finite total curvature, and of Shiffman's second theorem and its generalisations. 

A very active part of the theory of minimal surfaces in R 3 is the construction of 
new embedded complete minimal surfaces. Minimal surface theory is among the old­
est branches in mathematics. For over two hundred years, the only known embedded 
complete minimal surfaces of finite topology were the plane, the catenoid, and the heli­
coid. In 1984, Hoffman and Meeks started a new wave of discovery. Infinite embedded 
complete minimal surfaces were constructed via the Enneper-Weierstrass representation 
and with the aid of computer graphics. These discoveries stimulated anew wave of ac­
tive researches in the theory of minimal surfaces in R 3 . It is a regret that we cannot 
discuss in detail the techniques of construction of minimal surfaces in these notes. The 
interested reader is recommoned to works such as [26], [27], [31], [39], [40], [41], [80]. 

Some classical topics such as the Plateau problem are not discussed here since there 
are already many excellent books available, for example, [9], [46], [77], [61], [37], [12]. 
We also do not discuss the regularity problem, which requires tools from the theory of 
partial differential equations, see [12]. 

I would like to express the most sincere thanks to Dr. John Hutchinson, without 
whose encouragement and support, careful reading and correcting my English expres­
sions in the first several drafts, and wise observations on the mathematical material, 
these notes could never have been published. 

These notes are based on lectures given at the ANU for a one-semester fourth year 
honours course in 1994. I appreciate all of the participants for their enthusiasm in this 
topic. I would like to thank Dr. John Urbas for pointing out an improved proof of 
Shiffman's third theorem. 
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I am much obliged to Prof. Fusheng Wei for supplying the pictures of complete 
minimal surfaces in these notes. 

I learned minimal surfaces from Professor David Hoffman. I will never forget his 
guidance, encouragement and support. 

Special thanks also go to Professor Neil Trudinger for his support and encourage­
ment. 

Last, but not least, I would like to thank my wife Lin Han, without whose love, 
patience and understanding, I could never have finished this job. 

The author was financially supported by Australian Research Council grant A69131962 
during the writing of these notes. 
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2 Definition of Minimal Surfaces 

Definition 2.1 A minimal surface in R 3 is a conformal harmonic immersion X : M <--+ 
R 3 , where M is a 2-dimensional smooth manifold, with or without boundary. Here 
conformal means that for any point p E M there is a local coordinate neighbourhood 
(U, (u, v)) on M, such that in U the vectors 

ax (ax1 ax 2 ax3 ) ( 1 2 3 ( 1 2 3 
Xl :=Xu= au = au ' ou ' au = Xu,Xu,Xu) = Xl,Xl,XJ 

and 

are perpendicular to each other and have the same length. Thus 

Here • is the Euclidean inner product. Such a coordinate neighbourhood (U, ( u, v)) is 
called an isothermal neighbourhood, its coordinates ( u, v) are called isothermal coordi­
nates. 

The word immersion means that for any p E M, X* := dX : TpJivf -t Tx(p)R3 is a 
linear embedding. In the case X is conformal, it means simply that A > 0 on M. 

The word harmonic means that 

If M is connected, then we say that the surface X is connected. We will only consider 
connected surfaces. Furthermore, since any non-orientable surface has an orientable 
double covering, we will only consider oriented minimal surfaces. 

A homothety of R 3 is the composition of a rigid motion and a dilation or a shrinking. 
Let T be a homothety of R 3 , X : M <--+ R 3 be a surface. It is easy to see that X is 
a conformal harmonic immersion if and only TaX is. Thus we consider all surfaces in 
R 3 up to a homothety. That is, we do not distinguish the surfaces X : M <--+ R 3 

ToX: M <--+ R 3 . 

A classical theorem says that any Ck immersion, 2 ~ k ~ oo, can have an atlas 
of isothermal coordinate charts, so that X being conformal is not a special property 
of minimal surfaces. The important fact which distinguishes minimal surfaces is that 
under these isothermal charts, X is harmonic. 

For an orientable surface X : M <--+ R 3 , let {(Ua:, Za = Uo: + iva)}a:EA be an atlas 
of isothermal coordinates of the same orientation, then { (Ua:, za)}aEA defines a complex 
(conformal) structure on M. 
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Precisely, we will prove that if V is any isothermal coordinate neighborhood, with 
the Coordinates W = X+ iy having the same orientation as Z = U + iv on U n V, then 
zow-1 : w(U n V) ---+ z(U n V) is a holomorphic function. Which is equivalent to saying 
that the functions u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations 

To see this, compute 

au 
ax 

av au 
ay' ay 

ax ax au ax av ax ax au ax av 
ax = au ax + av ax' ay = au oy + av ay. 

Since both coordinates are conformal, we get that 

av av au au 
and ---oxay axay· 

Thus we have that 

(au .au) 2 
_ (au) 2 (au) 2 .au au -+z- - - - - +2z--ax ay ax oy ax ay 

= ( av) 2 
- ( av) 2 

- 2i av av = ( av - i av ) 2 

ay ax ax ay ay ax 
Hence 

(au+ iau) = ± (av _ iav). 
ax ay ay ax 

But if 

(au+ iau) = _ (av _ iav) 
ax ay ay ax ' 

then 

det ( ~~ ~~ ) = au av _ au ov = _ ( av) 2 
_ ( av) 2 < 0 

av av ax ay ay ax ay ax ' 
ax ay 

contradicting the fact that U and V have the same orientation. So 

(au+ iau) = (av _ iav) , 
ax ay ay ax 

which is the complex form of the Cauchy-Riemann equations. 
Since M is orientable, we get a complex analytic atlas { (Ua, za) }aEA on M, and M 

is diffeomorphic to a one-dimensional complex manifold. A one-dimensional complex 
manifold is usually called a Riemann surface. 
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Since any smooth orientable 2-dimensional manifold can be conformly embedded in 
·· R 3 , we see that any 2-dimensional smooth orientable surface M is diffeomorphic to a 

Riemann surface. 
Moreover, if X is minimal, under this complex structure on M, X is harmonic, hence 

locally is the real part of a holomorphic mapping. It is here that complex function theory 
enters and plays an important role in the study of minimal surfaces. 

Thus when we consider a minimal surface X: M "---+ R 3 , we can always assume that 
M is a Riemann surface with a conformal structure given as above. 

The easiest global property of minimal surfaces is that if M is a closed Riemann 
surface (compact manifold without boundary), then there is no minimal immersion 
X : M --+ R 3 . In fact, since M is compact, each component of X is a bounded harmonic 
function, and hence must have a maximum value on M. Thus X is a constant by the 
maximum principle, since M has no boundary. But then X is not an immersion. 

Another definition of minimal surfaces is that the mean curvature of X : M "---+ R 3 

vanishes. 
Remember that the mean curvature H of X is defined by 

2H = 911 hu + 2912h12 + l 2 h22, 

where 9ii = Xi • X 1, hij = Xij • N ( N is the Gauss map, i.e., the unit normal vector 
X1 A X2/IX1 A X 2 1, where A is the cross product in R 3), (9ii) = (%)-1, see any 
differential geometry textbook. 

In case X is conformal, 911 = 922 = A 2 , 911 = 922 = A - 2 , 912 = 912 = 0. Thus 

H = .6.X•N = ~ .6. X•N 
2A2 2 X ' 

where .6.x is the Laplace-Beltrami operator under the metric (9ij). Remember that .6.x 
is given by 

2 1 a ( 2 .. a.) 1(82 a2 ) 488 
.6.x := t; ...!§ oxi {; .../§9'3 oxi = A2 8x2 + 8y2 = A2 oz az' 

where 9 = det(9ij), (xl, x2) = (x, y), z = x + iy, and 

a 1(a .a) a 1(a .a) 
az = 2 ax - z oy ' crz = 2 ax + z ay · 

Thus in our case (conformal immersion), X is minimal (hence harmonic) implies that 
H = 0, which is essentially an equivalent definition of minimal surface. In fact, this 
definition is easier to generalise to define minimal submanifolds in arbitrary Riemannian 
manifolds. 

More precisely, H = 0 implies that X is conformal harmonic under a certain complex 
structure. To see 'this, let us recall that for any immersion X : M "---+ R 3 , 

.6.xX = 2HN. (.2.1) 
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Since we can always make X conformal, (2.1) shows that X is a minimal surface if and 
only if the mean curvature is zero. 

Let us give the proof of (2.1) as a short review of differential geometry. Let us first 
recall that from the Gauss equation we have 

where 

We calculate 

2 

X;j = L rzjxk + h;jN, 
k=l 

rk. = ~ ~ kz (8g;z 8gjz _ 8g;j) 
ZJ 2 L g 8u] + 8ui 8u1 > 

l=l 

1 I: 8 ( .. ) - -. g'lvgX· 
In .. 8u' J v ::J ~,J 

. . 8gij 1 '"' 8g .. L g'l xij + L --i xj +- L -ig'l xj. 
. . . . 8u 2g .. 8u 
t,J 2,J 't,J 

Now we have an identity 

~ ag = Tr (( kl) (8gkz)) = L kzagkz >:~ . ace g >:~ . g ,::, . , 
g uu' uu' uu' k,l 

see the proof in the next section. Thus we have 

_ '"' ij . . '"' agij . ~ '"' ij kzagkz . 
6xX- L g X,J + L 8 i XJ + L.t g g 8 i XJ. 

i,j i,j u 2 i,j,k,l u 

We claim that 6xX is perpendicular to the tagent planes, i.e, planes generated by 
(X1, X2). In fact, since Lj %gjk = 6;k, we have 
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Thus 6xX is in the direction of N, and 

6xX = (6xX•N)N = (2:::gijXij•N) N = (2:::gijhij) N = 2HN. 
~,J IJ 

Equation (2.1) also tells us that if X is conformal, then 6X is always perpendicular 
to the corresponding tangent plane of X. 

Note that equation (2.1) holds for hypersurfaces in Rn, n ~ 3, our proof is valid in 
the general case. 
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3 The First Variation 

Let X : MY R 3 be a regular surface and (U, (x, y)) be a coordinate neighbourhood. 
Let X 1 = Xx, X 2 = Xy, 9iJ = Xi•Xj, and g = det(%)· Then 

dA := vg dx 1\ dy 

is a well defined two form on M and dA =1- 0 everywhere. 
Let f : M --+ R be a continuous function of compact support, or suppose f does 

not change sign on M, then the integral of f on M is defined by 

( f := ( fdA. 
jM }M 

When M is precom pact and f = 1, J M dA is the area of the surface X : M Y R 3 . 

The adjective "minimal" of minimal surfaces comes from the fact that at any point 
of the surface there exists a neighbourhood such that the surface in that neighbourhood 
has the least area among all surfaces with the same boundary. 

To be precise, let D c M be a precompact domain and X : D --+ R 3 be a surface. 
Let X(t) : D --+ R 3 , -1 < t < 1 and X(O) = X, such that X(t)/ 80 = X/ 80 , and 
X(t,p) = X(t)(p) is C 2 on D x (-1, 1). Such a family of surfaces is called a variation 
of X. 

Consider the area functional 

where dAt is the area form induced by X(t). The definition of minimal surface from 
the point view of the calculus of variations is that for any variation family X(t), 

dA(t) I = 0. 
dt t=O 

(3.2) 

We will prove that this is another equivalent definition of minimal surface. 
Without loss of generality, we may assume that X is conformal. Let p E D and 

p E U c D be an isothermal coordinate neighbourhood of p for X. On U, dAt is 
expressed as 

dAt = jdet[9i)(t)] dx 1\ dy, 

where z = x + iy is the isothermal coordinate and %(t) = Xi(t) oXj(t) (note that z 

may not be an isothermal coordinate for X(t)). Hence 

d, ~ ~ d, r d det[9ij(t)J · -I dAt = -I dAt = I I dx 1\ dy 
dt t=O U U dt t=O }u dt t=O 

= ~ r d det[9i)(t)]l { det[g ·(0)]} -l/2dx 1\ dy. 
2 lu dt t=O ZJ 
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We need the formula 

ddet~ij(t)) = det(%(t))'frace ( (dg~?)) (gii(t))), (3°3) 

where (gi1(t)) = (gi1(t))- 1
0 To see this, let (e1,ooo,en) be the standard orthonormal 

basis of Rno For any n x n matrix A(t), we can write 

A(t) = (A1 (t), 0 0 0
, An(t)) = (A(t)e1 , 0 0 0

, A(t)en), 

where Ai(t) is the i-th column of A(t)o If det A(t) =f 0, then 

ddetA(t) d 
dt = dt det(A(t)e1, o o o, A(t)en) 

= ~ det ( A(t)e1, o o o, d~~t)ei, o o o, A(t)en) 

= detA(t)~detA-1 (t)det (A(t)e1 ,ooo, d~~t)ei,Ooo,A(t)en) 

n [ ( ·dA(t) )] = det A(t) ~ det A-1(t) A(t)e1 , o o o, ~ei, 0 0 o, A(t)en 

det A(t) ~ det ( e1 , o o o, A-1 (t) d~y) ei, o o o, en) 

n ( n ( dA(t)) ) detA(t)I:det e1,ooo,L A-1(t)~ .ej,ooo,en 
•=1 ]=1 J• 

det A(t) ~ det ( e1 , o o o, ( A-1(t) d~~t)) ii ei, o o o, en) 

= det A(t) ~ ( A-1 (t) d~~t)) ii = det A(t) 'frace (A-1(t) d~~t)) 

= detA(t)'frace (d~~t) A-1 (t)) 0 

This establishes (303)0 
Thus we have 

!!_I r dAt = ~ r ddet(%(t)) I [det(gdO))t112dx (\ dy 
dt t=O 1 U 2 1 U dt t=O J 

= ~ fu 'frace [ ( dg~?)) (gi1(t))] lt=O Jdet(%(0))dx 1\ dyo 

Since X is conformal, we have gi1(0) = A-26ijo Thus 
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Define th€ variation field E as 

E( ) := dX(t)(p) I 
p dt t=O' pEn. 

Then 
dgii(t) I - d(Xi•Xi) I - E· X· - -2 •••. 

dt t=O dt t=O . 

Since (X1 , X 2 , N) is a basis of R 3 , where N is the unit normal, we can write E = 
aX1 + f3X2 + '"'(N, where a, {3, and '"'! are C 1 functions defined in n. Using N •Xi = 0, 
'"'! = E•N, and 

2 

'YA-2 LXii•N = (E•N)(6.xX•N) = 2(E•N)(HN•N) = 2H(E•N), 
i=l 

we have 

Trace ( ( dg~?)) (li (t))) Lo = 2A - 2 ~ Ei•Xi 

2 

2( al + !32) + 2A - 2( aAi + {3A~) - 2'"'(A - 2 L xii•N 
i=l 

dd I r dAt = ~ r Trace ((dgdij(t)) (gii)(t)) I A2dx 1\ dy 
t t=o lu 2 lu t t=O 

= f Div(A2(a,f3))dx/\dy-2 f H(E•N)dA0 = f A2(a,f3)•nds-2 f H(E•N)dA0 , lu lu lau lu 
where n and ds are the outward unit normal vector field and the line element of au in 
the Euclidean metric respectively. Dividing n into a finite number of disjoint isothermal 
coordinate neighbourhoods Ui, 

since each arc in auinn appears twice in the summation and with opposite unit normal. 
Moreover, because a= {3 = 0 on an, we have 
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where in the last integral n and ds are the outward unit normal vector field and the 
·· line element of afl in the Euclidean metric. Thus we finally have the first variational 
formula for the surface area functional: 

dA I = -2 r H(EeN)dAo. 
dt t=o ln 

(3.4) 

If X is minimal, then H = 0, so ~~ Lo = 0. On the other hand, if X is a stationary 
point for the area functional A(t) (for example, if X has minimal area among all surfaces 

with the same boundary), then ~~ lt=D = 0 for any variation of X. Since E can be any 

vector field, ~~ lt=D = 0 forces that H = 0, that is, X is a minimal surface. 
Finally we will give an area formula for surfaces in R 3 . Suppose X :flY R 3 is an 

immersion; without loss of generality, we may assume that X is conformal. Let fi be 
the unit conormal on X(afl), i.e., fi is tangent to X(fl) and is perpendicular to X(afl). 
Let ds be the line element of X(afl), (e1 , e2 ) be the standard orthonormal basis on U; 
in the Euclidean metric. Let n; = ae1 + be2 . The integral 

can be rewritten as 

{ A2(ae1 + j3e2)•(ae1 + be2) ds; 
lau;nan 

{ A2 (aa + bj3)ds; = { A - 1[E•dX(n;)]X*(ds) 
lau;nan lau;nan 

{ A - 1[EedX(n;)]ds = f (E•fi)ds, 
j X(8U;n8!!) j X(8U;n8!!) 

since E = aX1 +J3X2 +"(N, dX(n;) = aX1 +bX2 , X*(ds) =Ads;, and n = A- 1dX(n;). 
Thus if we do not assume that a and j3 vanish on afl, we have the first variation formula 

ddA I = -2 J H(E•N)dAo + r (E•fi)ds. 
t t=O j X(ofl.) 

(3.5) 

Now let a E R 3 be any fixed vector; then X(t)(p) = t(X(p)- a) is a variation of X, not 
fixed on boundary. Clearly E(t)(p) = X(p)- a is the variation vector field independent 
oft. An easy calculation shows that 

Hence 
dAt = t2dA1 = t2dA, H(t) = C 1 H, 

where H = H(l), etc. Note that 

A:= Area of X(fl) = Jn dA, 
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and 
A(t) :=Area of X(t)(O) = k dAt = t2 A. 

Since E(t) =X- a, by (3.5) 

2A = -2/H[(X- a)•N]dA+ { [(X- a)•n]ds. 
lx(an) 

(3.6) 

This formula is useful when we derive the isoperimetric inequalities for minimal surfaces. 
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4 The Minimal Surface Equation 

Sometimes our surface is a graph over a domain Q C R 2 , i.e., (x, y, z) E X(M) is 
expressed as z = z(x, y), (x, y) E S1. Moreover, locally we can always treat a "small 
piece" of surface as a graph. Thus we need know the differential equation governing z, 
the minimal surface equation, in order to derive more information. 

To derive the minimal surface equation we use the following equivalent form of D.x, 

2 

D.xX = l)T;T;X- ('VTJ;)X], (4.7) 
i=l 

where (T1 ,T2)(p) is an orthonormal frame of TpM in the induced metric by X and 
\7 TiT; = ( DTi T; f is the covariant differential, in our case, namely the tangent part of 
DTiT;. 

Our surface can be written as 

X(x, y) = (x, y, z(x, y)), (x, y) ED. 

Thus Xx = (1, 0, zx) and Xy = (0, 1, zy)· We will take the upward normal 

T2 =dx-1 [( 
1 +z; ) 112 (x -~xx)] 

1 + z2 + z2 Y 1 + z 2 
X y X 

By (4.7) and (2.1), 

[ Xxx z;z~Xxx 2zxzyXxy (1 + z;)Xyy "'j N --+ - + • 
1 + .,2 (1 + z2 ) (1 + z 2 + z2 ) 1 + z2 + z2 1 + .,2 + z2 "'-'x X X y X y NX y 

[ 1 + z~ X _ 2zxzy X 1 + z; X ] N 
1 + z2 + .,2 xx 1 + z2 + z2 xy + 1 + z2 + z2 YY • . 

X "-y X y X y 

Since Xxx = (0, 0, Zxx), Xxy = (0, 0, Zxy), and Xyy = (0, 0, Zyy), we have 
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This can be written as 

H D . Dz 
2 = IV (1, + 1Dzl2)1/2 

0 Zx -0 Zy - + - -,---~=----,-,--,-ax (1 + z; + z~)l/2 ay (1 + z; + z~)l/2. 

We get the minimal surface equation 

(4.8) 

or 
D . Dz 

IV (1 + 1Dzl2)1/2 = 0. (4.9) 

In general, if H = H(x, y) is a given function, then the prescribed mean curvature 
equation is defined as 

or 
D . Dz H 

IV (1 + 1Dzl2)1/2 = 2 . 

(4.10) 

(4.11) 

Equations (4.8) and (4.10) are second order elliptic equations. We will see that 
they play an important role in the study of minimal, or more generally, constant mean 
curvature surfaces. 

For example, let 0 c R 2 be a C2 simply connected domain, ¢ E C 0 (80). Then 
(x, cp(x)) defines a Jordan curve (continuously embedded closed curve) r in R 3 , where 
x E 80. We want to find a minimal surface bounded by r. So consider the Dirichlet 
problem 

{ 
(1 + u~)u. xx- 2uxUyUxy + (1 + u;)uyy = 0, 

ulan=¢, 

in 0; 
(4.12) 

on 80. 

A solution of ( 4.12) will give us a minimal graph, which is a minimal surface bounded 
by r. From the theory of PDE we know that 

Theorem 4~1 The Dirichlet problem (4.12} is solvable for arbitrary¢ E C 0 (80) if and 
only if 0 is convex. 

See for example, [21], Theorem 16.8. 
A very important problem in minimal surface theory is the Plateau problem which 

asks: is there a simply connected minimal surface bounded by a given Jordan curve f? 
In general there are alway solutions to the Plateau problem as long as r is rectifiable, 
that is, has finite arc length. We are not going to discuss the Plateau problem in these 
notes. 

There is a general theorem which says that for certain elliptic equations (including 
the minimal surface equation) the solution is real analytic. A simple proof of this fact 
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for the minimal surface equation (2-dimensional) can be found in [61], §131 on page 
.. 125. The proof there uses special isothermal coordinates (see the next section), which 

shows that for the minimal surface, we do not need to call on the classical isothermal 
coordinate theorem. 

One application of real analyticity is that if two minimal surfaces coincide in a piece 
of surface, then they must be essentially the same. 

Theorem 4.2 (Extension Theorem) Suppose X : M '---+ R 3 andY : N '---+ R 3 are 
two connected minimal surfaces. If there are open sets U C M and V C N such that 
X(U) = Y(V), then X(M) U Y(N) is contained in a (perhaps larger) minimal surface. 

Proof. We prove that X(M) U Y(N) is an immersed surface. To prove this we define 
A c X(M) n Y(N) such that x E A if and only ifthere is a small ball Bin R 3 centred 
at x and either X(M) nBc Y(N) n B or Y(N) nBc X(M) n B. By our hypothesis, 
A =f. 0. We need only prove that A is closed in X(M) n Y(N), since then clearly 
AU X(M) and AU Y(N) are both immersed surfaces. 

First assume that X and Y are embedded. 
If A is not closed, then there is a point p E (A~ A) n X(M) n Y(N). Thus there is 

a sequence { Xn} C A such that limn-+= Xn = p and p E X ( M) n Y ( N). By definition 
of A, locally X(M) and Y(N) coincide at Xn, hence X(M) and Y(N) have the same 
tangent plane at Xn· Taking limits, we know that X(M) and Y(N) have the same limit 
tangent plane at p E X(M) n Y(N). After a rotation and translation if necessary, we 
can assume that p = (0, 0, 0) and the common tangent plane of X(M) and Y(N) at pis 
the xy-plane. Then in a small disk Din the xy-plane centred at (0, 0), X(M) and Y(N) 
are graphs over domains 0 1 c D and 0 2 c D such that (0, 0) E 0 1 n02 . Thus there are 
u and v satisfying the minimal surface equation on 0 1 and 0 2 respectively, such that 
(x, y, u(x, y)) represents X(M) and (x, y, v(x, y)) represents Y(N). By definition of p, 
we know that there is an open subset Q C of 0 1 n 0 2 on which u = v. But u and v are 
real analytic, so u = v on 0 1 n 0 2 . Hence both u and v can be extended to 0 1 u 0 2 , 

and represent the same surface. This is a contradiction to the assumption p ~ A. Thus 
A is closed in X(M) n Y(N). 

If X or Y is not an embedding, first consider the local version of the proof, then 
modify the definition of A at multiple points of R 3 , i.e., at points which are images of 
more than one point of M or of N. 

The proof then is complete. D 

Definition 4.3 An equiangular system of order kat a point q E C consists of k curved 
rays --y1 , --y2 , · · ·, /'k emitting from q such that any two adjacent rays intersect at q with 
angle 21T / k. 

Theorem 4.4 Let X : M '---+ R 3 and Y: N '---+ R 3 be two minimal surfaces and x E 

X ( M) n Y ( N) be such that X ( M) and Y ( N) at x have the same tangent plane P. Then 
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either X(M) and Y(N) are part of a (maybe larger) minimal surface or the orthogonal 
projection of X(M) n Y(N) on P forms an equiangular system of even order k ~ 4. 

Proof. By a rotation and translation, we may assume that x = (0, 0, 0) and P is the 
xy-plane. Then there is a disk DC P centred at (0, 0) such that X(M) and Y(N) are 
graphs given by u : D -+ R and v : D -+ R respectively. Moreover, since P is the 
common tangent plane, Du = Dv = (0, 0) at (0, 0). 

Let w = v - u, then by real analyticity, w satisfies 

00 

W = L p(n)(x, y), k ~ 2, 
n=k 

where 
P (n)( ) - l:n 1 anw ( ) i n-i 

x,y- .1( ')!>:~'>:~. O,Oxy 
i=O 2. n - 2 . u'xun-•y 

is a homogeneous polynomial of degree n. If p(nl(x, y) = 0 for n ~ 2, then u = v in D. 
By Theorem 4.2, X(M) and Y(N) are part of a (maybe larger) minimal surface. 

If p(nl(x, y) '¥= 0 for some n ~ 2, then let k be the smallest n such that p(n) '¥= 0. In 
this case, we say that X(M) and Y(N) has k- 1 contact. 

Now since u and v satisfy the minimal surface equation, we have 

~w ~v-~u 

2 2 2 2 2 2 VxVyVxy- UxUyUxy- VyVxx + UyUxx- VxVyy + UxUyy 

-U~Wxx + (u~- v;)Vxx- u;Wyy + (u;- v;)vyy + 2UxUyWxy- 2(UxUy- VxVy)Vxy 

-U~Wxx + (uy + Vy)(uy- Vy)Vxx- u;Wyy + (ux + Vx)(ux--:- Vx)Vyy 

+2uxUyWxy- 2[vx(Uy- Vy) + (ux- Vx)uy]Vxy 

-U~Wxx- (uy + Vy)VxxWy- u;wyy- (ux + Vx)VyyWx 

+2uxUyWxy + 2VxVxyWy + 2UyVxyWx = O(rk), 

where r = (x2 + y2) 112 • The last equality comes from the fact that Du = Dv = (0, 0) 
at (0, 0) and w = O(rk). By 

~p(n) = O(rn-2 ) and ~ w = O(rk), 

we have that 
~p(k) = O(rk-1). 

Since ~p(k) is a polynomial of degree at most k- 2, it must be the case that ~p(k) = 0, 
that is, p(k) is a harmonic polynomial. 

Now p(kl(x, y) = RH(z), where H is a holomorphic function, R denotes the real 
part, and z = x + iy. Since p(k) = O(rk), we can choose H such that H(z) = zk F(z), 
where F(O) # 0. In a smaller disk contained in D, (F(z)) 1fk is well defined, hence let 
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( = z(F(z)) 1fk, then H(z) = (k. ·Let ( = pei'l/1 = ~ + iry, we have p(k} = 'iRH(z) = 
·· pk cos(k'l/;). Thus the zero set of p(k} is an equiangular system of even order 2k 2: 4. 

Since w = p(k)(x, y) + I::=k+l p(n)(x, y) is analytic and I::=k+l p(nl(x, y) = o(rk), 
the zero set of w also consists of an equiangular system. 

The projection of X(M) n Y(N) around (0, 0, 0) on P is exactly the zero set of w. 
The proof of the theorem is complete. D 

Corollary 4.5 Let X(M) be a non-planar minimal surface, p E X(M) and P = 
TPM C Tx(p)R3 . Then X(M) n P consists of an equiangular system of even order 
at least 4. 

Proof. This is the special case that P is the minimal surface Y ( N). D 

Remark 4.6 Theorem 4.4 and Corollary 4.5 are called maximum (or comparison) prin­
ciple for minimal surface. Together with Theorem 4.2 it follows that two minimal 
surfaces cannot touch each other at isolated interior points. 
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5 Isothermal Coordinates for Minimal Surfaces 

There is a direct construction of isothermal coordinates for minimal surfaces. Let X: 
M '---+ R 3 be a minimal surface and p E M. Without of loss generality we can assume 
that X(p) = (0, 0, 0) and N(p) = (0, 0, 1), and there is a simply connected domain 
(0, 0) ED c R 2 such that near (0, 0, 0), X(M) can be written as a graph (x, y, u(x, y)), 
with u : n ---+ R a solution to the minimal surface equation. Writing p = Ux, q = Uy 

and W = (1 + p2 + q2 ) 112 , we see that pdx + qdy is a closed form, i.e., d(pdx + qdy) = 0 
on D. Furthermore, it is also easy to check that the two 1-forms 

are closed. Since D is simply connected, 

j (x,y) 

~(x, y) := x + r;1 = x + F(x, y), 
(0,0) 

j(x,y) 

r;(x, y) := y + 'r/2 = y + G(x, y), 
(0,0) 

are well defined. Thus 

and 

or; 
ox 

or; 1 + q2 

oy =1+-w, 
pq 
w' 

J= o(~,r;) =2+2+p2+q2 = (W+1)2 >O. 
o(x,y) w w 

Thus the transformation (x, y) ---+ (~, r;) has a local inverse (~, r;) ---+ (x, y) and setting 
x = x(~, r;), y = y(~, r;), z(~, r;) = u(x(~, r;), y(~, r;)), we find 

Calculation shows that 

ox 
0~ 

oy 
0~ 

w + 1 + q2 ox 
(w + 1)2 ' or; 

pq ox 
(W + 1) 2 ' or; 

pq 
(W + 1)2 ' 

W+1+p2 

(W + 1)2 ' 

oz ox oy 
- =p-+q-. 
or; or; or; 

Thus ( ~, r;) is an isothermal coordinate. Furthermore, ( ~, r;) has the property that 

(5.13) 
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To see this, note that 
aF 
ay 

aG 
ax' 

thus there is a function E such that 

and 

is positive. 

aE = F 
ax ' 

aE = G ay , 

( 
aF aF ) ( !.:tiC a2 E ax ay w 

( axay) = ac aG = E9.. 
ax ay w 

Lemma 5.1 Let E E C 2 such that the Hessian of E is positive. Then the mapping 
x = (x1, x2) -t (u1, u2) = (Exp Ex2 ) = u(x) satisfies 

(v- u)•(y- x) > 0, (5.14) 

for y =/- x in D and v = tt(y), u = u(x). 

Proof. Let G(t) = E(ty + (1- t)x), 0:::; t:::; 1. Then 

G'(t) = ~ [~: (ty + (1- t)x)] (Yi- xi), 

G"(t) = t [ a2 
E (ty + (1- t)x)] (Yi- xi)(Yi- Xj) > 0, 

i,j=l axiaXj 

for 0:::; t:::; 1. Hence G'(l) > G'(O), or 

:2:: vi(Yi- xi) > L ui(Yi- xi), 

which is (5.14). 

Lemma 5.2 Under the hypotheses of Lemma 5.1, define a map 

(xl, X2) -t (Tl, T2) = T, 

where Ti =Xi+ ui(x1, x2). Then for x =/- y, 

(T(y)- T(x))•(y- x) > IY- xl 2 . 

Proof. Since T(y)- T(x) = (y- x) + (v- u), this comes from (5.14). 

Now by the Cauchy-Schwarz inequality, 

IT(y)- T(x)l > IY- xi. 

D 

D 

Note that our transformation (x, y) -t (~, ry) is the form defined in Lemma 5.2. 
Taking x = (0, 0) we have IT(y)J > IYI since T(O) = 0. If D = R 2 , then the map 
(x, y) -t (~, ry) is a diffeomorphism from R 2 to R 2 . 
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6 The Enneper-Weierstrass Representation 

Suppose that X: M ~ R 3 is minimal. Since X is harmonic, on an isothermal neigh­
bourhood (U, (x, y)), 

(6.15) 

is holomorphic. In fact, 

8¢ = 2 82 X = ~ tc, X = 0. 
oz ozoz 2 

Let V be another isothermal neighborhood with coordinate w = u + iv, and let 

-; ax .ax 
cp=- -1,-. ou av 

On U n V 

¢ = ax - iax = ax au+ ax av - i (ax ou +ax av) 
OX ay ou ox av ax au ay av oy 

= (ax _ iax) (au_ iau) = ¢dw. 
au av ox oy dz (6.16) 

Hence 
¢dw = ¢dz, (6.17) 

which means that¢ dz gives a globally defined vector valued holomorphic 1-form. Write 

(6.18) 

By the definition of¢, X being conformal is equivalent to 

3 3 

2.: w; = 2.: ¢7(dz) 2 = o. (6.19) 
i=l i=l 

The condition that X is an immersion is equivalent to 

(6.20) 

Remark 6.1 When :Ef=1 lwil 2 = 0 at some point p E M, we call p a branch point of 
the surface X : M-+ R 3 . At such a point, X ceases to be an immersion. At times we 
want to study minimal surfaces with branch points, called branched minimal surfaces. 
For branched minimal surface, since our data ¢ is holomorphic, we see that branch 
points are isolated. Thus in any precompact domain there are at most a finite number 
of branch points. 

Our main interest is in minimal surfaces without branch points. All minimal surfaces 
in these notes are branch point free, unless specified otherwise. 
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The immersion X can be expressed as 

X(p) = X(p0 ) + SR [P w, 
}PO 

where p0 is a fixed point of M. For any closed path 1 on M, 

SR j~ w = (0, 0, 0), 

since X is well defined. 

(6.21) 

(6.22) 

On the other hand, if we have three holomorphic 1-forms w; on M satisfying (6.19), 
(6.20), and (6.22) for any closed path 1 in M, then (6.21) gives a minimal surface. This 
is because as the real part of a holomorphic mapping, X is harmonic; (6.19) is equivalent 
to X being conformal; (6.20) says that X is an immersion; and (6.22) guarantees that 
X is well defined. 

So far everything we discussed in these notes is true in case X: M Y Rn, n 2: 3, 
except the minimal surface equation should be a system of equations for n > 3 and the 
theorem about equiangular systems. Here is something special to the case n = 3. Let 
us write (6.19) as 

(6.23) 

We can assume that w3 ::f:- 0, as otherwise the surface lies in a plane parallel to the 
xy-plane, and by rotation we can get an equivalent surface such that w3 ::f:- 0. We define 
a meromorphic function g on l'VI by 

w3 
g=---::f:-0. 

W1-

By (6.23), 
? . 

2 w3 w1 + ~w2 g- -----
- (w1 - iw2) 2 - w1 - iw2 

Writing 77 = w1 - iw2, after a little calculation we have 

(6.24) 

Then (6.21) can be written as 

(6.25) 

The formula (6.25) is called the Enneper- Weierstrass representation of the minimal 
surface X: My R 3 . 
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The meromorphic function g and the holomorphic 1-form 'T/ are called the Enneper­
W eierstrass data of the minimal surface X, or shortly the data of X. 

It is convenient in local coordinates to write 'T/ = f(z)dz, where z = x + iy and f is 
a holomorphic function. Thus (6.24) can be written as 

( 6.26) 

W3 = fgdz. 

Since g is a meromorphic function, if dg #- 0 and g is not a pole at p E M, then g is 
a holomorphic diffeomorphism in a neighbourhood U of p. Suppose U is a coordinate 
neighbourhood, with coordinate z = x + iy. Then w = ?J,(z) + iv(z) = g(z) is a local 
coordinate as well, and dw = g'(z)clz = g'og- 1(w)clz. We define 

F(w) = fog-l(w) F(w)dw = fog- 1(w)dz = f(z_)dz = 'rJ. 
g'og- 1(w)' 

Hence in the w coordinate, (6.26) becomes 

( 6.27) 

w3 = F(w)wdw. 

The function F is called the Weierstrass function of the minimal surface Xog-1 : g(U) '---+ 

R 3 , where g(U) C C is a domain in C. Notice that this is only a local representation 
which holds as long as g is a holomorphic diffeomorphism on U. 

Now let us analyse (6.20). By (6.24), (6.20) is true if and only if whenever g has a 
pole of order m at p E M, then 17 has a zero of order 2m at p E Af. Moreover, this is 
the only case where 'T/ can vanish. 

In summary, if we have a meromorphic function g and a holomorphic 1-form 'T/ 

on M, such that (6.24) defines three holomorphic 1-forms which satisfy (6.20) and 
(6.22), then (6.25) defines a minimal surface. An important fact is that recently many 
interesting minimal surfaces were discovered via the Enneper-Weierstrass representation 
by specifying g and 'T/ on certain Riemann surfaces. See, for example, [31], [39], [41], 
and [80]. 
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7 The Geometry of the Enneper-Weierstrass Rep­
resentation 

Let X: M '---+ R 3 be a minimal surface. We will give the geometric data, such as the 
Gauss map, the first and second fundamental forms, the principal and Gauss curvatures, 
etc., of a minimal surface via its Enneper-Weierstrass representation. 

One important fact is that the merom orphic function g in the Enneper-Weierstrass 
representation corresponds to the Gauss map N. For this we first recall that the Gauss 
map N: M---+ E = 8 2 of an immersion X: M '---+ R 3 is defined as 

LetT : 8 2 - {N} ---+ C be stereographic projection, where N is the north pole. Then 

X+ iy 
T(x, y, z) = --, 

1-z 

where ~ and 8' are the real and imaginary parts. We claim that 

g =ToN: M---+ C. 

In fact, 
-1 1 

T og = I 12 (2~g, 28'g, lgl2- 1). 
1 + g 

By (6.15), (6.18), and (6.26) 

thus 

Xu ~ (lJ(1- g2), ~j(l + g2 ), Jg), 

Xv -8' (lJ(1- g2), ~j(l + g2), jg), 

-~~!(1 + g2 )8'fg + ~fgC.S~f(1 + g2 ) 

~~f(l- g2 )8fg- ~fg':S~f(1- g2 ) 

-~f(l- g2)c.sU(l + g2) + ~lf(l + g2)C.Sf(l- g2) 

C.S[if(l + g2)JgJ ~1!12~(9 + lgl2g) 

8'[~!(1- g2)Jg] 

8 [ -;,i f(l + g2)f(l- g2)] 
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= 1!12(1 + lgl2)2 ( ~:~ ) = ~1!12(1 + lgl2)2r-1og. 
4(1 + lgl ) lgl2 - 1 4 . 

Since r- 1 o g E S2 , lr-1 o gl = 1. Since X is conformal, the first fundamental form is 
given by g12 = 0 and 

(7.28) 

Thus 

(7.29) 

as,we claimed. 
Later we will also call the function g = roN the Gauss map of the immersion 

X: M '--+ R3 . We have seen that if X is a minimal surface then g is a meromorphic 
function. The converse is also true, i.e., X is minimal if and only if g = roN is 
meromorphic. We give a sketch of the proof of the converse direction; the reader can 
fill in the details or see [34], pages 7 to 14. 

Let Tx(p)M C R 3 be the tangent space at X(p), p E M. Tx(v)M is oriented by 
the basis (X1, X2). The orientation determined by (X1, X2) will be called the positive 
orientation. Thus we can regard Tx(v) as a point in Gt,2 , the Grasmann manifold of 
oriented two dimensional subspaces in R 3 . We want to embed Gt2 in CP2 , the two 
(complex) dimensional complex projective space. ' 

One way to express P E Gt,2 is to select a positive orthogonal basis ( e1 , e2). But if 
(e1, e2) is a positive orthogonal basis of P and A is a rotation in P, then A(e1 , e2) is 
also a positive orthogonal basis of P. If we consider e1 + ie2 as a vector in C3, then A 
corresponds to a unit complex number ei0 , and (e1, e2 )A corresponds to ei0 (e 1 + ie2) E 
C 3. Moreover, ei0 (e 1 +ie2)/le1 +ie21 corresponds to a positive orthonormal basis of P. 
Thus we find that given a positive orthogonal basis (e1, e2), all positive orthonormal 
bases can be written as 8(e1 + ie2) E C3, where 8 is an nonzero complex number. 
Fixing a positive orthogonal basis (e1, e2) of P and identifying 8(e1 + ie2) E C 3 for all 
8 E C- {0} gives us a point [e1 + ie2] E CP2 . Thus P corresponds to a unique point 
in CP2. This is our embedding E : Gt,2 -+ CP2. By local coordinates it is easy to 
verify that E is c=. 

Now remember that for any conformal immersion X : M '--+ R3 , the 1-forms ¢ = 
X1 + iX2 are well defined in a coordinate neighbourhood U. Since (X1, X2) is a positive 
orthogonal basis of Tx(p)M c R 3 , we can define¢: U-+ CP2 by (i}(p) = E(Tx(v)) = 
[(X1 + iX2)(p)]. X is conformal implies that (6.19) is true, thus the image of¢ is 
contained in the submanifold Q1 := {[z1, z2, z3] E CP2 1 zi + zi + z~ = 0}. We claim 
that Q1 is conformally homeomorphic to S2. In fact, let (z1 , z2 , z3) be a representative 
of [z1, z2, z3] E Q1 and write (z1, z2, z3) = e1 + ie2, where the ei's are real vectors. 
Then [z1, z2, z3] E Q1 implies that (e1, e2) is orthogonal, therefore there is a unique 
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e3 E 8 2 such that ( e1 , e2, e3 ) is a orthogonal basis of R3 with positive orientation. Define 
·· a([z1 , z2 , z3]) = e3 ; clearly a is a homeomorphism from Q1 to S 2 • A little calculation 

shows that a is conformal. Clearly, ao{fi(p) = N(p), where N is the Gauss map. Now 
g(p) = Toao{fi(p), or (fi = a-1oT-1og. Since T reverses orientation, it is anti-conformal. If 
g is holomorphic, then Jl is conformal and thus (fi is anti-conformal or anti-holomorphic. 
This implies that ¢ = (fi is holomorphic. Thus 

Hence X is harmonic and therefore minimal. This ends the sketch of the proof. 

Remark 7.1 Note that if p E M is a branch point of a branched minimal surface 
and (U, z) is an isothermal neighbourhood of p such that z(p) = 0, then we can write 
¢ = zm'l/J, where 'l/J is a holomorphic vector function and 'l/;(0) i= 0. Since ¢ satisfies 
(6.19), 'l/J also satisfies (6.19). We can use ['l/;] E CP2 to define the tangent space Tx(p)M. 
Thus for a branched minimal surface, the tangent space is well defined even at branch 
points. 

We next give a Gauss curvature formula of the minimal surface X: M <---+ R 3 via the 
Enneper-Weierstrass representation, namely 

[ 4lg'l ] 2 

K =- 1!1(1 + lgl 2)2 
(7.30) 

To prove this, remember that for a surface with conformal metric ds2 = A2ldzl2, where 
dz = dx + i dy and ldzl2 = (dx) 2 + (dy)2, the Gauss curvature is given by 

1 2 2 a a 2 
K=-2A2l:::.logA =-A2azazlogA. 

By (7.28), since log IJI is harmonic, we have 

2 a a 2 
A2 az az log A 

4aa 4aa 2 

A2 az az log If I + A2 az az log(1 + lgl ) 

4 a g'g 4 g'¢(1 + lgl 2) - g'gg¢ 
A2 az 1 + lgl2 A2 (1 + lgl2)2 

4 lg'l 2 16lg'l2 

A2 (1 + lgl2)2 IJI2(1 + lgl2)4 0 

We can also calculate the second fundamental form of X via the Enneper-Weierstrass 
representation. Recall that 
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are holomorphic functions of z = x + iy. Hence 

· Xn- iX12 = Xxx- iXxy = (¢~, ¢~, ¢~). 

Because X is harmonic, the data of the second fundamental form then must be 

h12 = X12®N = -8'(¢~, ¢~, ¢~)eN. 

By (6.15), (6.18), and (6.26), 

?R(¢~, ¢~, ¢~)~N 

?R [ (~J'(1 -l), 1J'(1 + g2 ), J'g) + (- fgg', ifgg', fg')] eN 

1 +1lgl2 (~!'(1- g2)~g- 8'j'(1 + l)S'g + ~J'g(lgl2- 1) 

-2~jgg'SRg- 28'jgg'8'g + ?Rjg'(lgl2 - 1)) 

1 . (?Rf'?Rg- ?RJ'l?Rg- S'j'S'g- 8'j'g28'g 
1 + lgl2 

+?Rf'g(lgl 2 - 1)- 2?Rfgg'g + ?Rfg'(lgl 2 - 1)) 

1 +
1igl2 (?RJ'g- ?Rf'lg + SRj'g(lgl2 - 1)- 2lgi 22Rfg' + ?Rjg'(igl 2 -1)) 

1 +1igl2 ( -?Rjg'(lgl2 + 1)) = -SRjg'. 

Similarly, we have h12 = Sfg'. From these we see that for a minimal surface, 

hn- ih12 =- fg' (7.31) 

is a holomorphic function. 
Again let dz = dx+i dy and (dz) 2 = (dx) 2 - (dy) 2+2i dx dy. The second fundamental 

form of X can be written as 

hn ( dx )2 + 2h12 dx dy + h22 ( dy )2 = -?R(f g') ( ( dx )2 - ( dy )2 ) + 28'(! g') dx dy 

= -?R(fg')?R(dz) 2 + 8'(fg')8'(dz) 2 = -~(fg'(dz) 2 ) = -SR(f dgdz). 

Let V E TPM be a unit tangent vector and write 

in complex form; then 
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by the previous formulae. Thus the two principal curvatures are 

A-21D(f I 2i0) A-21! 'I 4lg'l 
~>:1= max- ut ge = g = IJI( 112)2' D:<:;ll91r 1 + g 

(7.32) 

· A-2m(J 1 2ill) A-21J 'I 4lg'l 
~>:2 = mln - JC ge =- g = -1!1( I 12)2" o::;e::;21r 1 + g 

(7.33) 

Then from K = ~>: 1 ~>:2 we recover formula (7.30). 
Now let r(t) = r 1 (t) + ir2 (t) be a curve on M and r'(t) = r~ (t) + ir~(t); then 

I I(r 1(t), r'(t)) -31{f[r(t)] g'[(r(t)] [r'(t)F}(dt) 2 

-31{ d[g(r( t) ]f[r( t) ]dr( t)} (7.34) 

-31{ d[g(r( t) ]77[r( t)]}, 

since 77 = fdz. Remember that a regular curve r is an asymptotic line on a surface M 
if II(r'(t), r'(t)) = 0; a curve r is a curvature line if and only if r'(t) is in a principal 
direction, if and oniy if lr'(t) l-2 II(r'(t), r 1(t)) takes either maximum or minimum value 
of II(v, v) for all unit tangent vectors in Tr(t)M. We have the following criteria: 

1. A regular curve r is an asymptotic line if and only if f[r(t)] g1[r(t)] [r1(t)J2 E iR. 

2. A regular curve r is a curvature line if and only if f[r(t)] g'[r(t)] [r'(t)F E R. 

The last assertion comes from the fact that -~{f[r(t)]g1 ([(t)][r'(t)F} achieves its max-
imum or minimum for all unit vectors r1(t) at only if f[r(t)]g'[r(t)][r 1(t)J2 is reaL 
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8 Some Applications of the Enneper-Weierstrass Rep­
resentation 

Given a minimal surface X: M '-+ R 3 and its Enneper-Weierstrass representation, fix a 
simply connected open set U C M. Fixing p0 E U we can define a family of isometric 
minimal surfaces associated to Xe : U ---+ R 3 , 0 ::; () < 21r, by 

p E U, (8.35) 

where the w;'s are the 1-forms in the Enneper-Weierstrass representation of X and C 
is a constant vector. The Enneper-Weierstrass data for Xe are g0 = g and rJe = eierJ. 
When () = 1r /2, X1r ;2 is called the conjugate surface of X. 

Let I c R be an interval and T : I ---+ U be a geodesic such that X o r is a plane 
curve. Then we know that T must be a curvature line, thus by our criterion in the 
previous section, 

d(gor)ryor E R. 

Since X and X1r; 2 are isometric, r is also a geodesic of X1r;2 . Moreover, 

d(g1r; 2 or )TJ1r;2 or = id(gor )ryor E iR, 

and hence r is an asymptotic line of X1r;2 . Since the space curve X1r; 2 or is both a 
geodesic and an asymptotic line of Xn; 2 , it must be a straight line segment on X1r; 2 (in 
fact, the normal and geodesic curvatures of X1r; 2or are both zero, and so its curvature is 
zero everywhere). Since X and X1r;2 are conjugate to each other (up to sign), we have 

Proposition 8.1 X or is a plane geodesic (straight line segment) if and only if X1r; 2 or 
is a straight line segment (a plane geodesic). 

In fact, we have more information whenever we have a plane geodesic or a straight 
line segment on X. Namely, the surface X must have some symmetry. 

Theorem 8.2 (Reflection and Rotation Theorems) If a plane geodesic which is 
not a straight line segment lies on a minimal surface, then reflection in the plane of the 
geodesic is a congruence of the minimal s·urface. 

If a straight line segment lies on a minimal surface, then 180° -rotation around the 
straight line is a a congruence of the minimal surface. 

Proof. Let X o r be a plane geodesic but not a straight line segment on X. By a 
rotation in R 3 we can assume that X or is in the xz-plane. Since X or is a geodesic and 
is not a straight line segment, the Gauss map N of X along r must be in the xz-plane. 
Thus g = ToN is real along T. Select a point r ( t0 ) such that g' ( r ( t 0)) =1- 0; then in a 
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simply connected neighbourhood U of r(t0 ), w = g(z) is a well defined coordinate of 
·· M. We can use the representation (6.27) and consider the holomorphic mapping on U, 

1 2 3 1p (G , G , G)= G := (w1, w2, w3) + C, 
Po 

where p0 = r(t0 ) and C E C3 is a constant complex vector. Remember that our surface 
X = RG and X1r;2 = -:SG. By Proposition 8.1, X,,;2 or is a straight line segment. 
Since the Gauss map of X1r; 2 is the same as that of X, the Gauss map of X1r; 2 is in the 
xz-plane along r, so the straight line segment X1r;2 or is parallel to they-axis. Thus 
:SG1 or and :SG3 or are constants. By adjusting C we may assume that the constants 
are zeros. Remember that along r, w E R. Now let U+ := {w E U I Rw 2:: 0} and 

U_ := { w E U I Rw ::S: 0}. We can extend G1 1 and G3 1 to U by (Ji(w) = Qi(w), 
u+ u+ 

fori = 1, 3, w E U_ and w E U+. Since RG2 or = 0, we can extend G2 1 to U_ by 
u+ 

G2 (w) = -G2 (w), for wE u_ and wE u+. Since G is holomorphic, we know that G is 
holomorphic and G = G on U. Choose a small disk D C U _ U U + such that D = D, 
then Y = RG is a minimal surface on D. Since X = Y on D n U _, by the Extension 
Theorem (Theorem 4.2), X= Yon D. Looking at the real part, we have for any wED, 

(X1 (w), X 2 (w), X 3 (w)) = RG(w) = RG(w) = (X1 (w), -X2 (w), X 3 (w)) = X(w), 

which is a reflection in the xz-plane. By the Extension Theorem (Theorem 4.2) again, 
this reflection is a congruence of X. 

Similarly we can prove that if X or is a straight line segment, then the rotation by 
180° around X or is a congruence of X. D 

Exercise : Prove that if X or is a straight line segment, then rotation by 180° around 
X or is a congruence of X. 

Finally, we show that each component of the Gauss map N is an eigenvector of the 
Laplace operator l::,x. First remember that for a conformal representation of a minimal 
surface, l::,x = A - 2 !::,. 

Proposition 8.3 The Gauss map N satisfies 

l::,xN = 2KN, (8.36) 

where K is the Gauss curvature. 

Proof. Let g and rJ be the Enneper-Weierstrass data for X. On an isothermal neigh­
bourhood (U, z) we have 

L::,N = 4 a:;zN = 4 a:~ [ 1 +1lgl2 ( 2Rg, 2:Sg, lgl2- 1)] 
[4a:;z(1 + lgl 2)-1] (2Rg,2:Sg, lgl 2 -1) + 4(1 + lgl2)-1 a:~ (2Rg,2:Sg, lgl2 -1) 

+8R { [ :z (1 + lgl2)-1] ~ ( 2Rg, 2:Sg, lgl 2 - 1)}. 
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Since g is holomorphic, 
a ( 12)-1 -g'?J 
az 1 + fg = (1 + fgl 2)2' 

4~(1 + fgf2)-l = 4fg'l2(lgl 2
- 1) 0 

azaz (fgf2 + 1)3 

Using the Cauchy-Riemann equations we have 

:z ( 2!Rg, 28g, fgl 2 - 1) = (g', ig', gg'). 

Sincce 'Rg and 8g are harmonic, 

Hence 

and thus 

D 
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9 Conformal Types of Riemann Surfaces 

We will discuss complete minimal surfaces of finite topological type and their annular 
ends. We need first consider a little of the conformal type of such surfaces. 

All closed (compact without boundary) 2-dimensional manifolds are classified topo­
logically by their genus and orientability. For example, the topological classification of 
closed orientable 2-dimensional manifolds is as follows: 

The simplest surface is the sphere 5 2 . Then we can do "surgery" on 5 2 ; by deleting 
two disjoint disks on 5 2 and gluing the boundary of a cylinder along the two circu­
lar boundaries we obtain a torus. We say a torus has genus one and is a sphere plus 
one handle, while 5 2 has genus zero, and is a sphere without handle. Thus we obtain 
genus k surfaces 5k for all integers k 2': 0 by adding k handles to a sphere. These 
are all possible topological types of closed orientable 2-dimensional manifolds. An im­
portant topological invariant is Euler's characteristic x(5k) = 2(1 - k). Two closed 
2-dimensional manifolds are homeomorphic if and only if they have the same Euler's 
characteristic. Euler's characteristic can be calculated by Gauss-Bonnet Formula, if we 
have a Riemannian metric on the manifold. 

As we have seen before, any smooth orientable 2-dimensional manifold is diffeomor­
phic to a Riemann surface. Let JVI and N be two Riemann surfaces. We say that 
f : ivf ---+ N is holomorphic if for any p E JVI there is an isothermal coordinate neigh­
bourhood U 3 p with complex coordinate z and an isothermal coordinate V 3 f(p) 
with complex coordinate w, such that wof(z) is holomorphic. 

In the category of Riemann surfaces, JI ~ N (have equivalent conformal type) if and 
only if there is a diffeomorphism f : ivf ---+ N such that f and f- 1 are both holomorphic. 
Such an f is called a conformal diffeomorphism. 

Figure 1 

There is considerable interest in classifying the conformal type of closed Riemann 
surfaces. Although the topological classification is quite simple, the conformal classifi­
cation is still not clear. In general, 5 2 has only one conformal type, i.e., any two closed 
(without boundary) orientable Riemann surfaces of genus zero are conformally diffeo­
morphic to each other. A typical coordinate system on 5 2 is given by stereographic pro­
jection from the north and south poles. The conformal structure of genus-one Riemann 
surfaces corresponds to a region in C as in the picture above. Such a representation 
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is called a Riemann moduli space, hence the Riemann moduli space of the torus is one 
complex dimension. For genus k > 1, it is known that the Riemann moduli space is an 
algebraic variety of complex dimension 3k- 3. So far, the Riemann moduli spaces are 
not well understood. 

We are interested in surfaces obtained by making a finite number of punctures 
and/or removing a finite number of closed disks from a closed Riemann surface Mk of 
genus k. Suppose that we make n punctures and remove l closed disks, then M = 
Mk - ( {Pl, ... , Pn} U Ut=1 Di) is said to have finite topological type, or just finite type, 
since the topologically (even homotopically) invariant Euler's characteristic is x( M) = 
2(1 - k) - ( n + l), which is finite. Thus topologically we cannot tell how many closed 
disks were removed or how many punctures were made, although we know the sum of 
them. 

When we come to consider the conformal type, removing a closed disk or making 
a puncture are quite different. For example, making one puncture on S 2 we get the 
complex plane C, but removing a closed disk on S2 we get (conformally) the open 
unit disk D := {z E C, liz I < 1 }. Although D and C are coo diffeomorphic to each 
other, they do have different conformal type. We can see this by Liouville's theorem: 
were there a conformal diffeomorphism f : C ---+ D then f would be a bounded entire 
function and hence a constant. 

For any connected Riemann surface M without boundary, there is a universal cov­
ering Riemann surface M and a holomorphic covering map f : M ---+ M. That f is a 
covering means for any p E M there is an open set U 3 p such that f- 1 (U) consists of 
disjoint open subsets of M and each component V of f- 1(U) is conformally diffeomor­
phic to U under flv· Being a universal covering, M must be simply connected. There 
are only 3 different simply connected Riemann surfaces without boundary, up to con­
formal diffeomorphism; they are the unit disk D, the unit sphere E := S2 ~ C U { oo}, 
and C. It turns out that unless M = E, then M #- E (see for example, [1], III, llG). 
Hence in general, M is non-compact. An open (non-compact) Riemann surface M is 
called parabolic if there are no non-constant negative subharmonic functions defined on 
M, otherwise M is hyperbolic (see for example, [1], IV, 6). Clearly D is hyperbolic, 
since !Rz- 1 is a negative subharmonic function. If M is closed then M is called elliptic. 
By maximum principle for subharmonic function, we know that a hyperbolic surface 
cannot be closed. Thus all Riemann surfaces are divided into three mutually exclusive 
families. 

If M C C is a plane domain with more than one boundary point, then the universal 
covering is D. In other words, among the planar domains, only C and C- {p} having 
C as universal covering, where p E C. 

An equivalent definition of hyperbolicity of M is that there is a Green's function 
G((, z) on M for any ( EM which is positive except at ( and such that in any local 
coordinate U of(, G((, z) +log lz- (I is a harmonic function on U. See, for example, 
[1], IV, 6. 

Now return to our JV! = Mk- ( {p1 , ... , Pn}uu;=l Di)· At any puncture p or removed 
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closed disk U of Mk, take a larger open disk DC Mk such that p ED or U CD. Since 
'such (topological) annuli (D ~ U or D- {p}) determine the global properties of our 

complete minimal surfaces we should understand more about their conformal structure. 
The rest of this section is devoted to the description of the conformal structures of 
annuli. 

Among all doubly connected domains (annuli) in C we consider the special case that 
the doubly connected domains Dare bounded by two Jordan curves (embedded closed 
curves), such domains are called annuli with Jordan curve boundaries. 

Without loss of generality, we can assume that oD = C1 u C2 , where C1 and C2 are 
analytic Jordan curves. Perhaps the best way to see that this is true is by the following 
picture, of course we assume the Riemann Mapping Theorem. 

cl. 

J<,"eMA~t.., /'.-f~ff';.,} 

T~e o•_:_t-t:.M.-----"7 

K,·e,.,,.,VI" '"""' rr···)~ 
Theo t-e~t~ A!P-,·rr.. 

Figure 2 

Let exp(z) = ez. Consider the universal covering f = exp: C-+ C- {0} :J D; then 
f- 1(D) is a simply connected domain inC with analytic boundary. SJtj- 1 (D) is bounded 
and for any wE J-1(D), w + 2mri E f- 1 (D) for any n E Z. In fact, f- 1 (z) = logz, a 
multivalued holomorphic function. By the Riemann Mapping Theorem, for any b > 0 
there is a conformal diffeomorphism 

such that ¢[!-1 ( Ct)] = the y-axis. Any two such maps ¢1 and ¢2 induce a conformal 
diffeomorphism 

h = ¢2o¢11 : sb-+ sb 

which maps the y-axis and the straight line lRz = b onto themselves. By Schwarz's 
reflection principle, h can be extended to a conformal diffeomorphism from C to C, 
hence h(z) = az+e since it maps oo to oo. We have a(i y)+e = i u, a(b+i y)+e = b+i d, 
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where y is any real number and u, d are real numbers. It must be that a = 1 and e is 
a pure imaginary number e = i c. So we have ¢2 = ¢1 + i c. Now take 

1/J(w) = ¢(w + 21ri). 

Then 1/J is a conformal diffeomorphism from f- 1 (D) to Sb, so 1/J 
number c E R. If c i- 0, then take 

¢ + i c for some 

which is a conformal diffeomorphism from f- 1(D) to Sb'· By adjusting b' we can get 
b'c/b = ±27r, then 

b' . b' 
b¢( w + 27ri) = b¢( w) ± 27ri. 

Denoting ~¢ by ¢, we can define a conformal diffeomorphism from D to the annular 
ring 

{ z E C : 1 ::::; lzl ::::; eb'} 

by g(z) = e<f>U-t(z)). If c = 0, we can do this directly. Thus we have proved: 

Lemma 9.1 Each annulus with Jordan curve bmmdaries is conformally equivalent to 
an annular ring 

D.= {z E C: T::::; Jzl ::::; R}. 

Let 
D = { z E C : p ::::; izl ::::; P} 

be another annular ring which is conformally diffeomorphic to D., i.e., there is a holo­
morphic hemeomophism h : D ---+ D. such that h maps {lzl = p} to {lzl = T} and 
{izl = P} to {lzl = R}. By repeatedly using Schwarz's reflection principle, we can 
extend h to a conformal diffeomorphism h : C ---+ C such that h(O) = 0 and h( oo) = oo. 
Hence h(z) = az. Thus we will have Jal = T / p = R/ P, and 

R p 
M:=-=-. 

T p 
(9.37) 

The number M defined in (9.37) is called modulus. For an annulus with Jordan curve 
boundaries we can define its modulus by Lemma 9.1. We have just proved that if D and 
D. are conformally equivalent, then they have the same moduli. On the other hand, if 
D and D. are annular rings which have the same moduli, then h(z) = !:.z is a conformal 

p 
diffeomorphism from D to D.. Thus we have: 

Proposition 9.2 Two annuli with Jordan curve boundaries are conformally equivalent 
if and only if they have the same moduli. 
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Thus the interior of any annulus with Jordan curve boundary is conformally equivalent 
tb 

1 
AR = {z E C: R < lzl < R}, (9.38) 

for some R > 1. 
Letting R --+ oo, we get C - {0} which topologically is an annulus. Its universal 

covering space is C, as we have seen. Therefore it is parabolic, and different from the 
AR for 1 < R < oo, which are hyperbolic. 

The remaining case is the punctured disk D* := D - {0} which is conformally 

equivalent to { z E C, [ p ::=:; lzl < oo} for any p > 0. Since - 2 is a non-constant 
negative harmonic function on D*, D* is hyperbolic. 'We can naturally think of D* as 
having oo modulus. This suggests that D* is different from annuli with Jordan curve 
boundaries. Later we will see that this is indeed true. Our proof actually uses minimal 
surfaces, see the next section. 
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10 Complete Minimal Surfaces, Osserman's Theo­
rem 

Let X: M '-+ R 3 be a surface, A2 = IX1I 2 = IX2I 2, and 'Y: I~ M be a differentiable 
curve. The arc length of 'Y is r := f1 !(X or)'(t)! dt. A divergent path on M is a piecewise 
differentiable curve 'Y: [0, oo) ~ M such that for every compact set V c M there is a 
T > 0 such that 'Y(t) r¢ V for every t > T. If 'Y is piecewise differentiable, we define its 
arc length as 

r :=loco !(X o r)'(t)i dt =loco A('Y(t)) ir'(t)i dt. 

Note that r could be oo. 

Definition 10.1 We say that X is complete if for any divergent curve "(, r = oo. 

Remark 10.2 The use of a divergent curve instead of boundary to describe complete­
ness is because that if M = D*, {0} is not a boundary point of M, but is the limit 
point of a divergent curve. 

Note that in case that (M, g) is a non-compact Riemannian manifold and 8M = 0, 
according to the Hopf-Reno theorem, this definition of completeness is equivalent to 
each of the following: 

1. Any geodesic 'Y : I c R '-+ M can be extended to a geodesic 'Y : R '-+ M, 

2. ( M, d) is a complete metric space, where d is the induced distance from the Rie­
mannian metric g (roughly speaking, d(p, q) = the arc length of the shortest 
geodesic segment connecting p and q), 

3. in ( M, d), any bounded closed set is compact. 

In general, there are many examples of closed minimal submanifolds M '-+ ( N, g) 
where (N, g) is a Riemannian manifold. For example, S2 c S 3 is minimal. But we have 
seen that there are no closed minimal surfaces in R3 . Hence in some sense a complete 
minimal surface without boundary is the closest analogue to a "closed minimal surface 
in R3". 

Definition 10.3 Let X: M '-+ R 3 be a complete minimal surface. Remember that 
the Gauss curvature K is a non-positive function on M, hence the integral of K has a 
meaning. We define 

K(M) := jMKdA 

to be the total Gauss curvature of M. 

(10.39) 

Let X : M '-+ R3 be a surface and K be the Gauss curvature. Let K- = 
max{-K,O}, K+ = max{K,O}, then K = K+- K-, IKI = K+ + K-. We first 
prove a theorem of A. Huber, the proof shown here belongs to B. White [82]. 
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Theorem 10.4 (Huber [35]) Let X: M '----+ R 3 be a non-compact, complete surface. 
'If JM IK-IdA < oo, then JM IK+IdA < oo, and M is homeomorphic toM -{Pt, · · · ,pk}, 

where M is a compact 2-manifold. 

Proof. Fix x0 E M, and let 

Or= O(r) = {x EM I d(x,xa) < r}, 

where d(x, y) is the geodesic distance from X toy. P. Hartman [23] has shown that aor 
is, for almost all r, a piecewise smooth, embedded closed curve. Let ei, i = 1, · · · , n be 
the exterior angles of 80r. By Gauss-Bonnet theorem, 

r K,g ds +Lei = 21fx(r) - r K dA 
Jan. i Jn" 

= 21r(2- 2h(r)- c(r))- [ K dA, 
ln. (10.40) 

where x(r), h(r), and c(r) are the Euler characteristic, number of handles, and the 
number of boundary components, respectively, of Or. 

Let L(r) denote the length of 80r. P. Hartman [23] has proved that L(r) is absolutely 
continuous. As proved in [83], 

L'(r) = 21f(2- 2h(r)- c(r))- 1 K dA + L (2 tan(Bi/2)- ei), 
nr 11;<0 

when -1r /2 < ei < 0, 2 tan( Bi/2) - ei < 0, so 

L'(r)::::; 21r(2- 2h(r)- c(r))- [ K dA. Jnr 
Since M is complete and noncompact, L(r) > 0 for all r > 0; so 

6 :=::; limsupL'(r) 

:=::; 21r(2- 2liminf h(r) -liminf c(r))- JM IK+I dA + JM IK-1 dA. (10.41) 

Thus the negative quantities on the right-hand side are all finite. Since h(r) is a non­
decreasing, integer valued function of r, 

h(r) =some constant h for r > R. 

Also, c(r) is integer valued, so we can find a sequence ri-+ oo with 

c(ri) = c = liminf c(r) < oo. 

Let A be the union of Or; with those connected components of M - Or, which happen 
to be compact. (There may not be any, in which case A= Or,.) Let h(Ai) and c(Ai) 
denote the number of handles and boundary components, respectively, of A. Then 

38 



provided j is large enough that A; C Sl,.i+j: so 

h(A;) = h (10.42) 

and clearly c(A;) ~ c(SlrJ· By passing to a subsequence we may assume 

c(Ai) = c' (~c). (10.43) 

By (10.42) and (10.43), the A are homeomorphic, with Ai+l obtained from Ai by 
attaching annuli. The result follows immediately. D 

Since for minimal surfaces}{ ~ 0 on M, we know that a complete minimal surface of 
finite total curvature has finite topology. We are interested in the conformal structure 
of M. Now since M has finite topology, M = S k - ( {p1 , · · · , Pn} U U~=l Ui) as a Riemann 
surface, where c Sk is conformally a closed disk. Furthermore, there are disjoint 
conformal open disks D; c Sk> i = 1, · · ·, n + l, such that Pi E Di, i = 1, · · ·, n, and 
Ui c Di+n, i = 1, · · ·, l, and the boundaries 8Di are mutually disjoint analytic Jordan 
curves. See, for example, [1], I 44D and II 3B. Hence each Di+n- is conformally a 
doubly connected plane domain, which must be conformally equivalent to some 

E C II/ R ~ lzl < R} 

with 1 < R < oo. 
Let ¢: Di+" - -+ AR a conformal diffeomorphism. Since X is complete with 

finite total X o¢-1 is a complete minimal annulus with finite total curvature, 
where completeness of X o¢- 1 means for any curve r : I -+ AR diverging to lzl = R, 
the arc length r of r is infinity. Vve will prove that such a complete minimal annulus 
does not exist and hence lvf = Sk- {Pb · · · ,Pn}· 

we will prove M. = - {p1, · · · , Pn} by showing that for any there 
Riemannian metric which is conformal to the Euclidean metric and has 

non-positive Gauss curvature and finite total curvature. If there vvere a closed disk 
removed , the induced metric on some _)iR by X o¢~ 1 would be a complete 

Riemannian metric which is conformal to the Euclidean metric and has non-positive 
Gauss curvature and finite total curvature. Thus we know that it must be the case that 
M = S k - {Pl, · · · , 

By the way, since there do exist complete minimal annuli Y : D* Y R 3 , we see that 
D* is not confornmlly equivalent ot any AR or AR as mentioned in the last section. 

First we give an easy lemma >Nhich uses the special structure of AR. The proof is 
left as an exercise. 

Lemma. 10.5 If g;y = ,\2 6ij is a complete Riemannian metric on AR, then gij(z) ·­
.\2(z)>..(1/z)6ij is a complete Riemannian metric on AR := {1/R < lzl < R}. 

Next we prove that if A= eh and his harmonic, then >.. 26ij on AR cannot be complete. 
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Proposition 10.6 Suppose D C C and gij = e2hoij is a complete Riemannian metric 
on D. If l::,h = 0, then conformally D is either C- {0} or C. 

Proof. Consider the conformal universal covering n: fJ C C ----7 D. Since n is holomor­
phic, h(z) = h(n(z)) is harmonic. Furthermore, gij = e2hoij is a complete Riemannian 
metric on D. Since fJ is simply connected, there is a harmonic function k conjugate to 
h. Define a holomorphic function w: fJ ---+ C by 

w(z) = foz eh(()+ik(()d(. 

Since fJ is simply connected, w is well defined. 
First we claim that w sends a geodesic into a straight line. In fact, the induced 

metric by w from the Euclidean metric on Cis lw'l 2oij = e2hoij = gij· Hence the metric 
g is the first fundamental form of the surface w : fJ ---+ C C R 3 and w : ( fJ, g) ---+ ( C, 
is an isometry. Let r be a geodesic on fJ, then wor is a plane geodesic of w(D) c C, 
and thus wor must be a straight line segment in C. 

Next we prove that w is one to one and onto. Let r : [0, oo) '----t iJ be a geodesic ray 
of unit speed on D. Then (wor)'(t) = w'(r(t)) r'(t) = p(t)eie(t) i 0, since w' and r' are 
both non-zero. Since r is unit speed, 1 = lr'(t))l 9 = l(wor)'(t)l = p(t). Since wor is a 
straight line segment, B(t) must be a constant, say 80 . Thus we can write 

w( r( t)) = w(r(O)) + teieo. 

This proves that w sends any geodesic ray one to one and onto a ray in C. 
Now by completeness, fJ is the union of all geodesic rays starting from 0. Since w is 

locally a conformal diffeomorphism, different geodesic rays starting from 0 are mapped 
by w one to one and onto different rays starting from w(r(O)) E C, thus w must be one 
to one and onto C. 

Now w : fJ ---+ C is a conformal diffeomorphism, so fJ = C. Since the conformal 
universal covering of D is C, conformally D must be either C or C- {0}. 0 

Now we have to use the facts that X : M '----t R 3 has finite total curvature and AR is 
hyperbolic in order to construct a complete metric e2hoij on AR such that his harmonic. 

Proposition 10.7 Let D c C be a hyperbolic domain and 9iJ = >. 2 o;j a Riemannian 
metric on D, s·uch that D log>. 2: 0 and 

k D log>. dx dy < oo. (10.44) 

Then there is a harmonic function h such that log>. :::; h. 

Proof. Since D is a hyperbolic domain, there is a Green's function G((, z) on D for 
any (ED which is positive except at (and such that G((, z) +log lz- (I is a harmonic 
function on D. Since D log>. E L 1 (D), 

u(() := ~ J G((, z) D log>. dx dy 
2n D 
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solves the Poisson equation D.u = -D. log A. Note that u 2:: 0, h = u +log A 2:: log A is 
the desired harmonic function. D 

Now by Lemma 10.5 the induced metric by X o¢-1 on AR is A2%. Then the Gauss 
curvature is 

K = _ D.logA 
A2 . 

Since K ::::; 0, we know that D. log A 2:: 0 is non-negative. Moreover, since 

condition (10.44) is equivalent to X o¢-1 having finite total curvature. So we have a 
harmonic function h 2:: log A. Thus 

logA(z) + logA(1/z)::::; H(z) := h(z) + h(1/z). 

0 bviously e2H Oij is a complete Riemannian metric on A R. Since H ( z) = h ( z) + h ( 1/ z) 
is harmonic, by Proposition 10.6 we have R = oo, a contradiction. This contradiction 
proves the first part of the following theorem due to Osserman: 

Theorem 10.8 (Osserman, (66]) Let M be a Riemann surface without boundary and 
X: M '----+ R 3 a complete minimal surface such that the total curvature K(M) is finite. 
Then 

1. There exists a closed Riemann surface 5k and a finite number of points p 1, ... , Pr 
on 5k such that M is confonnally 5k- {PI, ... , Pr }; 

2. The Gauss map g: M ----+ :E can be extended to 5k such that the extension g: 5k ----+ :E 
is a holomorphic function. Moreover, 

K(M) = -4Jr deg g. (10.45) 

Recall that if g : 5k ----+ C is a meromorphic function, where 5k is a closed Riemann 
surface, then there is a positive integer n such that for all but finitely many p E C, 
g-1 (p) c Sk consists of n points. We say that g has degree n, and denote this by 
degg = n. 

Proof. Since we have proved the first part, we only need prove the second part. 
Recall that 

r 16lg'l2 2 1 2 2 2 
K = -lfl2(1 + lgl2)4 and A = 41fl (1 + lgl ) . 

Recall that T-1 : C ----+ 5 2 is a complex chart of 5 2 . In this chart the volume form of 5 2 

is 
4 

d5(w) = (l + lwl 2 ) 2 du !\ dv 
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where w = u + iv E C. Obviously 

f dS = f dS(w) = 4n. Js2 Jc 

Let U be a coordinate neighbourhood in M on which g has no pole. Since g is 
holomorphic, Jg'J 2 = det Dg, where we interpret g as g : U-+ R 2 . The induced metric 
by g: U-+ (C, dS) has the volume form 

* 4det Dg 
g (dS) = (1 + Jgj 2 ) 2 dxdy. 

Since g*(dS) is well defined on M- g- 1(oo) (in fact on M), by 

r r 2 1 4Jg'J2 
Ju KdA = Ju KA dx 1\ dy =- u (1 + JgJ2)2 dx 1\ dy 

f 4 det Dg " * 
=- Ju (1 + Jgj2)2dx 1\ dy =-Jug (dS) 

we have 

jMKdA = -JMg*(dS). 

Thus by the area formula we finally get 

where rt{g- 1(w)} is the number of points in g-1 (w). Since g is meromorphic, for almost 
every wE C, rt{g- 1 (w)} = degg. The proof is complete. D 

Corollary 10.9 If X : M '---+ R 3 is a non-planar complete minimal surface of finite 
total curvature, then the Gauss map g : M -+ C can miss at most a finite number of 
points of C. 

Proof. Since g can be extended to a closed Riemann surface Sk and g is not a constant, 
(otherwise X will be contained in a plane) we know that g(Sk) = C U {oo}. Now 
M = Sk - {p11 • · ·, Pr }, so C- g(M) has at most a finite number of points. D 

Corollary 10.10 (Bernstein's Theorem) Let u : R 2 -+ R be a solution to the min­
imal surface equation. Then u is an affine function, i.e., u(x, y) =ax+ by+ c where a, 
b, and c are constants. 
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Proof. If u is not affine, then the graph of u is a non-planar complete minimal surface 
S of conformal type C = S2 - {(0, 0, 1)}. In fact, the special isothermal coordinate in 
Section 5, (~, rJ) :R2 -+ R 2 , is one to one and onto R 2 . If S has infinite total curvature, 
then the Gauss map g of S has an essential singularity at oo, and hence g misses at 
most one point in C. If S has finite total curvature and is non-planar, then Corollary 
10.9 tells us that g misses at most a finite number of points of C. But since S is a 
graph, 

1 
N = (1 + u; + u~)l/2 ( -ux, -uy, 1) 

misses the lower hemisphere of S 2 • This contradiction shows that S must be planar and 
forces g = constant, and hence Ux and Uy must be constant and u must be affine. D 
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11 Ends of Complete Minimal Surfaces 

By Osserman's theorem, any complete minimal surface of finite total curvature is an 
immersion X: M = Sk- {p1, · · · ,pr} c:....t R 3, where Skis a closed Riemann surface of 
genus k. Consider conformal closed disks Di C Sk such that Pi E Di and p1 tf. Di for 
j =f. i. Denote Di := Di- {Pi}· For any such Di, the restriction X: Di Y R 3 is called a 
representative of an end of X at Pi or simply an end. When we say that some property 
holds at an end of X at Pi, for example embeddedness, we mean that there is a disk 
like domain Di such that for any disk like domain Pi E Ui c Di, X: Ui - {Pi} satisfies 
the property. Such a representative X : Ui -{Pi} -+ R 3 is called a subend of the end 
X:Di Y R 3 . 

Osserman's theorem says that the Gauss map g extends to Pi and the extended g is 
a meromorphic function. Since N = r-1 og we have a well defined normal vector N(pi) 
at Pi, which we call the limit normal at Pi· This also defines a limit tangent plane at 
the end Ei corresponding to Pi· 

Intuitively, and we will prove it later (see Proposition 11.5), Ei = X(Di) c R 3 

is an unbounded set. Moreover, since M- U~= 1 Di is precompact, X(M) - U~= 1 Ei 
is bounded. Thus if X is an embedding, an end Ei is just a connected component of 
X(M) - B, where B is any sufficiently large ball in R3 centred at 0. 

In this section, all ends considered are ends of some complete minimal surface of 
finite total curvature. 

Now consider the Enneper-Weierstrass representation of the complete minimal sur­
face X: M c:....t R 3 . By (6.20) 

A2 = ~ (1¢112 + I<P2I2 + 1¢312) · 

Now let r: [0, 1)-+ Di be a regular curve such that lr'(t)l = 1 and limH1 r(t) =Pi· By 
completeness, 

/o1 A(r(t)) lr'(t)l dt = oo. 

This implies that A(q) -+ oo as q-+ p. Since ¢/s are meromorphic, one of them must 
have a pole at p. Hence let z be the local coordinate of Di such that z(pi) = 0, we must 
have 

2 1 ( 12 .1 12 2) c 
A = 2 1¢1 + ¢2 + 1¢31 "' lzl2m' (11.46) 

where c > 0 and m 2 1 is an integer. 

Definition 11.1 If A2"' c/lzl2m at an end, we say that A has order mat that end. 

Remark 11.2 Since A2 is the pull back metric of X: M-+ R 3 , we see that the order 
of A is invariant under an isometry in R 3 . Precisely, if A is an isometry of R 3 then AX 
and X has the same pull back metric A2 . Thus the order of A at an end is invariant. 
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X being complete requires that the order of A at an end is at least one. In fact, we 
can prove that the order of A at an end is at least 2. 

Lemma 11.3 Let X : M = Sk - {PI,···, Pr} <--+ R 3 be a complete minimal immer­
sion with finite total curvature, and (w1, w2, w3) its Enneper- Weierstrass representation. 
Then at each Pi, at least one of w1, w2, w3 has a pole of order at least 2. 

Proof. Let ( Dj, z) be a coordinate neighbourhood such that z(pj) = 0 and on Dj, 
(w1,w2,w3) = (cfJI,¢2,cfJ3)dz. 

We have shown that at least one of ¢1, ¢2, ¢3 has a pole at Pi· So m :2: 1. If m = 1, 
there are complex constants c1 , c2 and c3 , not all zero, such that f; ·- ¢; - c;j z is 
holomorphic in Dj. Now 

2R(cdog z) = 2R j (¢;- f;)dz =X;- 2R j f; dz, i = 1, 2, 3, 

are well defined harmonic functions on D7. Since 

2R( c; log z) = (2Rc;) log lzl - ('Sc;) arg z, 

c; must be reaL But 

Comparing the terms of the same order, it must be that c; = 0 fori= 1, 2, 3. But then 
¢; = j; is holomorphic and bounded in Dj, contradicting the fact that X is complete. 
0 

Now recall that by definition X: Sk- {p1 , · · · ,Pr} Y R 3 is complete if and only if 
for any divergent curve 1 the arc length of X o1 is infinity. Thus either X O'f goes to 
infinity in R 3 or X o1 stays in a compact set of R 3 but has infinite arc length. To study 
these two cases, we introduce the concept of properness. 

Definition 11.4 A mapping X : M -+ N between two topological spaces is proper if 
for any compact set C c N, x-1(C) is also compact. 

Proposition 11.5 (Osserman) If X: M-+ R 3 is a complete minimal surface of finite 
total curvature then X is proper. 

Proof. We know that M = Sk- {p1 , · · · ,pr} where Sk is a closed Riemann surface of 
genus k. Let p E {p1 , · · · , Pr}. Since the order of A is invariant under isometries of R 3 , 

after a rotation, we may assume that g(p) = 0. There is a coordinate disk U c Sk at p 
such that z(p) = 0 and lzl < 1 on U. So we can write that g(z) = znh(z), where n > 0 
and h(O) #- 0. On U- {p}, rt must have a pole of order m :2: 2, hence we can write 
TJ = f(z)dz where 

00 . 1 
f(z) = "' a;z' = -F(z), 

.£..._, zm 
~=-m 
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where F is holomorphic and a_m = F(O) # 0. We can write 

00 

f(z)g2 (z) = L bizi. 
2n-m 

Recall that 

(PI (z) = l f(z) (1 - g2 (z) ), rh(z) = ~ f(z) (1 + g2 (z) ). 

Since on the loop C := {lzl = p < 1}, 

0 3t L cfh dz - i 3t L cP2 dz 

~)RJ (a_1 - b_l)z-1dz + i~ssj (a_1 + b_l)z-1dz 
2 c 2 c 
7ri(a_1 + b_l) (by the residue theorem), 

we have 
(11.47) 

3t1z cP1(()d(- i3t1z rP2(()d( + (X1 - iX2)(zo) 
zo zo 

3t lz ~ f(()(l- g2 (())d( +iSS rz 1 (1 + l(())d( + (X1 - iX2 )(zo) 
zo 2 lzo 2 

~ lz f(()d(- ~ {z f(()g2 (()d( + (X1- iX2)(zo) 
2 zo 2 lzo 
1 ~ ai i+ 1 1 ~ bi .+ 1 1 ( -b \ I I - ~ --.z -- L --.z' +- a_1- -l)log z 
2 i=-= 1 + Z 2 i=2n-m 1 + Z 2 

ijo-1 i#-1 

~ a_m z1-m + ~(a_ 1 - b_l) log lzl + O(lzl 2-m). 
21-m 2 

(11.48) 

Since a_m # 0 and m 2: 2, (11.48) shows that IXI2 ~ oo as z ~ 0. Thus for any 
compact set B C R 3 , there are open disks PiE Di C Sk such that x-1 (B) C Sk-U~= 1 Di 
~rompact. D 

We want to know how to determine whether an end is embedded looking at the 
Enneper-Weierstrass representation. 

Lemma 11.6 If the order of A at an end ism= 2, then there is an open conformal disk 
D such that X : D - {p} Y R 3 is an embedding, where p is the punctur-e corresponding 
to the end. 
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Proof. In the proof of Proposition 11.5, since n ?_ 1 and m = 2 we see that b_ 1 = 0 
and hence a_ 1 = 0 by (11.47). Now by the same calculation which led to (11.48), 

( 1 . 2 ) ( 1 a_ 2 ( I X - zX z) = --- + 0 lz ) . 
2 z 

(11.49) 

Obviously for some 0 < p < 1 small enough, X 1 - iX2 : D - {p} := { z E UIO < lzl < 
p} -+ C is one to one and limlzi-+O I Xi - iX2I (z) = oo. Hence X I is an embedding. 
0 D-{p} 

When A has order 2 at an end, we can get more information about the behaviour of 
X at that end; in fact this end can be expressed as a minimal graph with a very nice 
growth property. To prove this, we first show: 

Lemma 11.7 Let p E {p1 , · · ·, Pr} and A have order 2 at p. Then there are R > 0 and 
p > 0 such that the mapping X 1 - iX2 : D - {p} -+ C defined in Lemma 11.6 is onto 

{~ECII~I>R}. 

Proof. We have seen in Lemma 11.6 that for some 0 < p < 1, X 1 - iX2 : D -
{p} = {0 < lzl :::; p} -+ C is one to one and limlzi-+D IX 1 - iX2 I(z) = oo. Let 
R = maxlzl=p{IX1 - iX2 I(z)}. Note that a:= (X1 - iX2)({1zl = p}) is a Jordan curve 
in C. If there is a~ E C, 1~1 >Rand~ tf. (X1 -iX2)(D-{p}), then there is aO < r < p 
such that minlzl=r{IXl- iX2I(z)} > 1~1· Let {3 := (X1 - iX2)({1zl = r}), then ,8 is a 
Jordan curve inC and an {3 = 0. Let 0 := C- {0}- {0, where a and {3 are not free 
homotopic to each other in 0. But clearly (X 1 -iX2)( {r < lzl < p}) C 0 and ¢(8, t) := 

- iX2 )[(r + t(p- r))ei8], 0 :::; t:::; 1, 0:::; ():::; 2w, is a homotopy from {3 to a in 0. 
Thus we get a contradiction. This contradiction proves that~ E (X1 - iX2)(D- {p}). 
The lemma is proved. 0 

Theorem 11.8 Let the notation be as in Lemmas 11.6 and 11. 7. Then there is an 
R > 0 and an E E ( 0, 1) such that outside the solid cylinder { ( x1 , x2 , x 3 ) E R 3 I xi+ x~ :::; 
R2}, X(O < lzl < c:) is a graph (x1,x2,u(x1,x2)) over the x 1x2-plane. Furthermore, 
asymptotically, 

(11.50) 

where T = (xi+ x~) 1 12 , and a, ;3, 11 and r 2 are Teal constants. 

Proof, We have proved that there is an E E (0, 1) such that the mapping X 1 - iX2 : 
D* := {z I 0 < !zl < e:} -+ C is one to one and onto 1~1 > R for som.e R > 0. Let 
f2 = {1~1 > R}. For any (x1,x2) E 0 there is a unique zED* such that x1 = X 1(z) 
and x2 = X 2(z). Define u(x1, x2) = X 3 (z) on (X1- iX2)-1(f2), then u is a well defined 
function. Now use the data written down in the proof of Proposition 11.5, recalling that 
g(z) = znh(z), f(z) = a_2z- 2 + 2::;~0 aizi, and so ¢3(z) = a_2h(O)zn-2 + a_2h'(O)zn-l + 
I:~n bizi. 
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We consider the two cases of n = 1 or n > 1. If n = 1, let C := {lzl = E1} for some 
· 0 < E1 < E. Since 

0 = ?R fc ¢3(z)dz = ?R(a_2h(0)27ri), 

we see that a := -a_2 h(O) =F 0 is real. Thus 

X 3 (z) = ?R 1: ¢3(()d( + X 3 (z0 ) 

-a log lzl + ?R(a_2h'(O)z) + O(lzl2) + X 3(z0). 

By (11.49), 

2 I . 12 la-2l2 ( ) 1 (la-2l2 (I l2)) r = xl- %X2 = 4lzl2 + 0 1 = lzl2 -4- + 0 z ' 

2log r = -2log lzl +log ca~2 1 2 + O(lzl2)) = -2log lzl + 2log la;21 + O(lzl2). 

Also by (11.49), 

-a-2 O( _2) -a-2(xl + ix2) O( _2) 
z= + r = + r . 

2(xl - ix2) 2r2 

Thus there are real constants ry1 and ry2 such that 

?R(a_2h'(O)z) = 1'1X1 ~ 1'2X2. 
r 

Setting f3 = -a log ia22 1 + X 3 (z0 ), we have 

u(x1, x2) =a logr + f3 + r-2(1'1x1 + 1'2X2) + O(r-2). 

If n > 1 then ¢3 is bounded in D*, hence a = 0. In this case, the end approximates 
a plane. D 

We have shown that if A has order 2 at an end, then that end is embedded and is a 
minimal graph. Next we will show that if an end is embedded, then A must have order 
2 at that end. 

An outline of the proof is as follows: If m > 2 and g(O) = 0 then 

(XI- iX2)(z) = ~ + O(lzll-k) 
zk 

with k > 1. This shows that (X1-iX2) is not one to one, and limtzi-+O IX1-iX2I(z) = oo. 
But it is possible that the surface X = (X1, X 2, X 3) is embedded. However, intuitively 
we know that X is a graph over C- B, where B is a large disk in C, since our surface 
has a limit tangent plane corresponding to the puncture. It follows that X is embedded 
is equivalent to X 1 - iX2 being one to one. The next lemma gives a rigorous proof of 
this fact. 
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Lemma 11.9 Let D and p be as in Proposition 11. 5. If X: D-{p} is an embedding then 
there is an R > 0 such that X is a graph over R 2- BR, where BR := { x E R 2 llxl :S R}. 
In particular, A has order 2 at p. . 

Proof. We assume that the limit normal to X at pis (0,0,-1). Let P(x1,x2,x3) = 

(x1, x2) be the perpendicular projection. Let C,. := {(x1, x2 , x3 ) E R 3 1 xi+ x§ = r 2 }, 

V,. := {x1,x2,x3) E R 3
1 xi+ x~ > r 2 }. 

We will prove that there is an R > 0 such that P: X(D- {p}) nVR-+ R 2 -BR is one 
to one and onto R 2 - BR. Hence X is a graph over R 2 - BR. Moreover, 8[X-1 (VR)] is 
a homotopically non-trivial Jordan curve JR c D- {p}, hence x-1 (VR) is conformally 
a punctured disk. 

Since the limit normal of X at p is (0, 0, -1), there is an 0 < p < 1 such that 
N3(z) < -1/2 for any 0 < lzl :S p. Let D; := {z I 0 < lzl < p}. Since X is continuous, 
there is an R > 0 such that IX1 - iX2 12 (z) < R2 for lzl = p. For any r > R, consider 
the set x-1(C,.) c n;. Since N 3 (z) < -1/2 for any 0 < lzl < p, X is transverse to 
C,.. (i.e., X(D;) and C,. have different tangent planes at common points.) This implies 
that x- 1(C,.) is a family of one-dimensional submanifolds inn;. From the expression 
for X 1 - iX2 we know that IX 1 - iX2 I(z) -+ oo when lzl --+ 0, hence any component 
J,. of x-1 (C,.) is a compact one-dimensional submanifold, i.e., it is a Jordan curve in 
D;. If J,. is homotopically trivial, then it bounds a disk like domain S1 C D;. We will 
prove that IX1 - iX2 12 (z) = 1·2 on 0. In fact, let z E S1 be such that IX1 - iX212 (z) 
achieves a maximum or minimum other than r2 on IT. Then z is an interior point of S1 
and DIX1 - iX2 12 (z) = (0, 0). This says that 

(11.51) 

Since (X1,X2)(z) =f (0,0), (11.51) implies that (X1,X2)x and (X1,X2)y are linearly 
dependent. This then implies that N 3 (z) = 0, contradicting N 3 (z) < -1/2. But 
if IX 1 - iX2 12 = r 2 on Sl, X maps 0 to C,., another contradiction to the fact that 
N3 ( z) < -1/2 in D;. These contradictions prove that Jr is homotopically non-trivial. 
Now if x- 1(C,.) has more than one component, say J}: and f/:. The above argument 
shows that they are both homotopically non-trivial. Thus they are in the same Z2 

homotopy class, and bound a compact doubly-connected domain n c D;. By the same 
argument we can prove that X(S1) C C,., which is impossible. Thus we have shown that 
Jr := (IX1 - iX2 12 )-1(r2 ) = x-1 (C,.) is a homotopically non-trivial Jordan curve in D;. 

Now X: D; --+ R 3 is an embedding, so a := X(J,.) is a Jordan curve on C,.. Let 
j3: S 1 --+ D; be a parametrisation of Jr. If (3(ti) = Zi E J,. fori= 1, 2 where Zl =I Z2 and 
(Xl, X 2 )(zr) = (X1 , X 2)(z2), then there is atE S 1 such that c/(t) = C(O, 0, 1) for some 
non-zero constant C. Since a'(t) is a tangent vector of X, we must have N 3 (j3(t)) = 0, 
a contradiction to N 3 (z) < -1/2. This shows that P:X(J,.)-+ 8B,. is one to one and 
onto for any r > R; hence (X1 , X 2 ) is one to one and onto R 2 - BR· D 
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Remark 11.10 The fact that X is an embedding is used only when claiming that 
a = X(Jr) is a Jordan curve. Hence it is true that (IX 1 - iX2 12)-1 (r2 ) = x-1 (Cr) 
is a homotopically non-trivial Jordan curve when X is only an immersion. In general, 
P:X(Jr) --7 8Br is an m to one projection except for a finite number of points in 8Br. 
The number m is the Ii in Theorem 12.1. 

An immediate application of Theorem 11.8 and Lemma 11.9 is: 

Corollary 11.11 If X: Sk- {p1 , ... ,Pn} '---+ R 3 is a complete minimal embedding, then 
the limit normal must be parallel. 

Definition 11.12 An embedded end of a complete immersed minimal surface in R 3 of 
finite total curvature is a fiat (or planar end) if a= 0 in (11.50), and is a catenoid end 
otherwise. 

Remark 11.13 We have proved that X is embedded at an end E if and only if A has 
order 2. Let p be the puncture corresponding to E. From the proof of Theorem 11.8, 
we know that E is fiat if and only if p is a branch point of the Gauss map g. 

Finally, we give a description of the image of a fiat end at the limit height. 

Proposition 11.14 Let E = X(D- {p}) be an embedded end and g have branch 
order k > 0. Let /3 be as in Theorem 11. 8, and B be a large ball centre at (0, 0, /3). 
Then (E- B) n {(x, y, z) E R 3 l z = ,8} has 2k components. 

Proof. Without loss of generality we may assume that g(p) = 0 and g(z) = zk+1 Now 
rJ = z-2 h(z)dz, h(O) #- 0, so 

X3(z) = j3 + 3t (lh(O)zk) + o(lzlk). 

Thus X3 1 (,8) n (D- {p}) consists of k curves intersecting at z = 0. This is equivalent 
to (E- B) n { (x, y, z) I z = /3} consisting of 2k components. D 
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12 Complete Minimal Surfaces of Finite Total Cur­
vature 

To have a better understanding of a complete immersed minimal surface of finite total 
curvature, we will prove a theorem due to Jorge and Meeks which says that if one looks 
at the surface from infinity, then the surface looks like a finite number of planes passing 
through the origin. 

Let X: M ~ Sk- {p1 , · · · ,pn} '-+ R 3 be an immersed complete surface. Let S2 (r) 
be the sphere centred at (0, 0, 0) with radius r. Let Y,. = X(M) n S 2 (r) and 

1 2 
Wr = -Y,. C S o 

r 

Theorem 12.1 ([38]) Suppose that the Gauss map on M extends continuously to Sk. 
Then 

1. X: M ~ Sk- {p1, · · · ,Pn} '-+ R 3 is proper. 

2. For large r, Wr = { 'Yr, · · ·, 'Y~} consists of n immersed closed curves on 5 2 
0 

3. 'Y[ converges in the C 1 sense to a geodesic of 5 2 with multiplicity Ii 2: 1 as r goes 
to infinity. 

4. If X is a minimal surface then the convergence in 3 is coo. 
5. X is embedded at an end corresponding to Pi if and only if Ii = 1. 

Proof. We need only consider a neighbourhood of a puncture p. Let D* = D- {p} be 
a punctured disk and aD be compact. Suppose that 

and that 

N = lim N(z), 
lzl-+0 

v'3 7r 
NeN(z) =cos()>- for 0 < () <-- 2 - - 6 (12.52) 

for all z E D*. Let 1r be a plane containing the line generated by N and let r = x-1 ( 1r). 

Since N111N(z) 2: v'3/2, X is transversal to 1r. It follows that r consists of points in aD 
and connected curves (in fact, the interior of x- 1 ( 1r) is a one-dimensional manifold). 
Let 'Y be a connected component of r that is a curve. 

We will consider coordinates ( t, y) in 1r such that the y-axis is the line generated 
by N. It follows from (12.52) that the tangent vector of X('Y) is never collinear with 
No Thus X('Y) is the graph of a function y(t). The angle between the normal vector 
( -y', 1) of X ( 'Y) and N is less than or equal to e. Therefore 

1 
-----;==== 2: cos()' 
j1 + y'(t) 2 
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which implies that 
IY'(t)i :::; tan e, for all t. (12.53) 

If 'Y is compact it follows that the extremal points of X ("f) are contained in X(aD). 
Let x1 = X('Y(t1 )) E X(aD) and x2 = X('Y(t2)) E X(aD), and x = X('Y(t)), t E (t1, t 2 ). 

Then 

Thus 

where 

sup lxl :::; + 2d1 
xEX(r) 

d0 = sup lxi, d1 =diameter of X(aD). 
xEX(8D) 

(12.54) 

If 'Y is non-compact in D*, then it must be a divergent curve; hence X ( 'Y) has infinite 
arc length (X is complete). It follows from (12.53) that y(t) is defined in the interval 
(-oo,a], [a,oo) or (-oo,oo). 

Let Cr be the solid cylinder of radius r whose axis is the line generated by N. Let 
A be the annulus D* with the metric induced by X so that X: A---+ R 3 is an isometric 
immersion. Note that aA =aD. 

Claim: x-1 (Cr) is a compact set of A. In particular, the immersion X: D* Y R 3 

is proper. _ 
Proof of the Claim : We will denote by j5 the distance on A. Choose r > 0 such 

that X(aD) is contanined in Cr. Let x E A be such that X(x) = x. Let 7r1 be the 
plane passing through and the line generated N. a connected curve 'Y in 
x-1 (7r1) containing x. We know that X('Y) is the graph of a function y(t) in with 
x = y(to)). Observe that ito I :::; r. If the domain y(t) is the interval ( -oo, a] or 
[a,oo), then (a,y(a)) E X(aD) and 

f5(x, ali) :::; llo ji+7/(t)2 dtl :::; 2r sec e :::; 4r. (12.55) 

Assume now that t varies from -oo to oo. Let 7rt be the passing through the point 
(t, y(t)) of X ("f), orthogonal to 7r1 and parallel to the line generated by N. Let "ito be the 
connected curve in x-1 (7rt0 ) that contains the point x. If "ito intersects then (12.55) 
holds. We assert that there exists t E ( -r, r) such that x- 1(nt) contains some curve 
"it intersecting both"( and aA. If not, then Xbto) is a graph in 7rt0 over the t-axis of 
7rt0 • As t 0 varies along the t-axis of 7r1 , X bto) describes some surface that is a graph 
over the plane orthogonal to the vector N. Then x-1 (M0 ) contains some connected 
component of A without boundary which contradicts the fact that A is connected and 
has boundary. Thus for some t, "it intersects aA; if iti ~ r then 7rt n X(aA) = 0, hence 
iti < r. This proves the assertion. 
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If 'Yt is given by the assertion above, then in the same way as in (12.55), letting 
x' E 'Yt be such that X(x') = (t, y(t)), we have 

p(x',oA):::; 4r. 

Let t1 be a point on the t-axis of 7r1 such that X bt) n 7r1 = ( t, y( t)). It follows easily 
from the triangle inequality that 

which proves the claim. 
Now let r0 = d0 + 2d1 where d0 and d1 are defined after (12.54). Then X(oA) 

is contained inside the solid cylinder C,.0 • By the above claim, the set x-1(C,.0 ) is 
compact. Set 

and r 2 > max{r0 , rl} such that 

r1 = sup {IX(z)l} 
zEX- 1 (Cr0 ) 

ro + r1 1r J3 
--+tan-<-. 

T2 6 2 

Then X(oD) is contained inside the sphere S2 (r2 ) of radius r2 and centred at the origin. 
By the claim and by the fact that limlzi--+O N(z) = N, there exists a subannulus A' CD* 
such that 

1. (12.52) holds for z E A', 

2. X(z) is outside C,.2 for z E A'. 

Let 1r be the plane containing X(z) and the axis of C,.0 for z E A'. Let 'Y be a connected 
component of x- 1 (1r) containing z. The X('Y) is a graph generated by y(t) in 1r. By 
the transversality of 1r and X(D*) and the fact X(oD) C C,.0 , X ("f) intersets C,.0 • Then 
y is defined at r 0 or -T0 . We may assume that y is defined at r 0 . Then 

ly(ro) I :::; I (ro, y(ro) I :::; r1. 

Let z E A' and X(z) = (r, y(r)), r > r0 . By (12.53) it follows that 

ly(r) I :::; IY(To) I + 11: y' (t)dtl :::; To + rl + r tan e. 

Then, if X(z) = (T,y(r)), we have 

--• = < +tan<-I X(z) Nl ly(r)l ro + r1 () J3 
IX(z)l Jr2 + y2(r) - T 2 ' 

z E A'. (12.56) 
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Set r3 > supzE(D*-A'){IX(z)l}. 
We now prove that X and S2 (r) are transverse for r ~ r 3 . If X and S2 (r) are not 

transverse, then there exists z E x-1 (S2 (r)) such that 

X(z) 
N(z) = IX(z)l. 

Since X(D*- A') lies inside S 2 (r), we have that z E A' and (12.52) and (12.56) give a 
contradiction. Thus X is transverse to S 2 (r) for all r ~ r 3 . We restrict X to A'. 

Then by the claim, the function h : A' --+ R defined by 

h(z) = IX(zW 

is proper. If z E A' is a critical point of h, then Dh(z) = (0, 0), which means that 
Xx(z) and Xy(z) are perpendicular to X(z), and so N(z) = X(z)/IX(z)l, contradicting 
to X and S2(r) are transverse. This contradiction proves that h does not have critical 
points. If r > r 3 , then h-1(r2 ) is a compact curve that does not intersect 8A1 • Hence 
h-1 (r2 ) is a finite collection of Jordan curves. If h-1 has more than one Jordan 
curve, then there is a compact domain r2 C A' such that is the union of Jordan 
curves of h-1 (r2 ). Then h has a maximum or minimum, hence a critical point, in the 
interior of 0, which has already been proved impossible. This shows that h-1(r2 ) is a 
single Jordan curve. Hence 

rr := X(D*) n S2 

is an immersion of S 1 and this proves item 2 in this theorem. 
We observe that (} of (12.56) goes to zero as r goes to In fact e depends on 

r0 , but we can let r0 --+ oo and set r > r6. the curve = 1 j r rr is contained 
in a strip of S 2 that converges to a great circle S as r goes to infinity. by (12.52), 
the angle between the tangent vector of rr and N goes to 1r /2 as r goes to infinity. 
Hence, rr makes at least one loop around the direction N and converges C 0 to S as 
r goes to infinity. 

Let a(¢), ¢ E R, be a parametrisation by arc length of the great circle S. Let f3r 
be a parametrisation of such that f3r ( ¢) lies in the great circle of S 2 that contains N 
and a(¢). We have that 

( /3' ) 2 ( /3' 
I /3: I • a' = 1 - I j]~ I 

2 

As j]~ is orthogonal to N(j]r), we have that j]~/IP:I@N goes to zero as r goes to infinity. 
Since ryr converges in the C 0 sense to a, it follows that 

Therefore ~yr converges in the C 1 sense to the great circleS, with multiplicity, and item 
3 is proved. 

54 



We now prove that if X is minimal, then '/r converges in the coo sense to 5. Let 
1r be the plane orthogonal to N and containing the origin. Let D be the annulus 
{p E 1r 11/2::::; IPI ::::; 2}. Set . 

Mr := (1/rX(D*)) n (D x R). 

The orthogonal projection of M,. onto D is a covering of D and locally we may write 
l'vfr as a graph of a function fr defined over an angular sector of D. It follows from 
the C 0 convergence of Mr and convergence properties for minimal surfaces (see, e.g. 
Corollary (16.7) in [21]) that all derivatives of fr of order less then j + 1, j an integer, 
are uniformly bounded by a constant Kj+l· Since fr converges in the C 0 sense to f = 0 
and the inclusion map of the space of C)+l functions into the space of CJ functions is 
absolutely continuous, it follows that fr converges in the CJ sense to f = 0. In particular, 
the intersection of Mr with 5 2 converges in the C) sense to 5 with multiplicity for all 
j. This completes the proof of the theorem. D 

Now let X: M = 5k - {p1 , · · · ,Pn} '---+ R 3 be a complete minimal surface of finite 
total curvature. Let E; = X : D; - {p;} be the end corresponding to p;. Let W[ = 
ljrX(D;- {p;}) n 5 2 (r) and fi = x-1(rW[). Jorge and Meeks' theorem says that fi 
is a Jordan curve in - {pi} for T large enough and W[ converges to a great circle of 
5 2 with multiplicity h We will define the multiplicity of E; to be I;. Clearly I; = 1 
if and only if E; is embedded. An application of Jorge-Meeks' theorem is that we can 
get a total curvature formula via the genus k, the number of punctures n, and the 
multiplicities I;. 
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13 Total Curvature of Branched Complete Minimal 
Surfaces 

Let X: MY R 3 be a complete minimal surface with finite total curvature. Osserman's 
theorem says that conformally M = Sk - {p1 , · · · ,pn}, n 2': 1, where Sk is a closed 
Riemann surface of genus k. Each Pi corresponds to an end Ei of M. Using Theorem 
12.1, we can prove: 

Theorem 13.1 The total curvature of X is 

K(M) = 21r ( x(M)- ~ (13.57) 

where x(M) = 2(1- k)- n is the Euler characteristic of M and Ii is the multiplicity 
of Ei. 

Proof. Let fi = x- 1(rW[) be as in the proof of Theorem 12.1. Let Pi E Di be the 
disk in Sk such that 8Di =fi. When r is large enough the are disjoint from each 
other. Then M,. := S,,- U?=1 8Di is a Riemann surface with boundary U?=1 8Di and 
x(Mr) = Now by the Gauss-Bonnet formula we have 

1 KdA + t .l K,9 ds = 21rx(M,.) = 21rx(M), 
Mr i=l r{ 

where K,9 is the geodesic curvature. Since = ~X(ri) converges in the c= sense to 
a great circle on 5 2 with multiplicity Ii and X is an isometric immersion, we have 

Taking limit we have 

n 

-L 
i=l 

D 

In the remainder of this section, our surfaces will be branched minimal surfaces. 
Note that the concepts of completeness, properness, etc., can be easily generalised to 
branched minimal surfaces. 

The Enneper-Weierstrass representation of a branched complete minimal surface of 
finite total curvature X: M -l- R 3 is given by 

X(p) = 2R -(1- g2), -(1 + g2), g TJ + C, 1p (1 i ) 
PO 2 2 

(13.59) 
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where g : M = S k - {p1 , · · · , Pn} -+ C U { oo} is a meromorphic function, 17 is a holo­
morphic 1-form on lvf and Cis a constant vector. Both g and 17 can be extended to Sk 
as a meromorphic function and 1-form respectively. Note that we have proved this for 
regular minimal surfaces. But since the proof only involves the neighbourhoods of the 
punctures p;, it works for branched minimal surfaces as well. 

Locally, 17 = f(z)dz where z = x + iy. The metric induced by X is given by 

(13.60) 

where 

(13.61) 

From (13.61) it is clear that q EM is a branch point only if 17 vanishes at q. Hence all 
branch points are isolated and if 17 is a meromorphic 1-form on Sk, there is only a finite 
number of branch points. 

Therefore, given g and 17 as above, vve can define a metric h with isolated degenerate 
points on M = Sk- {p1 , · · ·, by = A2o;j, where A is defined as in (13.61). We 
can study the intrinsic of the branched complete Riemannian manifold ( M, h) 
even though the mapping X in (13.59) may not be well defined. When X is well defined, 
it is a branched complete minimal surface. 

Let U; be a disk coordina.te neighbourhood of p; such that z(p;) = 0. Let J; be the 
order A at p;, i.e., J; is an integer such that in 

lim lzl 1; A(z) = C; > 0, 
z--+0 

for 1 ::::; i ::::; n. Since (M, is complete, J; ;::: 1. 
Suppose q;, 1 ::::; i ::::; m, are branch points 

neighbourhood of q; such that z(q;) = 0. Let 
of M. Let v; be a disk coordinate 

be the branch order of A, i.e., 

lim lzi-K; A(z) = C; > 0, in v;. 
z--+0 

There is a generalised version of (13.57) in [16] which allows X to have branch points. 

Theorem 1302 The total curvature of (M, h) is given by 

JM KdA = 2r. ( x(M)- ~(J;- 1) + ~ K;). (13.62) 

Proof. Let R > 0 be such that Dk := {!zl < R} C U;, 1 ::::; i :::; n and Dk := {lzl < 
R} C Vi-n, n + 1 :::; i :::; n + m. When R is small enough, DR. n Dk = 0 for i =I j. 

Let MR = M- U7!1m DR.. By the Gauss-Bonnet formula, we have 

n+m 

r KdA + L r . f>,g ds = 2r.x(MR) = 2r.(x(M)- m). 
jMR i=l JaDk 

(13.63) 
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If 9(Pi) =I= oo, then 'fJ = z-J; fi(z)dz where fi is a holomorphic function in ui and 
fi(O) =/= 0. Write z = reit. By Minding's formula, see [12], Volume I, pages 33-34, the 
geodesic curvature on aDk is given by 

A __ _!._ 8log A 
"'9 - R + av ' 

where v is the inward unit normal (in the Euclidean metric on Dk) of aDk. Now 
A= ~lzi-J;Ifil(1 + 1912), so 

and 

Since 

a log A 

av 
alogA Ji 8loglfil alog(1+l9l2) 

ar r ar ar 

in -12,. -12,. (Ji- 1 _a log lfil _ alog(1 + 191 2)) 
·"'9 ds- "'9 ARdt- R a a Rdt. 

8Diz o o r r 

and 8log(1 + l9l 2 )jar is bounded, we have 

lim r . K,gds = 27r(Ji- 1). 
R-to lank 

If 9(Pi) = oo then 9 = z-m;9i(z), mi > 0, and rt = z-J;+2m; fi(z)dz, where fi and 9i 
are holomorphic functions in Ui and fi(O) =/= 0, 9i(O) =/= 0. Then 

Since 

a log A 

av 
8logA Ji-2mi aloglfil alog(1+l9l2) 

ar r ar ar 

alog(1 + 1912) _ 1 ( 2 -2m;-ll 12 + -2m;al9il2) - - m-r 9· r --ar 1 + r-2mi l9il 2 • • ar ' 
we have 

_ [ 2,. alog(1 + 191 2) Rdt 
lo ar 

We have the same limit 
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Similarly, for the branch ponts qi, if g(qi) f- oo, then TJ = zKi fi(z)dz where fi is a 
holomorphic function defined in v; and fi(O) f- 0. Similar calculation gives 

in d --j21f(I<i+1 8loglf;l 8log(1+lgl 2)) . "'g s - R + 8 + 8 R dt. 
8Dk_+n 0 r r 

Hence 

If g(qi) = oo, then g(z) = 

us the same limit. 
(z) and TJ = z_l\";+2m; fi(z), similar calculation still gives 

Note that 
lim 
R-fO 

KdA KdA. 

Letting R-+ 0 in (13.63), we get (13.62). The proof is complete. D 

Remark 13.3 Suppose X : - {p1 , · · · ,pn} '---+ R 3 is a regular complete minimal 
surface, then hii = A 2oii is the pull back metric of X. Comparing the proofs of Theorem 
13.1 and Theorem 13.2, we see that J; 1 =I;, thus (13.62) is a generalization of (13.57). 

The calculation in the proof of Theorem 13.2 also works for boundary branch points. 
Let !vf be a compact domain of a Riemann surface with a C2 boundary f = 8M. 
Suppose that g and 17 are given meromorphic function and 1-form respectively, and his 
the Riemannian metric with isolated degenerate points defined by (13.60) and (13.61). 
Let qi E M (1 ~ i ~ be the interior branch points with branch order ]{i and si E M 
(1 ~ i ~ n) be the branch points with branch order Li. Then: 

Theorem 13A The total curvatuTe 

I<dA = 21r 
m 

_j_ ,~ 

'L.... 
i=l 

zs 

A sketch of the proof of is as follows: 

by 

(13.64) 

Define DR, as before and MR = M- U;~1m Dk. By the Gauss-Bonnet formula, 

where and are the exterior angles near the boundary branch points and 

Then (13.64) follows 

. i 1T 
hm a:R = -, 
R->0 2 

. 1T 
lim /31 = -. 
R_.,O 2 

in l<~k ( -l 8logA) · · 
lim . "'ds =lim . 1\-- - 8,- Rdt = lim(c:k_-5k_)(1+Li) = -?T(l+L;), 
R_.,o 8Dkn3MR R_.,o ek R r , R_.,o 

for the boundary branch points. 
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Remark 13.5 If X in (13.59) is well defined then X is a minimal surface and h is 
induced by X. In this case, (13.64) is the same as the formula in [12], Volume II, page 
128. 

Since if X: Sk- {p1 , · · · ,pn} '---+ R 3 is a complete minimal immersion, then Ji 2': 2 
and Ji = 2 if and only if the end Ei is embedded, we get a corollary. 

Corollary 13.6 The total curvature of a regular complete minimal surface of genus k 
with n ends satisfies 

K(M) ::::; 4n(1- k- n) = 2n(x(M)- n). 

Moreover, 
K(M) = 2n(x(M)- n) 

if and only if each end of M is embedded. 

The inequality (13.65) is a result of Osserman. 
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14 Examples of Complete Minimal Surfaces 

We have discussed complete minimal surfaces without a single example. This section 
is designed to give some examples and their Enneper-Weierstrass representations. But 
first let us sum up what we have known, in order to simplify the following discussion. 

Suppose now that X: Sk - {p1 , · · ·, Pr} Y R 3 is a complete minimal immersion of 
finite total curvature. Then by the Enneper-Weierstrass representation, X is given by 

If we want X to be embedded, then g and 77 should satisfy certain conditions. Here is 
an important necessary condition. 

Theorem 14.1 LetS be a minimal immersion in R 3 of finite total curvature, 
defined by X : M --+ R 3 , where M ~ Sk- {Pl, · · · , Pr}. Let g and the holomorphic 1-form 
77 be the Enneper- WeieTstmss data X. Then 77 i= 0 at a point p E M unless g has a 
pole at p, and if g has a pole at p E M oTder m, then 17 has a zem of ordeT 2m at p. 

Suppose that Ei is an embedded end to p;. If g has a pole of order 
k 2: 1 at Pi, then 77 has a zero order 2k - 2 at Pi· If g takes on a finite value at Pi, 
then 17 has a pole order 2 at p;. Furthermore, Pi is a branch point of g if and only if 
Ei is a end. 

Proof. From A2 = ilfl 2 (1 + fgf 2 ) 2 , we see that to make 0 < A < oo on M, the zeros 
and poles of g and 77 must be as stated in the theorem. 

1/i/e have already seen that an end is embedded if and only if A has order 2, thus g 
and 77 has to satisfy the conditions stated in this theorem. 

The last statement is Remark 11.13. D 

Now let us see some examples. The first one, the catenoid, is quite a classical one, 
it was discovered in 1741 by Euler, see [61], page 5. By the way, one can find a very 
interesting history of minimal surfaces in [61]. 

Example 14.2 (Catenoid) Let M = C- {0}, g(w) = w, 1J = :~. The Enneper­
Weierstrass representation of the catenoid is given by the three 1-forms: 

1 1 2 i 1 2 
w1 = 2-(1- w )dw, Lv2 = 2 w2 (1 + w )dw, 

1 1 

w3 = -aw. 
w 

The total curvature of the catenoid is -47T since g( w) = w has degree 1. It has genus 
zero and two ends. At 0 and oo we see that ¢1 and ¢2 have poles of order 2 and ¢3 

has a pole of order 1, so the two ends are embedded and they are catenoid ends since 
g(w) = w has no branch points. We can prove that the catenoid is embedded and is a 
rotation surface. 
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In fact, let X(w) = (x,y,z)(w) and X(1) = (-1,0,0). We have 

x(w) = -1 + ~~ rw (]_- 1) d( = ~~ (-_!_- w)' 
2 Jl ( 2 2 w 

so 

x(w) -iy(w) = -~ (~ +w). 

It is obvious that z(w) = log lwl only depends on lwl. Note that when w is real, 
y(w) = 0. Moreover, 

and so X sends lwl =constant to a circle centred at (O,O,z(w)). Hence the surface is 
contained in a rotation surface with height function z. Since lwl = exp(z(w)), we have 

1 
4( exp(2z( w)) + exp( -2z( w)) + 2) 

( exp ( z ( w)) + exp (- z ( w) ) ) 2 h 2 ( ( ) ) 
2 =cos z w . 

Since the two ends are embedded, when lwl is sufficiently large or small, X( {lwl 
constant}) must be the circle centred at (O,O,loglwl) with radius cosh(logjwj). Hence 
the catenoid coincides with the rotation surface defined by 

A little calculation shows that the rotation surface is minimal, and so by the extension 
theorem, the catenoid must be the same rotation surface. In particular, the catenoid is 
embedded. 
Exercise : 1. Prove that all rotation minimal surfaces are generated by functions as 
follows: 

(
7- z0 ) x(z) =a cosh ~ , 

where a > 0 and z0 are constants. Such a curve is called a catenary, the name "catenoid" 
comes from it. Of course we assume that the axis of rotation is parallel to the z-axis. 
All these rotation surfaces are homothetic to each other. 

2. Use the formulas (7.34) to study the asymptotic and curvature lines of the 
catenoid. 
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Example 14.3 (Helicoid) If we consider the conjugate surface of the catenoid, the 
forms will be 

i 1 ( ?) 1 1 2) . 1 
w 1 = -- 1- w~ dw, w2 = --2 w2 (1 +w dw, w3 = 2-dw. 

2w2 w 

Integrating them and taking real parts, we have a surface given by 

(x, y, z)(w) = ( -~ (~- w), -~ (~- w),- argw). 

The third coordinate is not well defined on C- {0}. If we pass to the universal covering 
exp : C ---+ C - {0}, then we will get a well defined minimal surface on C, called the 
helicoid. Moreover, being conjugate to the catenoid, the helicoid is locally isometric to 
the catenoid. 

Let us derive the Enneper-Weierstrass representation of the helicoid. Let w = e( for 
( E C- {0}, then dw = e'd(. Hence we have 

and 

w1 = 1(1- e2')e-(d( = ~(e-(- e')d( = -i sinh(()d(, 

1 
w2 = - 2(1 + e2')e-(d( =- cosh(()d(, 

W3 = i d(. 

The helicoid is a ruled surface and is embedded. In fact, let ( = u + iv, then 

(x, y, z)(() (~cosh((), -~sinh((), -8'() 

( ~~ (eueiv + e-ue-iv), -~~ (eueiv _ e-ue-iv), -v) 
( 1 . ( u u) 1 ( u u) ) 2s1nve -e- ,-2cosve -e- ,-v 

(sin v sinh ( u) , - cos v sinh ( u) , - v) . 

Thus for fixed v, X maps the straight line ( = u + i v one to one and onto the straight 
line generated by (sin v,- cos v, 0) on the plane z = -v. Since C consists of all these 
straight lines, the helicoid is embedded and is a ruled surface. 

If we change coordinates in C = R 2 by (t, s) = (sinh u, v), then we see that the 
helicoid is given by 

X ( t, s) = ( t sins, -t cos s, s) = t(sin s, -cos s, 0) - (0, 0, s) = tY ( s) + c( s). 

When t = 1, the curve (sins,- cos s, s) is a helix. 
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Since the Gauss map g(() = e( has an essential singularity at oo, the helicoid has 
infinite total curvature. 
Exercise : 1. Prove that a ruled minimal surface is a piece of the helicoid in the sense 
of homothety. 

2. Prove that there is only one straight line on the helicoid which is also an asymp­
totic line, and that line is not in the family discussed above. 

Example 14.4 (Enneper's Surface) Let M = C, g(z) = z, rJ = dz, then 

1 2 i 2 
w1 = 2(1- z )dz, Wz = 2 (1 + z )dz, w3 = zdz. 

Since deg g = 1, Enneper's surface has total curvature -4n. It has genus zero and one 
end. Since x(M) = 1 and there is only one end, by (13.62) we have 

so J1 = 4 and thus by Lemma 11.9 Enneper's surface is not embedded. 
In terms of total curvature, we have 

Theorem 14.5 The catenoid and Enneper's surface are the only complete minimal 
surfaces of total curvature -4n. 

Proof. Let X: M = Sk - {Pb · · ·, Pn} be a complete minimal surface of finite total 
curvature -4n. Let g be the Gauss map. Then deg g = 1 means g : Sk -+ 5 2 is a 
conformal diffeomorphism, thus k = 0. We have x(M) = 2- n. By Corollary 13.6 

-4n::::; 2n(x(M)- n) = 4n(1- n), 

so we haven= 1 or 2. 
When n = 2, by (13.62), -4n = 2n(x(M) + 2- J1- J2) = -2n(J1 + J2- 2). We 

know that Ji = 2 since Ji 2: 2, and hence the two ends are embedded. Since deg g = 1 
means that g' -1- 0 everywhere on M, we can assume that g -1- oo on M and take 
g(z) = z and M = C- {z0 }. Then g has a pole of order 1 at oo. The 1-form dz has 
a pole of order 2 at oo and no zeros in C. The ends being embedded requires that rJ 
should have neither pole nor zero at oo (g has a pole of order 1 at oo), and we have that 
rJ = h(z)j(z- z0 ) 2 dz, where his a holomorphic function which is bounded at oo. Since 
rJ should have a pole of order 2 at z0 , we know that his also bounded near z0 ; thus his 
a bounded entire holomorphic function and so h is a constant function, h = c -1- 0. Let 
C be a circle centred at z0 . Since X is well defined, 

forces zo = 0. 

64 



Thus we get the Enneper-Weierstrass representation of the catenoid after a homo­
thety, i.e., g(z) = z, rJ = cdzjz2 . 

When n = 1, we can take M = C and g(z) = z. By--471" = 21r(x(M) + 1- J) = 
21r(2- J) we have J = 4. Let rJ = fdz. Since (1 - z2 )dz and (1 + z2 )dz have a pole 
of order 4 at oo and z dz has a pole of order 3 at oo, f can have neither pole nor zero 
at oo. Being an entire holomorphic function, f must be a constant c = rei0 =f. 0. Thus 
we achieve the Enneper-Weierstrass representation of an associated Enneper's surface 
after a homothety. D 

Corollary 14.6 The only embedded complete minimal surface of total curvature -471" 
is the catenoid. 

Proof. Enneper's surface is not embedded. D 

If these notes were written eleven years ago, then the catenoid, the helicoid and the 
plane would comprise all the known examples of embedded complete minimal surfaces 
of finite topology. In 1982, Costa [7] gave a pair of Weierstrass data on a torus with 
three punctures. Examination by the criteria in Theorem 14.1 shows that the surface is 
complete, has three embedded ends and total curvature -1271". It is a good candidate for 
an example of a new embedded complete minimal surface with finite total curvature. 
The trouble is, how to prove that it is embedded. Using computer graphics, David 
Hoffman observed that the surface has a lot of symmetries and seems is embedded. 
Together with William Meeks III, he eventually proved that the surface is embedded. 
In their proof [30] the symmetries play an important role. 

Recently, more embedded complete minimal surfaces of finite topology type, with 
finite or infinite total curvature, have been discovered, see [80], [26], and [27] for example. 

There are also examples of embedded, periodic minimal surfaces, both old and new, 
such as the classical one-parameter family of Riemann's examples. For these examples 
and their properties, see [50], [51], [39], and [40]. 

Here we only mention an infinite family with finite total curvatures. Which are the 
earlest examples after Costa's example. They were found by Hoffman and Meeks. The 
proof of their embeddedness is not an easy business, so let us only list their Enneper­
Weierstrass representations. The reader is recommended to read the paper [31]. 

Example 14.7 (Hoffman-Meeks' Surfaces) First we introduce the special genus k 
Riemann surfaces, k any positive integer, given by 

Let 
Po= (0, 0), P-1 = ( -1, 0), P1 = (1, 0), Poe= (oo, oo). 

The surface we will consider is 
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The Gauss map and the one form TJ will be 

Ck 
g=-, 

w 
(z)k w 

TJ = - dz = --dz. 
w z2 -1 

Here ck is a positive constant to be determined. The determination of ck is involved in 
the procedure of "killing the periods", i.e., to make {6.22} true. 

Theorem 14.8 For k > 0, there is a unique ck > 0 such that the above Enneper­
Weierstrass data g and TJ give an embedded, complete minimal surface X: Mk c......t R 3 of 
three ends. It has the following properties: 

1. The total curvature of Mk is -41r(k + 2); 

2. Mk has two catenoid ends and one fiat end; 

3. Mk intersects the x 1x 2 -plane in k + 1 straight lines, which meet at equal angles at 
the origin; 

4. Removal of the k + 1 lines disconnects Mk. What remains is, topologically, the 
union of two open annuli; 

5. The intersection of Mk with any plane parallel {but not equal) to the x 1x 2 -plane 
is a single Jordan curve; 

6. The symmetry group of Mk is the dihedral group with 4(k + 1) elements generated 
by 

1 0 0 0 
Rk 

0 -1 0 and 0 

0 0 1 0 0 -1 

where Rk is the matrix of rotation by 1rj(k + 1) in the x 1x 2 -plane; 

7. Mk may be decomposed into 4(k + 1) congruent pieces, each a graph; 

8. Mk is the unique properly embedded minimal surface of genus k with three ends, 
finite total curvature, and a symmetry group containing 4(k+1) or more elements. 

M1 is the surface discovered by Costa, now is called the Costa-Hoffman-Meeks sur­
face. 
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Figure 3 

Catenoid, a rotation surface 
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Figure 4 Enneper's surface 
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Figure 5 
Costa-Hoffman.-Meeks Surface 
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Figure 6 Genus 2 Hoffman-Meeks Surface 
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Figure 7 

Helicoid, a ruled surface 
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Figure 8 
Hoffman-Karcher-Wei's Genus 1 Helicoid, or Helicoid with a hole 
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Figure 9 
A Riemann's example, it is fibered by circles and straight lines 
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Figure 10 ,\/Vei's doubly periodic surface 
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15 The Halfspace Theorem and The Maximum Prin­
ciple at Infinity 

By Jorge and Meeks' theorem, we know that if we stand at infinity to view a complete 
minimal surface of finite total curvature, it looks like several planes passing through 
origin, 

We will further discuss the image of such a surface. The basic theorem in this section 
is the Halfspace Theorem due to Hoffman and Meeks [32], its proof is surprisingly simple. 

Theorem 15.1 (Halfspace Theorem) A connected, proper, possibly branched, non­
planar complete minimal surface Af in R 3 is not contained in a halfspace. 

Proof. Suppose the theorem is false. 
Define Ht := { (x1, x2, x3) I X3 2:: t}, Pt = 8Ht, t E R. By a translation and rotation, 

we may assume that M c H 0 . LetT:= sup{t I M C Ht}· If p E MnPr, then Pr is the 
tangent plane TPM. By Corollary 4.5, M must be on both sides of Pr, contradicting 
the fact that M C Hr-€) any E > 0. Hence M n Pr = 0. By a translation, we may 
assume that T = 0. 

Let lv1< be the downward translation of M, then ME 11 P0 # (/J for any E > 0. Let 
c = cl be the half-catenoid {(xl, X2, x3) I xi+ X~ = cosh2(x3), X3 < 0}. By choosing 
E > 0 small enough, we may insure that ME n cl = 0 and ME n Dl = 0, where Dl is 
the unit-disk in P0 . Specifically, let cl > 0 be the distance from M to the disk of radius 
R = cosh(l) > 1. Outside the cylinder over DR, C1 lies below the plane P_1 . We will 
choose E < ~ min{l, d} small enough so that M, n C1 = 0 and MEn P0 # 0. 

Denote by Ct the homothetic shrinking of C1 by t, 0 < t :s; 1. Observing that 
Ct converges smoothly, away from 0, to P0 - {0} we may conclude from the previous 
paragraph that Ct n ME # 0 for t sufficiently small, that Ct n ME lies outside the cylinder 
over D 1 for all t, and that Ct n ME = 0 for t close to 1. 

Let 8 = {t I Ct n ME i= 0} and T = lubS. We claim that T E S, i.e., Cr n ME# 0, 
thus T < 1. 

If T is an isolated point of S, we are done. If not, we can find an increasing sequence 
tn ---+ T, with to > T /2, such that there exist points Pn E cl with tnPn E Ctn n ME. If 
Pn = (xn, Yn, Zn), we must have tnZn 2: -c: which implies Zn 2: -E/tn 2:: -2c:/T. This 
means that Pn lies on the bounded closed subset Xr := {(x1, x2, x3) E C1 I x3 2: -2e/T} 
and must therefore possess a convergent subsequence. If {Pj} is that subsequence and 
Pj ---+Po E C1, then tjpj E Ct1 n Me- Since Xr is compact and M is proper, {tjpj} 
must have a convergent subsequence in M,, still denoted by { tjpj }, and by continuity, 
Tpo E Cr n ME. This proves that Cr n ME i= 0. 

Since the boundary of Cr lies inside D 1 C P0 , and that disk is disjoint from ME, 
Tp0 must be an interior point of Cr. Moreover, the fact that T < 1 and Ct n ME = (/J 

for t > T means that Cr meets ME at Tp0 , but lies locally on one side of ME near 
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Tp0 . We conclude that Me and Cr are tangent to each other at Tp0 but stay on one 
side to each other near Tp0 . By Theorem 4.4 (which is also called maximum principle 
for minimal surface) we know that ME and Cr coincide near Tp0 . By Theorem 4.2, 
ME = Cr. A catenoid, however, is not contained in any halfspace. This gives the 
desired contradiction. D 

Corollary 15.2 Let X : M Y R 3 be an embedded, nonplanar, complete minimal 
surface of finite total curvature. Then M has at least two annular ends. 

Proof. By Theorem 11.5, X is proper. If M has only one end, then by Theorem 11.8, 
X ( M) is a graph outside a large ball and is a catenoid or flat end. Hence 
X(M) is contained in a halfspace, which forces X(M) to be a D 

Remark 15.3 Theorem 15.1 is a of maximum principle at infinity. In [45], a 
version of maximum principle at infinity is proved, which states that if two embedded 
minimal surfaces with boundary and finite total curvature do not 
they are a positive distance apart. In [50] a stronger maximum principle at infinity 
it is called the maxzmum at infinity) in flat three-manifolds is proved, 
which says: 

If two properly immersed minimal with boundaries in a three-
manifold are they stay a bounded distance 

The main tool in the proof of this weak maximum principle at is Theorem 
15.1. 

The classical maximum principle 4.6) is one the main tools in the 
of minimal surfaces is used in an essential manner in the proof Theorem 15J). 

of and in the use of barriers in the Pl.ateau 
that there 

are ~--'"~u;cnv versions maxin1um for surfaces ~with variable mean curvature. 
Hildebrandt [24], where some the of this 1s discussed. 

As an easy exercise we give a version of maximum at infinity. 

Proposition 15.4 Let 1\11 C H be a proper, minimal with 
where H is a Then the distance8 satisfy 

The proof is as an exercise. Note that we only need prove that 

d(M, 8H) 2: d(8M, 8H). 

Proof. Translating M we will get a point p E int(Mc) n 8H, and 

principle, we have a contradiction. 

the maximum 

D 
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Remark 15.5 Theorem 15.1 says that two proper, complete, connected minimal sur­
faces must intersect each other if one of them is a plane. We call Theorem 15.1 the 
Halfspace Theorem. In fact, there is a stronger version, called the Strong Halfspace 
Theorem. It says that the conclusion of Theorem 15.1 is true without the assumption 
that one of the surfaces is a plane. A sketch of its proof is as follows: If the Strong 
Halfspace Theorem is false, then M1 n M2 = 0. Let N be the flat three-manifold with 
M1 and M2 as boundary. The corollary of Theorem 8 in [52] says that there is a plane 
contained in N, thus we can apply the Halfspace Theorem. The proof of the existence of 
a plane in N involves the general Douglas-Plateau problem which is beyond our course. 

Theorem 15.1 is essentially a three-dimensional theorem. In Rn, n > 3, it is false. 
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16 The Convex Hull of a Minimal Surface 

Recall that the convex hull H(E) of a set E c Rn is defined as 

H(E) = n H 
ECH 

where H is a halfspace in Rn. Of course, if E is not contained in any halfspace, then 
H(E) = Rn = n0H. 

We want to study the convex hull of a minimal surface. 
Let M be conformally a bounded plane domain and X : M '--+ R 3 be a minimal 

surface such that X is continuous on M. If aM # 0, then a simple application of 
the maximum principle for harmonic functions shows that X(M) c H(X(aM)), where 
H(X(aM)) is the convex hull of X(aM). 
Exercise : Prove this fact. 

Now using the the Halfspace Theorem, we can prove more. 

Theorem 16.1 ([32]) Suppose that M c R 3 is a proper, complete, connected minimal 
surface in R 3 , whose boundary aM, which may be empty, is a compact set. Then exactly 
one of the following holds: 

1. H(M) = R 3 ; 

2. H (M) is a halfspace; 

3. H(M) is a closed slab between two parallel planes; 

4. H(M) is a plane; 

5. H(M) is a compact convex set. This case occurs precisely when M is compact. 

Furthermore, aM has nonempty intersection with each boundary component of H(M). 

Remark 16.2 We note that all of these cases are possible. For 1 and 2; examples are 
the catenoid and half-catenoid. For 3 we could take any of the examples in theorem 
14.8-and consider the portion of these surfaces in the slab lx31 ~ 1. This surface is 
bounded by two Jordan curves. For 4 we have a plane and 5 is the case for any compact 
example. 

Proof of Theorem 16.1. Suppose now that cases 1, 4 and 5 do not occur. To prove 
that case 2 or case 3 must occur we need show that if H1 and H2 are distinct smallest 
halfspaces containing M, then g = aH1 and P2 = aH2 are parallel planes. Suppose 
now that P1 and P2 are not parallel planes. We shall derive a contradiction. 

The interior of M cannot have a point in common with P1 U P2 . (If it did then the 
maximum principle for minimal surface (see Theorem 4.4 and Remark 4.6) implies it 
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would have to lie entirely on one plane or the other, contradicting the assumption that 
4 does not hold. Let C =HI n H2. 

After a rotation, if necessary, we may assume that C lies in the halfspace x 3 :2: 0, 
that the boundary of Cis a graph over the xix2-plane and that P1 n P2 is the x 1-axis. 
After (if necessary) a translation of M, parallel to the xi-axis, oM lies in the halfspace 
XI :S -1. (This translation leaves C invariant.) In particular 0 ~ M, and since M is 
closed (recall that properness implies that Jl!I is closed in R 3 ), there exists an s > 0 such 

that MnBs = 0, where Bs = {(xi,X2,x3) I (xi -s) 2 +x§+x~ :S s2}. Let rs = [)Bsnac. 
Since rs has a 1-1 projection onto a convex plane curve (recall that ac is a graph over 
the xi:rTplane), Theorem 4.1 it is the boundary of a compact minimal surface ,6.s 

that is the graph over a convex set in the xix2-plane. By the convex hull property 
mentioned in the beginning of this section, ,6.8 C B" so ,6.s is a positive distance from 
M. Note that Bs C {xi :2: 0} and ,6. 8 C C n {xi :2: 0}. 

For t E oo) consider the surfaces 

We note: that each At is a nonnegative graph inside of C n {(xi, x2 , x3) I x1 :2: 0}; 
that each At is compact; that as t----+ oo, At converges to {(xi,x2,x3) E Clxi = 0}; 
and that every point in ( C n { , x2 , x3 ) I x 1 > 0}) - Bs lies on some Because 
A = AI is disjoint from it follows from an application of the maximum principle 
that none of the surfaces can meet M (remember that oM is a distance at least 
1 from any At, so any contact must occur at an interior point). However 

(Bs u u~l At)~ c n { 'X2, I Xl > 0}. Hence M c .fh ={(xi, X2, :7:3) I XI :S 0}. 
A similar argument will show that for some large positive integer k, ]1;1 C H4 = 

{(x1 ,x2, lx1 :2: -k}. Repeating the entire procedure with HI and .fh replacing 
H 1 and H 2 will prove that M may also be bounded in the x3-direction and lie in 
some halfspace H 5 = { , x2 , f x:3 :S N} for N sufficiently large. Therefore M C 

H 1 n H2 n H 3 n H 4 n which is a compact, convex set. This contradicts the assumption 
that 5 does not hold. This contradiction completes the of the main part of the 
theorem. 

The fact that EJM intersets each boundary component of H(M) follows from Propo-
sition 15.4. This completes the proof. D 

Exercise : Prove that oM intersets each boundary component of H(M). 

Remark 16.3 All results in this section are true for minimal surfaces with branch 
points. 

Theorem 16.1 is true for minimal submanifolds in Rn, just replace planes by hyper­
planes in the theorem. 

Remark 16.4 If X : i\1! '----+ R 3 is a complete minimal surface of finite total curvature, 
then we know that X is proper. Then by the Halfspace Theorem, Theorern 15.1, X(M) 
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is not contained in any halfspace, and thus H(X(M)) = R 3. This is a case where we 
know that H(X(M)) = R 3 • Here properness is necessary, as Rosenberg and Toubiana 
[73] have constructed complete minimal annuli which are contained in a slab. 

Another example where H(X(M)) = R 3 is a theorem of F. Xavier [85], which says 
that if X : M '--+ R 3 is a complete minimal surface with bounded Gauss curvature (i.e, 
there is an a> 0 such that K(p) > -a for any p EM), then H(X(M)) = R 3 . 
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17 Flux 

A simple but very useful consequence of minimal surfaces being conformal harmonic 
immersions is the flux formula. Let M be a compact domain on a Riemann surface. 
According to Stoke's Theorem, for any C2 function f : M-+ R", 

f 0.1\11 fdA= { dj(fi)ds, 
}M laM 

(17.66) 

where dA is the element of area on D.M is the Laplacian on M, ds is the line 
element on 8M, r1 is the outward unit normal vector toM along 8A1, and df(n) is the 
directional derivative off in the direction fi. Applying (17.66) to an isometric immersion 
X : M '---+ R 3 , we have that is the image in R 3 of the outward conormal (i.e., 
dX(i'i) is tangent to X(M) but normal to ); writing n* = dX(n) we have 

n* ds. 

If X is minimal and M is equipped with the metric induced X, then 

n* ds = 0. (17.67) 

In particular, if if is any fixed vector in R 3 

*ifds = 0. (17.68) 

The integral in (17.68) can be thought of as the tangential part of the flux through 
X ( 8M) of the flow in R 3 with constant velocity vector if. While (17.67) and (17.68) 
are quite simple were known m the 19th century, they and their 
modifications have only use in the of rninimal and 
constant mean curvature surfaces [43], [44]. 

As a sample application of the flux formula, we consider the catenoid. It was Euler 
who discovered the the first nonplanar example of a minimal surface. He did 
this finding the surface of revolution that was a critical point for the area functional. 
Consider a surface of revolution about the z-axis with curve (r(t), t) in the xz­
plane. Let 8 be the compact portion of the surface that is between z = t 1 and z = 

S is bounded two circles of radii r(tr) and r(t2 ), resp"ctively. The conormal of S at 
the level set z = t is 

1 
1 (r1(t)cose, 

vl+rt(t)2 
sine, 1 ). 

Then computing the flux in the z-direction (if= (0, 0, 1)), we get (17.68) 
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or 
21rr( t1) 

J1 + r'(t1)2 

But t 1 and t2 are arbitrary, so 
r(t) = C 

J1 + r'(t)2 ' 

where C > 0 is a constant. 
The ordinary differential equation (17.69) is satisfied by the functions 

r(t) = C cosh(C-1t +B), 

(17.69) 

(17.70) 

where B is a constant. These are all possible solutions to (17.69). These curves 17.70 
are catenaries, thus, nonplanar minimal surfaces of revolution are all catenoids. The 
definition of flux and this application are adapted from [33]. 

Now let us go back to the general theory of flux. Let X : MY R 3 be a minimal 
surface, r c M a loop. Under the metric induced by X, we define the flux of X along 
r as 

Flux(r) = k dX(n)ds, (17.71) 

where n is the unit vector orthogonal to the unit vector s tangent to r and ( n, S) gives 
the orientation of M. The flux is well defined on the homology class of [r]. In fact, if 
"f E [r] then "f U r bounds a domain 0 and we have 

0 = fn 6MX dA = k dX(n)ds- ~ dX(ri)ds. 

Remember that 

where the w;'s are holomorphic 1-forms. We define the (maybe multiple-valued) har­
monic function 

Y(z) = 8' t (w1, w2, w3). lzo 
Then dX(n) = dY(S) by the Cauchy-Riemann equations. Hence we have 

where l is the arc-length of r. Since r is a loop, we know that 

~ J (w1, w2, w3) = 0, 

hence 
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Recall that a holomorphic 1-form ¢ is exact if and only if for any loop r c 
fr ¢ ds = 0; if and only if¢ = df, vvhere f is a holomorphic function on M. By the 
Enneper-I;Veierstrass representation 

1 2 
w1 = -(1- g )1], 

2 

we get the following proposition. 

Proposition 17 .. 1 ( [71]) The 

1. PoT each rc the 

2. The 

3. The 

4- The immersion X1r;2 is 

,. ( 
w2 = 2 1 + 

are 

on lvi. 

A .. ssume that X : M ~ R 3 is a complete minimal surafce of finite total curvature. 
Let D- C Jvf be a disk to an end. We want to calculate 
the flux of)( along aD. Let g and 17 be the 'V\/eierstrass data for X. We have 

0 
r . 
/ w1 + z2~t 

J8D 

g2 17 = 2ni res(p, 17) - 2ni res(p, 

-2ni[res(p, 17) + res(p, l17)], (17.73) 

where res(p, w) is the residue of w at p. Hence we have 

z z 
res(p,w2 ) = 2res(p,17) + 2res(p,g217) = -'Sres(p,17). 

Since SR fen w3 = 0, c := res(p, g17) is real. Thus 

Flux(8D) -i hni (w1, Wz, w3) 

2n(SR(res(p, TJ)), -'S(res(p, 17)), res(p, grJ)). (17.74) 

If we write R 3 = C x R, then X= (X 1 , X 2 , X 3 ) = (X 1 +iX2 , X 3), and the flux around 
aD then is 

Flux( aD) = 2n(res(p, 17), res(p, 917)). (17.75) 
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Recall that for any meromorphic 1-form w on a closed Reimann surface Sk, the sum­
mation of residues of w is zero, i.e., for all poles p E Sk of w, 

:L>es(p,w) = 0. 
p 

Let M = Sk- {PI,··· ,pn}, and PiE Di. Since 'f7 and gry can only have poles at an end, 
we have 

n n 

L Flux(8Di) = :L(res(pi, 17), res(pi, 917)) = 0. (17.76) 
i=I i=I 

This is consistent with 17.67 which comes from Stokes' theorem. 
When an end is embedded, there is a nicer formula for the flux, i.e., the flux is a 

vector in the direction of the limiting normal at that end. Let us derive the formula. 
After a rotation in R 3 if necessary, we may assume that g(p) = 0. Let ( be a 

coordinate on D such that ((p) = 0. Then g(() = (k¢((), where k 2:: 1, ¢is holomorphic 
on D and ¢(0) i- 0. Then z = (¢lfk(() is a coordinate on a (maybe smaller) disk 
D' c D. Since 3D' is homologous to 8D, Flux(8D1) = Flux(8D). We may assume 
that D' =D. Then g(z) = zk on D. By Lemma the 1-form r; = f(z)dz has a pole 
of order at least 2 at p, so 

f(z) = _2-_h(z), zm 

m 2:: 2 and h is holomorphic and i- 0. The 
given by 

WI=} (z-m- z2k-m) h(z)dz, uJ2 = ~ (z-m + z2k-m) 

As before, since X is well defined, we have 

If 2k 2 m, then 

hence 
r wl = 

laD 
In particular, if the end is embedded, then m = 2. When k = 1, 

Since 

f Wg = 2rri h(O). 
laD 

~ r w3 = o, 
laD 
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h(O) f. 0 is real. Hence we have 

Flux( 3D)= (0, 0, 21rh(O)) = -21rh(O)(O, 0, -1). (17.78) 

When k > 1, we have 

thus 
Flux( 3D)= (0, 0, 0). (17. 79) 

Recall that these two cases corresponding to that the end is catenoid type or fiat 
type. We have the following lemma. 

Lemma 17.2 Let X : Sk - {p1, · · ·, Pn} '-+ R 3 be a complete minimal surface of finite 
total curvature. Let Ei :=X : Di- {Pi} be an embedded end and Ni be the limiting unit 
normal at Pi. Then there is an <Xi E R such that 

Furthermore, ai f. 0 if and only if Ei is a catenoid type end. 

Proof. Let A : R 3 --+ R 3 be the rotation such that ANi = ( 0, 0, -1). Then 

AX = ~ j (w1, w2, w3) 

(17.80) 

gives the rotated surface which has limiting normal (0, 0, -1) at Pi· When Ei is a 
catenoid type end, by (17.78), 

{ dX(n)ds = A-1 { d(AX)(n)ds 
laDi laD; 

A-1 { -i(w1, w2 , w3 )ds = -27rh(O)A-1(0, 0, -1) 
laD; 

-21rh(O)Ni = aiNi. 

When Ei is a fiat end, the proof is similar with ai = 0. D 

Remark 17.3 Comparing the ai here and the a (the coefficient of the logarithmic term 
of u) in Theorem 11.8 and its proof, we see that ai = 21ra. 

Theorem 17.4 Let X : Sk - {p1, · · ·, Pn} '-+ R 3 be a complete minimal surface of 
finite total curvature. Suppose that all ends of M are embedded. Let Pi, 1 ::=; i ::=; k ::=; n, 
correspond to catenoid type ends and Ni be the corresponding limiting normals. Then 
{ Ni h:Si:Sk are linearly dependent. 
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Proof. Let Di be pairwise disjoint open disks in Sk such that Pi E Di, 1 :::; i :::; n. Then 
M' := M - Uf Di = Sk - Uf Di is compact. Let iii be the inward unit normal along 
8Di in Di. We have 

0 = { .6.xXdA = { dX(ii)ds = t { dX(ii:;)ds 
1M' laM' i=l laD; 

n k 

- l:::Fiux(BDi) =- L:o:iNi. 
i=l i=l 

Since o:i =/= 0, { Nih:S:i:S:k are linearly dependent. 0 

Corollary 17.5 Let X : Sk- {p1, · · · ,pn} Y R 3 be a complete minimal surface of 
finite total curvature. Suppose that all ends of M are embedded. Then M has either no 
catenoid type ends, or has at least two catenoid ends. 

Furthermore, if X is an embedding, or has parallel embedded ends, then M has at 
least two catenoid type ends. 

Proof. Straight forward. The last claim is a corollary of the Halfspace Theorem, The­
orem 15.1. 0 
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18 Uniqueness of the Catenoid 

Let X : M = Sk- {p1 , · · · ,Pn} '---+ R 3 be a complete minimal surface, where Sk is a 
closed Riemann surface of genus k. We say that X has genus k. 

The catenoid has genus zero by this definition. We have already proved that the 
catenoid is the only embedded complete minimal surface of total curvature -41f and 
is the only minimal surface which is a rotation surface. Schoen [7 4] proved that the 
catenoid is the only complete minimal surf~ce with exactly two annular ends and finite 
total curvature. Thus the catenoid has many special features which describe it uniquely. 

In 1989, Lopez and Ros proved the following remarkable theorem [49]. 

Theo:rem 18.1 The catenoid is the only embedded genus zero non-planar minimal sur­
finite total curvature. 

The proof of Theorem 18.1 is a combination of the flux formula and the maximum 
principle at infinity. We will give a proof here adapted from [71]. 

Another key ingredient in the proof of Theorem 18.1 is deformation. Suppose that 
X: M = Sk- {p1 , · · ·, '-+ R 3 is a minimal surface. If for any loop r c M, Flux(r) 
is a vertical vector, i.e., parallel to (0, 0, 1), then we say that X has vertical flux. By 
Proposition 17.1, we see that X has vertical flux if and only if for any loop r, 

(18.81) 

where g and 17 are the Weierstrass data for X. 
Let A E (0, oo) and 1]).. = A-11], g).. = Ag. Consider the corresponding Enneper­

Vveierstrass representation, 

If X has vertical flux, then we have a family of well defined minimal surfaces, deforma­
tions of the original surface, given by 

(18.82) 

Note that the third coordinate function of X).. does not depend on A. 
A point p EM such that g(p) = 0 or oo is called a vertical point of X. Since g)..= Ag, 

if p is a vertical point of X then p is also a vertical point of X).., and vice versa. VVe 
first investigate the behaviour of X).. when p is a vertical point. 

Lemma 18.2 Suppose that X has vertical fiux and is non-planar. If p is a vertical 
point, then X).. is not an embedding when A is sufficiently large or sufficiently small. 
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Proof. First we assume that g(p) = oo. Let p E D be a coordinate disk in M and 
· z(p) = 0. Without loss of generality, we may assume that g(z) = z-k on D and k > 0. 

By Theorem 14.1, TJ should have a zero of order 2k at p, so we can write TJ = z2kh(z)dz, 
where h is holomorphic on D and h(O) # 0. Make a change of coordinate on D by 
( = A-1/kz, then 

Under these new coordinates, 

w~ = ~Al+1/k((2k _ 1)h(A1fk()d(, w; = 1Al+1/k((2k + 1)h(A1/k()d(, 

w; = Al+1/k(kh(A1fk()d(. 

Now we dilate x>. by a homothety of ratio A-(1+1/k), X>.= A-(1+1/k)XA_ When A--+ 0, 

X>. converges uniformly on compact subsets of C to the minimal surface X 0 : C '---+ R 3 

(note that for fixed z # 0, lim.x--+o A-1/kz = oo and for fixed(, lim.x--+o A1fk( = 0). X 0 is 
determined by the Weierstrass data for X 0 , 

r-k 
go='> ' 

Such data gives a complete non-embedded minimal surface. In fact, by Theorem 11.1, 
TJo should have a pole of order 2 to make X 0 an embedding at ( = oo, but our TJo has a 
pole of order 2k + 2 > 2 at ( = oo. 

Since x>. converges to X 0 uniformly on compact subset when A --+ 0, for A small 
enough, X>., thus X>., is not an embedding. 

When g(p) = 0, the proof is similar and when A is large enough, x>. is not an 
embedding. D 

Exercise : Give a rigorous proof that x>. is not embedded when g(p) = 0 and A is 
large. 

Note that if X has vertical flux and XID-{p} : D- {p} '---+ R 3 is an annular end , 
then X>.ID-{p}: D- {p} '---+ R 3 is also an annular end. 

Next we will study the behaviour of X>. at an embedded end of vertical limiting 
normal. 

Lemma 18.3 Suppose that X : M '---+ R 3 is non-planar and has vertical flux. If 
E = XID-{p} : D- {p} '---+ R 3 is an embedded fiat annular end with vertical limiting 

normal, then E>. = X>.ID-{p} : D- {p} '---+ R 3 is not embedded for A large or small 
enough. 

Proof. Let p E D be a coordinate neighbourhood with z(p) = 0. As before, we first 
assume that g(p) = oo and so g(z) = z-k, k > 1 since Eisa flat end. By Theorem 
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14.1, 7] has a zero of order 2k- 2, so 7] = z2k-2 h(z)dz. Again we make the change of 
coordinate ( = A - 1/k z and 

Arguing as before, we dilate x-\ by a homothety of ratio A-(1- 1/kl, X.\= A-(1- 1/k)X-\. 

When A -+ 0, X.\ converges uniformly on compact subsets of C- {0} to the minimal 
surface X 0 : C- {0} Y R 3. X 0 is determined by the Weierstrass data for X 0 , 

;--k 
go=" ' 

Thus by Theorem 14.1, this complete minimal surface has an embedded end at ( = 0 
and a non-embedded end at ( = oo, since at oo 7]o has a pole of 2k > 2. Hence when A 
small enough, X\ is not embedded. 

When g(p) = 0, similar argument gives that when/\ large enough, 
de d. 

is not embed­
D 

Lemma ]_8.4 Suppose that X: M = S~c- {p1 , · · · ,Pn} Y R 3 is embedded and all ends 
have vertical normal. If X has vertical flu.T, then X\ is an embedding for all A > 0. 

Proofo First note that since X is embedded, at each puncture Pi, 

where c/Jidz = wi. Thus for any deformation X\ we have 

12 rv 1 
I = lzl4. 

This then tells us that each end of X.\ is embedded. By the weak maximum principle at 
infinity (see Remark 15.3), the distance between any two ends of X is positive. Since the 
third coordinate of is independent of A, any two ends of are disjoint. 
Thus outside of a compact set C'.\ c M, X\ is embedded. 

Now let B := {A E (0, oo) I is embedded}. V·.fe want to prove that B is both open 
and closed; then by the connectedness of (0, oo) and 1 E B, we know that B = (0, oo). 

Suppose Ao E B. Since uniformly converges to X\o on sets vvhen 
A -+ Ao, and each X\ is embedded outside of a compact set, it follows for A near Ao 
that X ,x is embedded. 

Now suppose that {An} C B and ---+ ), when n ---+ oo. If is not embedded, 
then there are x and y E M such that x =f. y and (x) = X;:,(y). Let D 1 and 
be disjoint closed disk type neighbourhoods of x and y respectively, such that X,xlni 
is embedded. Since X\n converges uniformly on Di and X.\n(D1) n X.\n(D2 ) = 0, 
by shrinking D; if necessary, X.\n(D;) are disjoint graphs on the same plane domain, 
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and limn-+oo X An (X) = limn-+oo X An (y) _ By the maximum principle (Theorem 4A and 
Remark 4.6), X>.(Dl) = (D2 ). This shows that the image XA(M) is an embedded 
minimal surface of finite total curvature and XA: M--+ XA(M) is a finite sheet covering. 
But outside a compact set, XA is one to one, so this covering is single sheeted, that is 
X A must be embedded. This proves that B is also closed, hence also proves this lemma. 
D 

Now we can prove Theorem 18.1. 

Proof of Theorem 18.1. Without loss of generality, we may assume that all ends of 
X have vertical limiting normals. Let C S0 = C U { oo} be disjoint open disks such 
that Pi E Di- Then are generators of H1 (M). By (17.80), X has vertical on 
each 8Di, hence has vertical flux on any loop, i.e., X has vertical flux. 

Since X is Lemma 18.4 x>· is embedded for any )\ E (0, oo). By 
Lemma 18.2 and Lemma g -I 0 or oo on M and X does not have flat ends. We 
claim that X has exactly two catenoid ends. 

In since g -I 0 or oo on ne·ver vanishes on M where X = (X1 , X2 , 

Suppose X has more than two catenoid ends. Let Pt := y, z) E R 3 1 z = t}; there is 
anN> 0 such that if t < -Nor t > JV then X(M) n has at least two components. 

Morse ( -oo,-N) or X3 1(JV, oo) has at least two components since X 3 

on M. Again Morse theory, M = X3 1 (R) has at least two 
the fact that M is connected. 

X must have at least two catenoid so X has 
two catenoid ends. 

Now the total curvature formula , X has total curvature -4n. By Corol­
D X must be a catenoid. The proof is complete. 
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19 The Gauss Map of Complete Minimal Surfaces 

Let X : M Y R 3 be a complete minimal surface. Let g and rJ be the Weierstrass data 
for X. The question in this section is how many points does the set C U { oo} - g ( M) 
have? We will only prove a relatively easy theorem due to Osserman, which will be 
useful when we discuss the behavior of minimal annuli. At the end of this section we 
will give an up to date survey of partial results for this problem. 

To prove the theorem of Osserman mentioned above we have to introduce the concept 
of capacity. Since we only need describe when a set has capacity zero, we will only define 
zero capacity sets. 

Definition 19.1 Let D C C be a closed set. Then D has capacity zero if and only if 
the function log(l + lzl 2 ) has no harmonic majorant inC- D, i.e, there is no harmonic 
function h : C - D ---? R such that 

log(l + lzl 2 ) ::::; h(z), z E C-D. 

Note that any finite set in C has capacity zero. 

Theorem 19.2 Let X : Mr(:= {1 ::::; lzl < r ::::; oo}) Y R 3 be a complete minimal 
surface. Then e-ither the Gauss map g tends to a single limit as !z! --7 r, or else in each 
neighbourhood of {lzl = g takes on all C U { oo} for at most a set 
capacity zero. 

P:roof. Let rJ = f(z)dz. Suppose now that in some neighbourhood of { g omits 
a set Z of positive capacity. This means that for some 1 :::; r 1 < r, the function tu = 
omits Z in the domain D' := {r1 < lzl < Hence there exists a harmonic function 
h(w) defined in C-Z ::::> g(D') such that log(l+lwl 2)::::; h(w). Since the induced metric 

X on Mr is = ilfl 2 (1 +-lgl 2 ) 2 , we have 

logA(z) S log~J + h(g(z)). 

Since g and f are holomorphic, the right hand side of the above is harmonic. 
By Lemma 10.5 and Proposition 10.6, r = oo. But then g could not have an essential 
singularity at infinity by Picard's theorem. Thus g tends to a limit, finite or infinite, as 
z tends to in:finity. D 

Remark 19.3 Once we know that r = oo and g has a limit at we kno'N that 
X has finite total curvature. The argument is as follows: 

By a rotation if necessary we may assume that g has a pole at oo. Then 
where h( oo) #- 0 and n > 0. Since 

4lg'l 2 -2n 
(1 + lgl 2 ) 2 = O(lzl ) at oo, 
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r r 4lg'i 2 

J~ KdA =- J~ (1 I l 2 ) 2 dxdy > -oo. 
Mcxo Mcxo + g 

Since the Gauss curvature is invariant under rotation, X has finite total curvature. 

Combined with Corollary 10.9 we have 

Corollary 19.4 The Gauss map of a complete minimal surface of finite topology achieves 
every point in C except a set of zero capacity. 

In 1981, F. Xavier [84] proved that the Gauss map of a complete minimal surface 
cannot miss more than 6 points of C U { oo}. 

In 1988, Fujimoto [20] proved that the Gauss map of a complete minimal surface 
cannot miss more than 4 points of C U { oo}. 

In 1990, Mo and Osserman [58] proved that the Gauss map of a complete minimal 
surface of infinite total curvature achieves any point of C U { oo}, except at most 4, 
infinitely many times. 

Scherk's first surface is an embedded complete doubly periodic minimal surface. One 
block of it is given by the Weierstrass data 

g(z) = z, 
1 f ( z) = -;------,--,,--------:-:---:--:------:-

(1 + z)(1- z)(z + i)(z- i) 

on C - { ±1, ±i}. This block has four vertical straight lines as boundary. Rotating 
180° around one of those straight lines we get a basic block S of Scherk's first surface. 
The whole surface is the parallel translations of S in two perpendicular directions. The 
Gauss map of Scherk's first surface misses 4 points, ±1, ±i, and takes any other points 
infinitely many times. 

This example shows that Fujimoto's, and Mo and Osserman's results are the best 
possible results. 

All known examples of surfaces whose Gauss map misses 4 points are surfaces of 
infinite total curvature. This is no surprise, since in 1964, Osserman [67] proved that if 
the surface has finite total curvature, then g can miss at most 3 points. 

The catenoid has finite total curvature -471" and its Gauss map misses 2 points, 0 
and oo, say. Hence either 2 or 3 is the maximal number of points that may be omitted 
by the Gauss map of a complete minimal surface of finite total curvature. But there is 
no known example of a complete minimal surface of finite total curvature whose Gauss 
map misses 3 points in C U { oo}. 

In 1987, Weitsman and Xavier [81] proved that if g misses 3 points, then the total 
curvature is less than or equal to -167r. 

In 1993, Fang [15] proved that the total curvature must be less than or equal to 
-2071". 

So far the problem of whether 2 or 3 is the maximal number of points that may be 
omitted by the Gauss map of a complete minimal surface of finite total curvature is still 
open. 
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20 The Second Variation and Stability 

We now introduce the concept of stability of minimal surfaces which will play an im­
portant role in the proof of several theorems in the remainder of these notes. 

Let Sl be a precompact domain in a Riemann surface X : Sl --+ R 3 a minimal 
surface. From the calculus of variations definition of a minimal surface, we know that 
X is a minimal surface if and only if the area A of X is a stationary point of the area 
functional A(t) for any variation X(t). Note that being stationary does not mean that 
X has minimum area among all surfaces with the same boundary. 

To study when X has locally minimum area, naturally we study the second variation, 
namely the second derivative A" ( 0) of the area functional for any variation family X ( t). 
From calculus we know that if A"(O) > 0 then A(O) is a local minimum. Note that 
the word local is significant, there are minimal surfaces such that A"(O) > 0 for any 
variation family, yet those surfaces do not have minimum area. Hence we define that 
X is stable if (0) > 0 for all possible variation families X(t), othervvise X is zmstable. 
Sometimes one says X is almost stable if A" (0) 2: 0. 

It is important to express the formula for the second variation of X via the geometric 
quantities of X. Let (u1 , u2 ) be the local coordinates of fl. We use the fact that X is 
conformal harmonic, and write A2 = IX1I 2 = IX2I 2 , 6. = Dn + D22· 

From (3.4), 
dA(t) 1 -- = -2 H(t)(E(t)ii!N(t)) dAt, 

dt [! 

where E(t) = oX(t)jot, H(t) is the mean curvature of X(t), and 
map of X(t). Let E = aX1 + (3_ .. '{2 + 1N. Since H(O) = 0 we have 

d2 A(t) I = -2 [ dH(t) I r E®N) dAo, 
t=O Jn di t=O \ 

is the Gauss 

where we write E = E(O), etc. Now suppose that each X(t) is a and the 
first and second fundamental forms are given on an isothermal coordinate chart U 

Then 

hence 
dH(t) I = ~ "\"' dgij(t) I h + ~"' ijdh;j(t) I 

dt t=O 2 L._. dt t=O "1 2 L._. g dt t=C' 
1-,J 'l,J 

where we write gij (0) = gij, etc. From 

Llj(t)gjk(t) = 6;k, gij = A- 26;j, 
j 
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we see that 

dgij(t) I =-A -4d%(t) I =-A -4(E('I;X + EeX). 
dt t==O dt t==O ' J J ' 

Using hn = -h22 and Xn G~X1 = ~Ai, Xn ODX2 =-~A~, etc., we have 

One calculates that 

~ L ij dhij(t) I 
2 .. g dt t==O 

'1 

since LX= 0. Using Lc.Xi = 0 and ®N = 0, we have 

Hence 
dH ( t) I = "A -4 ~ 

dt t==O - y L.~ 
'] 

Since = -2 = -2A4 K, where K is the Gauss curvature. 
By (8.36), LN = thus 

dH(t)l 1 _2 2 1 
~ t==O = 2A (L'f- 2KA 'f)= 2 (Lx 'f- 2K'f). 

Since the above formula not depend on the local coordinates, we have the second 
variation formula for any variation vector field E = + + "(N, that is 

A"(O) = -1 'f(Lx'f- 2K'f)dA0 . 
:\1 

(20.83) 

We see from (20.83), as in the first variation, that the second variation does not 
depend on the tangential part of the variation field E. 

Let S1 be a domain, consider the Dirichlet eigenvalue problem for the second 
order elliptic operator L = L - 2K A2 , 

{ 
Lu + Au = 0, in 

u = 0, on 
(20.84) 

an 
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The classical theory of eigenvalues (see Appendix) says that there is a sequence 

An ---+ co as n ---+ co, such that (20.84) has solution if and only if A = An for some n 2': 1. 
Moreover, we can select smooth ¢n as the solution of (20.84) when A= An (¢n is called 
the eigenfunction corresponding to , such that { ¢n} is orthonormal in L2 (D) and 
spans W~'2 (D). Thus if ryE W~'2 (D) c L 2 (fl) it can be decomposed as 

and if 1 is also smooth, then 

00 00 

= L anL¢n = - L 
n=l n=l 

Vle have that 

(0) =-in 00 

n=l 

Hence if > 0, we will have for any variation vector field E = o:X1 + vv-ith 
smooth 1 E W01'2 (0), that A"(O) > 0, and hence locally X has minimum 

Of course, if L has a negative eigenvalue, say < 0, taking 1 = , we have 

and so X cannot have minimum area. 
Note that U.x = A - 2 6. is intrinsically defined on the surface X. Based on the 

discussion above, we have definition to that given in the beginning of this 
section: 

Definition 20.1 A minimal surface X : n '---> R 3 is stable on a precompact domain 
U c fl if the first eigenvalue of = U.x - 2K in U is positive. That if 

{ 
LX'u +AU = 0, m 

u = 0, on 

has a non-trivial solution, then )\ > 0. 

u 

au 

In general, if fl is not compact, v.re say that X is stable on n if it is 
precompact subdomain of :0. 
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For a minimal surface X : D '---+ R 3 , the Gauss map N -+ 5 2 is anti-conformal. 
We can consider N as a surface though it may have finite branch points. The first 
fundamental form induced by N is 

Hence the 5 2 Laplacian 6 5 induced by N on D is 

The sphere metric induced by N then is dS = - K dA0 on 0. Suppose K < 0 on 
then since N is anti-holomorphic, by the area formula, 

A"(O) = -1!(Dx!- 2K!)dAo. =- f #(N-1(x))J(6sl + 2!)(x)dS(x). 
n jN(D) 

Thus the corresponding operator Ls on N(D) is 

Ls = -K-1Lx = 6s + 2. 

If N: U c D-+ 5 2 is one to one, then clearly A"(O) > 0 if and only if all eigenvalues 
of 6 5 on N(D) are larger than 2. And the eigenvalue problem becomes 

{ 
Dsu + (2 + A.)u = 0, in 

u = 0, on 

N(U) 

oN(U) 

It is well known that if the area of N(U) is less than 2n, then the first eigenvalue 
6 5 is larger than 2, thus have proved: 

Theorem 20"2 Let X : 0 '-/ R 3 be a minimal surface and U C D be such that 
N: U-+ 5 2 is one to one and the area of N(U) is less than 2n. Then X : U '---+ R 3 zs 
stable. 

Since N is locally one to one except at points p such that K (p) = 0, we see that 
at any point p E D such that #- 0, there is a neighbourhood U 3 p, such that 
X : U '---+ R 3 is stable. 

Note that if N is one to one, then 

Area(N(U)) =- fu 
so if N is one to one on U and the area of N ( U) is less than 2n, then - J u K dA < 2n. 
Barbosa and do Carmo [2] proved: 

Theorem 20.3 If- fu KdA < 2n, then X is stable on U. 

In fact, Barbosa and do Carmo proved a stronger version of Theorem 20.3 in [2]: 
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Theorem 20.4 If Area(N(U)) < 21r, then X is stable on U. 

Theorem 20.3 is stronger than Theorem 20.2 since N is not assumed to be one to 
one on U. Note that the converse of Theorem 20.3 is not true, there are stable minimal 
surfaces whose total curvature is less then -27r. See, for example, [61], page 99. 

Let X : lvf '---+ R 3 be a minimal surface. A Jacobi field is a function u defineded on 
M such that 

Lxu = 0. 

Note that each component of N is a Jacobi field. Whenever we have a Jacobi field u 
on 1\!l, we are interested in the nodal set Z := u-1(0) C M of u. The reason is that 
each component of M - Z is a domain (nodal domain) n c M such that on 0 the 
u does not change sign and it vanishes on an. If u is continuous on 0, then the 
properties of eigenvalues (see Appendix) the first eigenvalue of Lx on D is zero, and 
any domain 0' :::> D will have negative first eigenvalue. Thus such 0 and :::> 0 are 
unstable. By Theorem 20.3, the total curvature of X on n is less than or equal to -21r. 
Similarly, any domain D' c n such that 0 - has positive area, will have positive 
first eigenvalue, and therefore is stable. We will apply these comments in the proof of 
Shiffman's theorems. 

In [4], do Carma and Peng proved that the only stable complete minimal surface 
in R 3 is plane. This is a generalized version of Bernstein's theorem, which says that a 
complete minimal graph (which is stable by Theorem 20.4) must be a 

Thus all complete non-planar minimal surfaces X : M '---+ R 3 are uastable. A 
measure of how unstable is a surface, is the index. If Q C M is pn?comr)ac 
index(O) is the number of negative eigenvalues of Lx on 0, counting the 
Hence the index is the dimension ofthe subspace of L2 (0) spanned the 
enr-r"~'"~"'"'~'"'"'b to negative eigenvalues. The index of M then is defined as 

index(M) = lubocMindex(D), 

where lub means the least upper bound and Dis taken over all precompact domains in 
M. 

A theorem of Fischer-Colbrie [19] says that a complete minimal surface X · Af '--7 R 3 

has finite index if and only if it has finite total curvature. 
Let g and rJ be the Weierstrass data of a complete minimal of finite total 

curvature X : M '---+ R 3 and k = deg g. A theorem of Tysk [79] says that 

index of M :S: C · k. 

for some constant C. Tysk [79] proved that C can be taken as C = 7.68183. 'The 
number 7.68183 is certainly not optimal, since for a catenoid k = 1 and the index is 
also 1, see Theorem 27,8. A good problem then is what is the optimal value of C? A 
guess is that C = 1. 
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21 The Cone Lemma 

Let Xe be the cone in R 3 defined by the equation 

The complement of Xe consists of three components, two of which are convex. We label 
the third region We and note that We contains P 0 - { 0}, where pt = { x 3 = t} for t E R. 
Suppose M C liVe is a noncompact, properly immersed minimal annulus with compact 
boundary. 

Note that as c---+ 0, Xc- {0} collapses to a double covering of P 0 - {0}. Note also 
that any horizontal plane or vertical catenoid is eventually disjoint from any Xe, hence 
eventually contained in no matter how small cis (by "eventually" we mean "outside 
of a compact set"). Since any embedded complete minimal annular end of finite total 
curvature is asymptotic to a plane or a catenoid graph with logarithmic growth), it 
follows that, after suitable rotation, such an end is eventually contained in any We. By 
Jorge and Meeks' theorem, Theorem 12.1, it is easy to see that a minimally immersed 
end of finite total curvature with a horizontal limit tangent plane is also eventually 
contained in every Xe. The Cone Lemma [29] shows that this property implies that the 
annular end must have finite total curvature if it is proper. Hence after a rotation if 
necessary, a proper minimal annular end has finite curvature if and if it is 
eventually contained in every Xc· 

Let A : = { z E C 11 :::; I z I < oo}. 

Theorem 21.1 (The Cone Lemma) Let X :A'---+ R 3 be a properly immersed min-
imal ann·ulus with boundary. If M := X (A) is eventually contained in 
a sufficiently small c, then X has finite total curvature. 

In order to prove the Cone Lemma we need to introduce the concept of foliation 

Definition 2L2 Let M be a coo manifold of dimension 3. A Ck, 1 :::; k:::; oo, foliation 
of M is a set of leaves {£a}aEA in M that satisfies the following conditions: 

1. {£a}aEA is a collection of disjoint 2-submanifolds. 

=M. 

3. For all points p E M there exists a neighbourhood U of M and class Ckcoordinate 
(x1 , x 2 , of U such that La n U is empty or is the solution of x 3 = 

constant in U. 

Before proving Theorem 21.1, we will state a fact about the catenoid. Let C be the 
unit circle in P 0 centred at (0, 0). Let Ch be the translate of C in the plane Ph. There 
is an h2 > 0 such that for 0 < h < h2 there are two catenoids bounded by C -h and 
Ch; one is stable and the other is unstable. While the C_h2 and Ch2 bound only one 
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catenoid. When h > h2 , there is no catenoid bounded by C_h and Ch. It is known that 
h2 ~ 0.6627435. For more details, see for example [60], §515. 

As we will see later, by Schffman's second theorem, Theorem any minimal 
annulus by C_h and must be a catenoid. Thus there is no minimal annulus 
bounded and vvhen h > 

VVe describe a technical result that will be used in the of the Cone Lemma. 
Let rt the circle of radius t in P 0 , centred at the Let c; be t.he stable catenoid 

circles consists of the vertical translates of ryt by (l' ., ' oe 
subsets consists 

and Let c be the annulus 
Let !5 be any smootl: Jordan curve in chat is to 

Pll'oposition 2L3 ForE > 0 can. oe 
2 ::; t ::; 4, 'UJ'ith th,e 

J. 

2. Eaclt meets 

tneei;s 
E -+ 0. 

) 

.!;· .• 

to the vT:?, are not to (Uscuss 

Proof of Theorenll 2Ll. \Ne 

Readers 
and [54]. 

normalizing the 
Let be the vertical catenoid with waist-circle of radius 1 and denote C the 

component of n . Choose c > 0 sn1all C is a ;·adial 
graph and foliate the leaves { t · C}, 0 < t < oo. For write for 
t. c. 

Claim 1. After a homothetic shrinking of M 
discarding of a compact subset of]\![: 

L 3M c C1 = C; 
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3. M n Ct consists of a single closed immersed curve for t ;:::: 1. 

Proof of Claim 1. Choose T0 large enough so that &M = X(&A) lies in the 
bounded component of We- Cr0 • Without loss of generality, we may assume that Cr0 

intersects M transversally. Denote by Z the closure of the unbounded component of 
We- Cr0 ; that is, Z = Ut>To Ct. Define J: Z---+ [To, oo) to be the function whose level 
set at tis Ct. Since the Ct-are minimal surfaces, the maximum principle (Theorem 4.4) 
implies that J oXIx-1(z) has no interior maxima or minima. Moreover, by Theorem 
4.4, the intersection of two minimal surfaces in a neighbourhood of a point of tangency 
consists of j curves, j ;:::: 2, intersecting at that point in equal angles. This implies that 
JoXIx-l(z) has index-1 critical points with multiplicity equal to j- 1. Therefore, 
f may have at most k - 1 critical points, where k is the first Betti number of x-1 ( Z), 
by elementary Morse Consequently, outside of a subset of x- 1 

f oXIx-l(z) is free of critical This means that there exists a T1 > 0 such that 
fort ;:::: Tr, Ct n M consists of a finite number of closed immersed curves. Since M has 
one end, each n t > T1, must consist of a single closed immersed curve. By a 
similar argument as in the proof of Lemma 1L9 and Theorem time using the 
maximum each x-l is a non-trivial 
Jordan curve in A and C A is an annulus. Conformally ~ A 
since they are both to the punctured disk. 

subsurface M n (Ut:-:;T1 Ct) we get 
conditions 1, 2, and 3 by l\11 = 

as A for convenience" 
Because M is immersed and projection from Vvc to P 0 - is also proper, 

the projection ITc)( : A---+ 1s a proper map. 
Claim 2. The ll is a submersion of a set, provided c > 0 

is small. 
Before proving Claim 2, 'Ne will show that the theorem follows from it. By Theorem 

the Gauss map N of X either takes on all points of C U { CXJ }, except for at most 
a set of zero, or it has a limiting value" In the latter case, X must have 
finite total curvature as remarked in Remark 19.3. But Claim 2 implies that, outside 
of some set B, the Gauss map of X: A-X-1(B) '-> R 3 will not take values in 
the great circle S 1 c S2 . Since){ is proper, x-1(B) is compact. Taking the connected 
component Win A- x-1(B) which is connected to oo, we infer that the image N(W) 
is contained in a hemisphere, so the first case of Theorem 19.2 is precluded. Hence, X 
has finite total curvature. 

Proof of Claim 2. In this proof, we will need at several points to restrict the size 
of c > 0. At each point, we will continue to assume that M C We. Let ~ := ~' be 
the foliated annulus from Proposition 21.3. Reduce the size of c so that the ~ has its 
top and bottom boundaries disjoint from We. Let K be the intersection of We with 
the vertical cylinder over the disk of radius 4 in P 0 . Note~ n We C K. Shrink c > 0 
even more if necessary, so that the following is true. If the distance from q E K to P 0 
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is T, then the vertical translation of D. by T has the property that its top and bottom 
boundaries are disjoint from We. 

Suppose now that TI : !VI --+ P 0 is not a submersion outside of any compact set. 
This is equivalent to the statement that the points on lvf with vertical tangent plane 
form an unbounded set. In particular, there is a point p E M~- K whose tangent plane 
is vertical. 

If f5 is the projection of p onto P 0 , we can assume that lf51 > 4. According to 
Proposition 21.3, we may rotate M about the vertical axis so that the following holds: 
the line Op intersects 003 at a point where the tangent line to 003 is parallel to TPM n P 0 . 

'\Ne perform this rotation of M and shrink lVI so that f5 lies on oo3 . Since the 
original M satisfied the conditions of Calim 1, and the foliation { C't I 0 < t < oo} is 
rotationally symmetric, it follows that the modified lVI also condition 3 
of Clahn 1. ·we also discard M n Ut<l We will refer to this surface as JVI. 
It is clear that to prove the claim, it is sufficient to prove it for this modified surface. 

Vertically translate .6. so that f5 coincides with and label this translated torus 
translate the foliation of .6. to be a foliation of Recall that we have chosen 

c > 0 small enough so that the top and bottom boundaries ,3,. are disjoint from 
Also recall that for t near 2 and 4, the leaves of the foliation of A are catenoids. Make 
c if necessary, to insure that these catenoids are radial graphso 

We will now extend to be a smooth foliation of a region that contains U4<t<=Ct. 

Let At == ~ A4 , t ~ 4, be the ho1nothetic of The ~onsists 
of two concentric circles. By making c > 0 if necessary, we may insure ·chat 
C is a subset of a stable catenoid C, whose boundaries are concentric circles exterior 
to We on the parallel planes that contain 8A2 . \;Ve between 
with a smooth 
axis. The vertical 
1 :S t :S 20 l\.J ote that each 
catenoid 1 :S t :S 2. It is evident that this 
the resulting foliation 11 :S t < oo} is smootho 

oil!! C , and is tangent to M at p. 
Let h be the smooth function, defined on the union of the leaves whose level set at 

t is Restriction of h to M yields a proper function h oX on A_ that satisfies h oX 2': 1 
and is equal to 1 precisely on 8A. Repeating the in the proof Claim 1 will 
show that all the critical points of h have index 1, possibly with multiplicity. 
A is an annulus and (hoX)-1 (1) = fJA, so elementary Morse it follows that 
h oX can have no critical points. But A3 is tangent to M at p = E M, which 
shows that q is a critical point of hoX. This contradiction completes the proof of Claim 
2 and also of the theorem. 0 

Remark 21.4 Let Xc and We be as in the Cone Lemma, and M be a proper, con­
nected, complete minimal surface with compact boundary. Then by Theorem 16.1, M 
is eventually disjoint from Xc is equivalent to the fact that 1VI is eventually contained 
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in We. Thus suppose that M is a proper, connected, complete minimal surface with 
· compact boundary and finite topology. If after a rotation if necessary, M is eventually 
disjoint from Xc, for some c > 0 sufficiently small, then M has finite total curvature. 
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22 Standard Barriers and The Annular End Theo-
rem 

The study of ends of complete minimal surfaces leads to the Annular End Theorem of 
Hoffman and Meeks [29], and its corollaries. 

Theorem 22.1 (The Annular End Theorem) If Af is a properly embedded mini­
mal surface in R 3 , then at most two distinct annulm' ends J\1 can have total 
curvatv.re. 

To prove the Annular End Theorem, we need some preparation. First we introduce the 
notion of a standard barrier. 

Definition 22.2 A standard barrier in R 3 is one of the two minimal sur-
faces with boundary: the complement of a disk in a plane in R 3 ; a the 
complement of a simple, closed, homotopically nontrivial curve on a catenoid. 

We will say that a surface J\4 C R 3 adm.its a standard barrier if it is from 
some standard barrier. We will use the word to mean "outside of some 
sufficiently . Thus, two M C R 3 and N C R 3 ar-e 

disjoint" if have compact intersection. It is straightforward to see that 
M admits a standard barrier if and if it is disjoint some standaro. 
barrier. 

Given a standard barrierS and a ball B to contain as, is clear that 
S- B divides H 3 - B into two Two surfaces JV C Ro; vvill be said to 
be a standard barrier if such an S and B can be foEnd so that Jlf _::md N 

lie in different of 
Two standard barriers divide the ball 

B c R 3 into three components, only one of which contains "''"''O''"'n 

on its boundary. A surface JvJ C R 3 that eventually lies in such a component will 
be said to lie between two standard barriers. After a rotation of R 3 , if necessary, the 
region of R 3 between two standard barriers eventually lies in the complement of any 
Xc ={xi+ x~ = (xdc?} (in the component that contains P 0 ·- {0}) for any c > 0, no 
matter how small. It follows from Theorem 21.1 and Remark 2L4 that: 

Proposition 22.3 If X : M '-! R 3 is a properly immersed complete minimal surface 
of finite topology, with compact boundary 8M, and eventually lies between two standard 
barriers, then M must have finite total curvature. 

Our strategy in proving the Annular End Theorem is to ends between standard 
barriers. The next lemma contains the critical technical construction. 

Before proving the lemma, we introduce the notion of linking n·umber. 
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Definition 22.4 Let "! be an embedded curve in R 3 such that R 3 - "!is homotopic to 
· R 2 - {0}. The first homology group of R 3 - "!is H1 (R3 - "!) ~ Z. Let (3 c R 3 - "! 

be a closed curve. Then the linking number of (3 with "( is the homology class of [/3] in 
H1 (R3 - "f). This is an integer, denoted by l(f3,"f). 

If we use the homology group H1 (R3 - "(; Z2 ), then 12 ((3, "!) = 0 or 1. 

Intuitively, if ,6 is a Jordan curve, then l((3, "!) # 0 means that any disk D c R 3 , 

such that 8D = (3, intersects"(. In the homology group H1 (R3 - "(; Z2 ), if"! is a proper 
curve 1 : R ---t R 3 , then l2 ((3, 1) # 0 if and only if there is a disk D c R 3 such that 
8D = (3 and D intersects 1 an odd number of times. 

Lemma 22.5 Suppose M is a properly embedded, piecewise-smooth surface that is a 
smooth minimal surface outside of some ball and that has at least two ends. Let "! : 
R ---t JI!I be a proper curve that diverges into two distinct ends of depending on 
whether t ---+ +oo or t ---+ -oo. Then M admits a standard ban-ier whose boundary has 
linking number 1 with "!. 

Proof. Let B C R 3 be a ball to contain the nonsmooth, nonminimal 
portion of and expand it, if necessary, so that the ends of M in question correspond 
to distinct components of M-B. If one has such a ball, any larger one will have the same 

We may also choose B so that 8B intersects M transversally. Suppose that 
are the two components of JV!- B that contain the unbounded components 

1 - B. Since the proper arc ry intersects 
we can choose exactly one of R 3 - M whose 
property: the arc r has odd linking number with any 

in Note that is not homologous to zero in 

an odd number of times, 
N, has the following 

in Int(N) homologous to 

Let 2:: 1 C · · · C L:n C · · · be an exhaustion of by smooth compact subdomains, 
with 8M1 C 82::1 . Let t; denote a least-area integral current (roughly speaking, piece·· 
wise C 1 minimal surface) inN with boundary 8L:i, which is Z2-homologous to (i.e., 
[L:i] = [ti] in H 1(N; Z2 )). Since L:i Uti is a boundary in ti is orientable. Inte­
rior regularity of least-area currents (see, for example, [75]) shows that :ti n Int(N) is 
a regular embedded minimal surface. Since aN - aB has zero mean curvature, the 
maximum principle and the extension theorem for minimal surfaces imply that either 
tin (N- 8B) is regular and tin M 1 = aL:i or tiC M 1 . Standard compactness theo­
rems imply that a subsequence of the surfaces {ti} converges to a least-area orientable 
surface L: c N with 82:: = 8M1 . Suppose, for the moment, L: n M = 82::. 

The surface L:- 8B is a stable, properly embedded, orientable minimal surface in 
R 3 with compact boundary and hence has finite total curvature (see, [57], Theorem 1 as 
well as [19]). Hence, L: has a finite number, say n, of ends, and each end is asymptotic 
to a plane or to a catenoid. Let SR be the sphere of radius R centred at the origin. For 
R sufficiently large, by Theorem 12.1, L: n SR consists of n parallel almost-great-circles, 
each of which is the boundary of one of the annular ends of 2::. 
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By our choice of N, ry has odd linking number with one of the curves in :En SR, and 
hence has linking number 1 with one of the annular ends of :E- BR. Call this annular 
end F. 

By the weak maximum principle at infinity (Remark 15.3), since F n M = 0, 
dis(F, M) > 0. On the other hand, F is asymptotic to an end, C', of a plane or a 
catenoid. Hence, C' contains a subend, C, whose boundary is a circle that has linking 
number 1 with ry. Moreover, Cis contained in the interior of N. This proves the lemma 
in the case :En M = 8:E. 

case :8 C M, the extension theorem implies that :E = 1\.11 , which means that 
is eventually contained in a catenoid-type end or a fiat end, say C" C :E. This 

the easier case and can be treated directly, but we to reduce it to the 
case. We may choose so that it is as close as desired to a standard barrier. 

Iv'Ioving C 11 a small amount in the direction of its limiting normal a minimal 
surface that is disjoint from )l;f1 and its has linking number with ~y to 
either 0 or 1. Move in the direction that makes the linking number equal to 1. The 
maximum principle at infinity shows that if C" is moved a small amount, then it is also 

from M. Vlfe can now the argument in the case to complete the 
~~ 0 

Corollary 22,6 
ded minimal surfaces in , each of which has 
at least one of the surfaces lies between two standard barriers. 

properly embed­
and one end. Then 

Proof. Choose a ball B c R 3 that is big enough to contain The ball can 
be chosen to intersect U transversally. After removal of B n lvf; from each 'lt.Je 
may assume that aMi c oB. The curves Ut=l oM; bound a region s on oB with the 
property that the boundary of at least one component of S touches the boundary of 
more than one of M;. We will refer to this component as S and relabel the M;, if 
necessary, so that both aS n 8M1 and aS n 8M2 are nonempty. 

Let M = S U; M;. We intend to apply Lemma 22.5 toM. Toward that end, choose 
a proper curve ry : R ---+ M, with ry(R) n S consisting of a single connected arc in S 
from 8M1 to 8M2 . We may assume that ry diverges in M1 (resp. M2 ) as t ---7 +oo (resp. 
t ---+ -oo). By Lemma 22.5, there exists a standard barrier disjoint from }vf whose 
boundary has linking number 1 with ry. 

We now expand the ball B to be large enough to contain the boundary of this barrier 
and discard from each J\11; the subset M; n B. Similarly, let C1 be the component of 
the barrier exterior to B. C1 is still a barrier for M, and ry has linking number 1 with 
8C1 . Moreover, C1 divides R 3 - B into two components. Clearly, M1 and M2 are in 
different components. Without loss of generality, we may assume that M3 is in the saine 
component as M 1 . 

The curve 8C1 divides oB into two disks. Let D be the disk containing 8M1 u8M3 . 

Vile now repeat the construction in the previous paragraph. This time, let S' be a region 
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of D bounded by 8C1 u8M1 UaM3 • Since 8C1 is almost a great circle on aB and M1 and 
M 3 are in the same component of R3 - C1 , aM1 and 8M3 are in the same half-sphere 
bounded by 8C1, therefore, S' has a component, say S', with boundary points on both 
8M1 and 8M3 • Let M' = M1 u M2 u M 3 u C1 uS'. Choose a proper arc 'Y' c M' 
whose intersection with S' lies in S' and consists of connected arc from 8M1 to 8M3 . 

(Note that , since (aB- D) n 'Y' = 0, aD= 8C1, 'Y' has linking number 0 with aCt-) 
Lemma 22.5 implies that there exists another standard barrier, C2, that is disjoint from 
M1 u M2 u M 3 u C1 uS' and whose boundary has linking number 1 with 'Y'· 

Expand B again so that 8C2 c B. It is possible to do this so that aB meets M 
transversally. Note that C2 naB is a single closed curve. Again, we discard from M1 , 

M2 , M 3 , C1 and C2 the intersection of those surfaces with B. Therefore, all of these 
surfaces have their boundaries on aB. 

The barrier C2 divides R3 - B into two regions, as does the barrier C1 . Since they 
are disjoint, C1 u C2 divides R3 - B into three components. Let T1 (resp. T2 ) be the 
component of R 3 - ( C1 u C2) whose boundary contains C1 but is disjoint from C2 (resp. 
contains C2 but is disjoint from C1). Let F be the third component, whose boundary 
contains C1 u C2 . Since 'Y' has linking number 1 with 8C2 , C2 must separate M1 from 
M 3 . But clearly, M1 U M 3 c T1 U F. Hence, either M1 or M 3 lies in F. That is, either 
M1 or M 3 lies between two standard barriers. D 

Remark 22.7 Lemma 22.5 and Corollary 22.6 hold even when the minimal surfaces 
in question are properly immersed rather than properly embedded. The proofs are 
essentially the same as the proof of the embedded case. See [50] for these types of 
arguments. 

Proof of Theorem 22.1. If M has two or fewer annular ends, there is nothing to 
prove. If M has three or more annular ends, we apply Corollary 22.6 to any choice of 
three annular ends of M. It implies that one of them lies between two standard barriers. 
But by Proposition 22.3, this end must have finite total curvature. Thus, M can have 
at most two annular ends of infinite total curvature. D 

Corollary 22.8 Suppose M is a properly embedded complete minimal surface in R 3 . 

Then M can have at most two annular ends that are not conformally diffeomorphic to a 
punctured disk. In particular, if M has finite topology, then M is conformally equivalent 
to a closed Riemann surface from which a finite number of points, and zero, one, or two 
pairwise-disjoint closed disks, have been removed. 

Proof. Since any complete annular end of finite total curvature must be conformally a 
punctured disk, the conclusion is obvious. D 
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23 Annular Ends Lying above Catenoid Ends 

The Cone Lemma (Theorem 21.1) gives a criterion for a minimal surface to have finite 
total curvature by looking at the picture of its image. In this section we will give another 
such criterion due to Fang and Meeks [18]. 

Consider the family of catenoids 

Ct = {(x, y, z) E R 3 I t 2x2 + t 2y2 = cosh2 (tz)}, 

for t > 0. We will show that a properly immersed, complete minimal annulus with 
one compact boundary that lies above some Ct must have finite total curvature. More 
precisely: 

Theorem 23.1 Let 

Suppose X: NI ---+ R 3 is a complete, proper minimal immersion of an annulus with 
smooth compact boundary such that the image is contained in Wt for some t > 0. Then 
M has finite total curvature. 

We will break the proof of Theorem 23.1 into several lemmas. First let us fix the 
notation. 

Let C be a catenoid in R 3 vvith the z-axis as symmetry axis. Let W be the closure 
of the component of R 3 - C that contains the z-axis. Let H = y, z) E R 3 I z > 0} 

·and H be its closure. 
Conformally we can write M = E C I 0 < r 1 ~ 1(1 < r 2}. The smooth compact 

boundary of X corresponding to I( I = r 1 . Complete means that X ory has infinite arc 
length as ry diverges to [(I= T 2 . Let A= X(M). 

After homothetically shrinking or expanding C and A, we can assume that C is the 
standard catenoid, i.e., C has the conformal structure of C- {0} and is embedded in 
R 3 as follows: 

where 

F : C- {0} <-+ R 3 

( ' ' ( ) F(()='2R(1 w1,h w2,1 w3 +(-1,0,0), 

- ~ (1 - (2) dr - j_ (1 + (2) dr d( 
wl - 2 (2 .., ' w2 - 2 (2 .., ' w3 = (. 

The Gauss map of C is 

All lemmas in the following having the same assumptions as for Theorem 23. 1. 
The first lemma is the key point of the proof of Theorem 23.1. 
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Lemma 23.2 Let p E Int(M) and P be the tangent plane of A through X(p) and 
suppose P n 8A = 0. Then the component of P n A that contains X (p) is noncom pact. 

Proof. Since A is noncompact, we may assume that A is not part of a plane. If n 
is the normal vector of P, then h = (X - X (p)) e n is a harmonic function on M 
and x-1 (A n P) = h-1 (0). Since his harmonic and h-1 (0) c Int(M), the maximum 
principle implies that every component of h- 1 (0) is a one-dimension analytic subvariety 
of M. Suppose that the component of PnA containing X(p) is compact. Let .6.. denote 
the preimage of this component on M. Note that .6. is compact since X is proper. 
Furthermore, by Corollary 4.6, p is a critical point of the harmonic function h, thus .6.. 
is a singular compact analytic one-dimensional variety in M. But the complement of any 
such singular variety in the annulus M disconnects jl,;f into at least three COJTID,oneniGS 
One of the components of M -.6. has {1(1 = r 2 } as a component of its boundary, another 
contains {1(1 = r 1 } and at least one, say E, has compact closure E and hi8E = 0. By 
the maximum principle, X(E) C P, which forces A to be contained in the plane P. 
This contradiction proves the lemma. D 

The second lemma clarifies the conformal type of lvf and gives a specific representation 
of the third coordinate function X 3 . 

Lemma 23.3 If A C 1/VnH then A contains a proper .subannulus 
parametrized E = E C 11(1 :2: 1}. in this 
of A', the third component of G is 

(() = alogl(l +b 

for some a, b E R, a > 0, b :2: 0. 

Proof. Since X = (X1 , X 2 , : M Y R 3 is a proper minimal immersion and A = 

X ( M) c W n H, · M -+ R is a proper harmonic function. 
We claim that is unbounded. In fact, if is bounded, then A = X(M) is 

contained in a compact set, contradicting the fact that X is proper. 
Then properness and A C W n H, X 3 (() -+ oo as 1(1 -+ r 2 . If r 2 < oo, letting 

gij = ex3 6i]l vve get a complete flat metric on M. By Proposition 10.6 this is impossible. 
Thus r2 = oo. 

We claim that if X 3 (() > c := max(EoM{X3 (()}, then DX3 (() -::/- . In fact, 
if DX3 (() = 0), then the tangent plane P of A at is horizontal, hence by 
Lemma 23.2 Ar1P should have an uncompact component, which contradicts that A C W 
and X is proper. 

Now lett> c1 >c. Then ry = X31 (c1) and 'Yt = X3 1(t) are compact one-dimensional 
submanifolds of M and thus are Jordan curves. The annulus At bounded by ry and "ft 

is conformally MR(t) := {1 .S 1(1 .S R(t)} for some R(t) > 1. Let ft :At -+ MR(t) be the 
conformal diffeomorphism. 
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Solving a Dirichlet problem on MR(t) we have 

t- c1 
X3oft-l(() = cl + logR(t) logl(l. 

This shows that for any t > s > c1, ftbs) is the circle 

hence ft sends As to MR(s), where 

R(s) = R(t)(s-cl)/(t-q). 

In particular, 
t -- c1 s- c1 

logR(t) logR(s)" 

Since the modulus of As must be R(s), we know that ftiAs = fs· Thus we can define a 
conformal diffeomorphism 

f: U At----+ E := {( E C 11(1 2: 1}, 
t::C:ct 

such that 

t- c1 
a - for any t > c1. 

- log R(t)' 

Taking b = c1 and G = X o f-1 , we have proved the lemma. D 

Suppose A' is the subannulus of A described in Lemma 23.3. Since A and A' both 
have finite total curvature or both have infinite total curvature, we will assume, without 
loss of generality, that A= A'. 

Suppose now that A has infinite total curvature. We will exhibit a family of tangent 
planes Pn of A at G(pn) such that the component of PnnA containing G(pn) is compact. 
Furthermore, for n large enough, Pn n 8A = 0. The existence of such tangent planes 
contradicts Lemma 23.2. 

For the part of C in H we have the following non-parametric expression: x2 + 
cosh2 z, z 2: 0. Hence, at any point p = (x, y, z) E C n H, the normal vector is 

where Zx = 2x I sinh 2z, Zy = 2y I sinh 2z, and 

1 + z; + z; = (sinh2 2z + 4cosh2 z)l sinh2 2z = [4cosh2 z(sinh2 z + 1)]1 sinh2 2z 

= 4 cosh4 zl ( 4 cosh2 z sinh2 z) = cosh2 zl sinh2 z. 
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Suppose p = (x, y, z) E C n H. Let B(p) be the angle such that 

c 1 sinhz 
cosB(p) = N (p)•(O, 0, 1) = J =-h-. 

1 + z2 + z2 cos z 
X y 

Then 
sinB(p) = · /1- cos2B(p) = - 1-. 

Y coshz 

Thus sin B(p) is independent of x andy. We denote it by sin B(z). For Po= (xo, y0 , z0 ) E 
An W n H, z0 2': 1, consider the solid cylinders 

U 0 = { ( x, y, z) E R 3 I x2 + y2 ::; cosh 2 ( z0 + 1)}, 

Lf0 = {(x,y,z) E U 0 lzo ·-1::; z::; zo + 1}. 

If Pis a plane passing through p0 = (x0 , y0 , z0 ) and vp is the normal vector of P, define 
-1r /2 ::; 'Ill p ::; 1r /2 by the formula cos 'Ill p = lvp• (0, 0, 1) I· 

Lemma 23.4 If z0 is large and 

1 
I'll! PI < ---:--

16coshzo 
sin e(zo) 

16 

then the component of P n A that contains p0 is compact and P n 8A = 0. 

Proof. Since Po= (x0 , y0 , zo) E Lf0 , for any (x, y, z) E P n 8P0 we have 

sin l'lllpl 
I z - z0 I ::; 2 cosh( z0 + 1) tan I 'Ill pI = 2 cosh ( zo + 1) I 'Ill 

1
. 

cos p 

Since cosl'lllpl >~and l'lllpl < 16 co1shzo' 

I I 4cosh(z0 + 1) 
z-z0 < . 

16coshzo 

Note that cosh ( z0 + 1) = cosh z0 cosh 1 +sinh z0 sinh 1, sinh 1 < cosh 1 < 2, and sinh z0 < 
coshz0 . Hence, cosh(z0 +1) < 4coshz0 , and so lz-zol < 1. Hence, Pn8P0 = Pn8Lf0 

and P n po = P n Lf0 • This implies that the component 'Y of A n P that contains p0 

must be compact (since 'Y c P n Lf0 and Lf0 is compact). 
Let Zo- 1 > maxxEaA{Ixl}, then clearly p n 8A = 0. D 

Now we prove Theorem 23.1. 

Proof of Theorem 23.1. Assume A has infinite total curvature. Let g: E-+ CU{ oo} 
be the Gauss map of A composed with stereographic projection. Similarly define g : 
C- {0} -+ Cu { oo} to be the Gauss map of C composed with stereographic projection. 
Recall, in fact, that in our original parametrization F of C, §(() = (for ( E C- {0}. 
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Since A has infinite total curvature, g has an essential singularity at ooo Recall that 
the Gauss map of C is 

for ( E E, and the Gauss map of A is 

Also, recall that sin e(x, y, z) = co:hz 0 For any (x, y, z) = F((), cos e(z) = Ncs(O, 0, 1) = 
1(12-1 
1+1(12' so 

sin e(z) = Vl- cos2 O(z) = 2 1~1 12 0 

1 + ( 
(23086) 

Similarly define the angle -1r /2 :::; ¢( () :::; 1r /2 such that cos¢(() = NA ~ (0, 0, 1) = 
lg(()l 2 -l 
Hlg(()J 2 0 Then 

sin¢(() = )1 - cos2 ¢( () = 1 !1~;~~~ l2 ° 

Since z = G3(() =a log 1(1 + b = F3 ((a · expb), for some a> 0, b ~ 0, 

sin¢(()= l(a·expbl (1+1/l(a·expbl 2 ) 

sinO(z) lg(()l 1 + 1/lg(()l2 · 

(23.87) 

Choose a positive integer m > a. Since ( (m · exp b) j g( () has an essential singularity 
at oo, there is a divergent sequence {(n} such that I(;;'· expbl/lg((n)l-+ 0 as n-+ OOo 

Delete a ray l in C such that l does not contain any (n· Then on C - l, (a is 
well-defined and 

I(~ · exp bl < I(;;' · exp bl -+ 0 
---:--1 g-:-( ( n-:-c) 1,--' I g ( ( n ) I (23.89) 

as n-+ oo. In particular, g((n)-+ oo as n-+ 0. So O(F3 ((~ · expb))-+ 0, ¢((n)-+ 0 as 
n-+ oo. We see by (23088) and (23.89) that 

¢( (n) = ¢( (n) • ( sin¢( (n) \) -+ O 
sine(F((,~·expb)) sin¢((n) sinB(F((,<;:·expb)) ' 

as n-+ oo. Here sine(.Lli.H(~expb)) = sin()(zn) = ljcoshzn, and Zn = F3 ((,~expb) = 
G3((n) -+ oo as n-+ oo. 

By Lemma 23.4, we can choose n so large that the tangent plane of A at G((n) does 
not intersect 8A. By (23.90), we can also choose n so that 

¢(~n) < 1/16 
sine(F((na · expb)) · 
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It follows from Lemma 23.4 that the tangent plane of A at G((n) will have a compact 
component that contains G((n)· The existence of such a tangent plane contradicts 
Lemma 23.2. This contradiction proves the theorem. D 

Remark 23.5 Rosenberg and Toubiana [73] have shown that there exist minimally 
immersed annuli in H with proper third coordinate function which have infinite total 
curvature. Theorem 23.1 shows that such annuli do not lie above any catenoid. 
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24 Complete Minhnal Surfaces of Finite Topology 

Based on Corollary 24.5, Hoffman and Meeks made the following conjecture in [31]: 

Conjecture 24.1 Let X : M '---+ R 3 be a properly embedded complete minimal surface 
of finite topology with more than one end. Then X has finite total curvature. 

With the help of Theorem 23.1, we can give a clearer picture of properly embedded 
complete minimal surfaces with more than one end. 

Theorem 24.2 Suppose M is a properly embedded minimal surface in R 3 that has two 
annular ends, each having infinite total curvature. Then these two ends have represen­
tatives E 1 , E 2 satisfying the following: 

1. There exist disjoint closed halfspaces H 1 , H2 such that E 1 C H 1 and E 2 C H 2 . 

2. All other annular ends of M are asymptotic to fiat planes parallel to 8H1 . 

3. M has only a finite number of normal vectors parallel to the normal vector of 
BH1. 

Proof. Given two properly embedded minimal annuli A1, A2 each with compact bound­
ary curve, if A1 nA2 = 0 then there exists a standard barrier between them. This means 
that there exists a half-catenoid or a plane C such that outside of a sufficiently large ball 
B the barrier C is disjoint from A1 U A2 and also CUB separates A1 - B from A2 - B. 
Now consider the two annular ends E 1 and E 2 of M with infinite total curvature; The­
orem 23.1 implies that C must be a plane. Since C is disjoint from E 1 U E 2 outside 
of some ball, C n (E1 U E 2 ) is compact. Hence, after removing compact subannuli of 
E 1 and E 2 , we may choose E 1 and E2 to lie in the disjoint halfspaces determined by 
C. The weak maximum principle at infinity (Remark 15.3) implies that Ei and C stay 
a bounded distance apart for i = 1, 2. Therefore, the distance from C to E 1 U E 2 is 
greater than some E > 0. It follows that we can choose closed disjoint halfspaces H 1, 

H 2 with E 1 c H 1 and E 2 C H 2 . This proves the first statement of the theorem. 
Suppose now that E 3 is another annular end of M that is disjoint from E 1 and 

E2 . Corollary 22.6 says that at least one of E 1, E 2 and E3 lying between two standard 
barriers. By Proposition 22.3, an end lies between two standard barriers must have 
finite total curvature. Hence it is evident that E3 has finite total curvature and lies 
between two standard barriers, and hence between E 1 and E 2 . If E 3 is a catenoid end, 
then either E 1 or E 2 lies above a catenoid. By Theorem 23.1, E 1 or E 2 has finite total 
curvature, contradicting our hypotheses. Hence E3 is asymptotic to a flat plane P. By 
the weak maximum principle at infinity the end of this plane P stays a positive distance 
from both E 1 and E 2 . This implies that P intersects both E 1 and E 2 in a compact set 
and hence E 1 and E2 have proper subends that are a positive distance from P. Hence 
we may assume that Ei n P = 0 for i = 1, 2. By Theorem 16.1, the convex hulls of 
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E 1 and E 2 are either a halfspace or a slab since E 1 and E 2 are not compact. Since 
Ei n P = 0 for i = 1, 2, P must be parallel to 8H1 . Since E3 is an arbitrary annular 
end different from E1 and E2 , the second part of the theorem is proved. 

The proof of the third part of the theorem is quite long. Since we are not interested 
in the problem of image of Gauss map, we skip it here. The interested reader can read 
the article [18]. D 

We have some direct corollaries of Theorem 23.1. 

Corollary 24.3 Suppose X : M '-+ R 3 is a smooth properly immersed minimal surface 
with smooth compact boundary and finite topology. A sufficient condition M 
to have finite total curvature is that X ( M) intersects some catenoid in a compact set. 
If M is embedded, this is also a necessary condition. 

Proof. If M is embedded, has finite total curvature and compact boundary, then the 
ends of M have a well-defined tangent plane parallel to a fixed plane P, which we take 
to be the xy-plane. Furthermore, annular end representatives lid can be chosen to be 
graphs over P, each of some fixed logarithmic growth in terms of r = J x2 + y2 . Any 
catenoid C with waist circle P n and whose ends are graphs over P with logarithmic 
growth greater than the logarithmic growths of all the ends of M, must intersect M in 
a compact set. This proves the necessary part of the theorem. 

Now suppose that C is a catenoid such that B = C n is compact. 
removing a regular neighbourhood of x-1 (B) from we may assume that each com­
ponent of X(M) is disjoint C. Since M has finite topology, we may assume that, 
without loss of generality, M is connected and X(M) n C = 0. Let W andY be the 
closures of the components of R 3 - C and assume VV is the component that contains 
the symmetry axis of C. Thus either X(M) c l'V or X(M) c Y. For the first case 
we apply Theorem 23.1 (in fact every annular end has a representative contained in the 
intersection of W with a halfspace). For the second case we can use Theorem 21.1. D 

Corollary 24.4 Let X : M '-+ R 3 be a smooth properly embedded minimal surface 
with smooth and M has two catenoid 

each a graph over the xy-plane logarithmic Then M 
has finite total curvature" 

Proofo In this case we may assume that }vf has a catenoid end E+ with z­
coordinate and an end E_ with negative z-coordinate. Since M is proper, every end of 
M eventually is contained in the region above E+, below E_, or in the region between 
E+ and E_. in the of Corollary 24.3, all of the ends of M must have finite 
total curvature" Thus M has finite total curvature since M has only a finite number of 
ends. D 
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Corollary 24.5 Suppose M is a properly embedded complete minimal surface in R 3 

with at least one catenoid type annular end. Then M can have at most one annular 
ends that is not conformally diffeomorphic to a punctured disk. In particular, if M 
has finite topology, then M is conformally equivalent to a closed Riemann surface from 
which a finite number of points, and zero or one closed disks, have been removed. 

Proof. One of the two possible infinite total curvature ends of M must lie above a 
catenoid, hence by Theorem 23.1 it has finite total curvature. This shows that there is 
at most one end which has infinite total curvature. D 

Remark 24.6 Recently Meeks and Rosenberg [51] proved that if a properly embedded 
minimal annulus A with smooth compact boundary is contained in a halfspace H C 

say H = {(x, y, z), I z > 0}, then: 

1. An {(x, y, z) I z = c} is a Jordan curve for c > 0. 

2. The conformal structure of A is a punctured disk. 

Combining the above result of Rosenberg and Meeks and Theorem 24.2, we have: 

Theorem 24.7 If X : M '---+ R 3 is a proper complete minimal embedding with more 
than one annular end and M has finite topology, then there is a closed Riemann surface 
sk of genus k such that 
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25 Minimal Annuli 

The catenoid is topologically an annulus, and is the only embedded complete minimal 
annulus of finite total curvature by Theorem 18.1. Since any complete minimal surface 
has annular end, we want to study minimal surfaces of annular type, with or without 
boundary. 

All the results in this section are due to Osserman and Schiffer [70]. 
First we fix A := {r1 < lzl < r2} C C, 0 < r1 :::; 1 :S r 2 :::; oo (by Lemma 9.1 and 

Proposition 9.2 we can always select such a representation of A). Let X : A -+ R 3 be 
a minimal annulus. Let g and TJ = f(z)dz be the Weierstrass data for X and rPi be as 
(6.15), i = 1, 2, 3. Let 'l/Ji = ZcPi· Write X = (X1, X2, X 3) and let 

t = logr =log lzl. 

We define 
1 i27r X(r) :=- X(rei0)dB. 

27f 0 

Lemma 25.1 

Proof. 

since 

and 

0 

Let C = {I z I = 1} c A. Since C is the generator of the first homology group of A, by 
(17.72), we can define 

Flux(X) Flux( C)= 8' { ¢(z)dz = 8' 1 ¢(z)dz = -i { ¢(z)dz 
Jc izl=r Jlzi=r 

{211" {211" 
Jo ¢(rei0 )rei0dB = Jo 'lj;(rei0 )dB (25.91) 
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where 7/J = z¢, for any r 1 :::; r :::; r 2 . We have used the fact that since X is well defined, 

Lemma 25.2 

Proof. 

dX(r) 
clt 

~1 ¢dz=(O,O,O). 
lzl=r 

clX(r) = dX(r) = __!__ Fl ( v) 
d T d UX J\. . 
t r 2n 

dX(r) 1 121f oX(Teia) 
T--=- T de 
. dr 21f 0 or 
1 ·21f 1 8X(rei1J) 8X(rei8 ) \ 
-. I I ~ cos e + 8 ,_sine) de 
2n lo \ ax y ; 

__!__ r21f ~[rei(} (ax -iax) (rei())l de 
2n lo ox oy J 

1 r2
7r [ . (ax ax') . 1 ~- ) 1 re'8 - - i- (re'8) 1 d(} 

2n 0 \OX oy J 

1 r (ax ax) ~;:;- f -i --i- (z)dz 
L-1f Jizf=r OX 8y 

c;s_!_ ¢(z) dz = __!__Flux( X). 
2n 2n 

Corollary 25.3 Either 
Flux( X) = (0, 0, , 

or· by a homothety, if necessary, we may assume that 

{21r . dX(r) 
L ?jJ(re'8 )de = 2n-1 -· = Flux(X) = (0, 0, 211-). 

JO at 

0 

(25.93) 

Proo[ Assume that Flux(X) o:J 0. By Lemma 25.1, X(r) = log , c2 , + + 
d2 + d3 ), where ci and di are constants, i = 1, 2, 3. Thus the X (r) lle on the 
straght line t(c1 , c2 , c3 ) + , d2 , d3 ). After a linear homothety H : R 3 -+ R 3 , we may 
assume that H[(c1 , c2 , c3 )] = (0, 0, 1) Thus by Lemma 25.2, 

0 
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Remark 25.4 Thus we can always assume that X has vertical flux and that if Flux( X) 1-
0 then 

Flux(X) = (0, 0, 2n) 

after a suitable homothety. We will say that a minimal annulus with the above flux is 
normalised. 

We are interested in the arclength of the closed curve Xllzl=r· By (7.28) 

The arclength L(r) of the closed curve Xllzl=,· is 

L(r) = { ds = {2
7r rAde = f 2

7r ~ (11/!3 1 + l1/!3g1) de. 
Jlzl=r Jo Jo 2 I g 

(25.94) 

Theorem 25.5 For any minimal annulus, 

d2L 
dt2 2:: L. (25.95) 

Equality holds if and only if the surface is the portion of a catenoid bounded by parallel 
coaxial circles, or an annulus in the plane. 

Proof. The same calculation as in the proof of Lemma 25.1 leads to: 

(25.96) 

Now we have 

and 

Since both d2Ljdt2 and L are continuous functions ofr, it follows from (25.93), (25.94), 
(25.96) that in order to prove (25.95) it suffices to prove the following lemma. D 

Lemma 25.6 Let F(z) be holomorphic in A, and satisfy 

fo 2
1r F(rew)de = 0. 

Then on every circle Jzl = r where F has no zeros, the inequality 

fo2
7r r 2 6 !Fide 2:: fo2

7r !Fide 

is valid. Equality holds if and ifF is a constant multiple of z or ljz. 
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Proof. Let G(z) be holomorphic in an annulus, and have the Laurent expansion 

(25.99) 
-00 

Then 

(25.100) 

and 

(25.101) 

Thus 
r2~ r2~ 

lo r2 IG'(rei0)l 2dB?: lo IG(rei0Wde- 27rlaol 2 (25.102) 

and since i:.IGI2 = 4(EPjozoz)(GG) = 4IG'I 2 , 

(25.103) 

Since F f- 0 on lzl = r, we may choose an annulus (by "thickening" this circle) in which 
F f- 0. Since F is holomorphic in this annulus, 

for some integer k. Corresponding to k is even or odd, there are two possibilities: 

either Case 1. F = G2 or Case 2. F = zG2 , 

where G is holomorphic in the annulus. 
Case 1. If G has the expansion (25.99), then the constant term in the expansion of 

F=G2 is 
00 

a~+ 2 L an a-n. 
n=l 

But condition (25.97) is equivalent to the vanishing of the constant term in the Laurent 
expansion of F. Thus 

00 

a~= -2 L an a-n 
n=l 

and 

or 

119 



Substituting this in (25.103) and using IFI = IGI 2 , yields 

(25.104) 

Thus in Case 1, not only does (25.98) hold but in fact a stronger form is valid, implying 
in particular that the inequality in (25.98) is strict. 

Case 2. Here F = zG2 and IFI = riGI 2 . We have 

Note that 

and 

LIFI IGI 2 L r + r L IGI 2 + 2DroDIGI 2 

r- 1 IGI 2 + 4riG'I 2 + 4r-1 (x, y) • (SR( GG'), -C:S(GG')) 

r- 1 IGI 2 + 4riG'I 2 + 4r-1SR(zGG'). 

4SR fo2
1r [rei0 (G- a0 )G']d8 > -4 fo2

7r ri(G- a0)G'I d() (25.105) 

We have 

> -2 fo2
1r IG- aol 2 d8- 2 fo2

7r r 2 IG'I 2 de. (25.106) 

t" riGI 2 dB+ 4 f 2
7r r 3 IG'I 2 d8 + 4 f 27r rSR(zGG')de 

JO lo Jo 
fo2

rr IFI d() + 4 fo 27r r 3 IG'I 2 d() + 4SR fo27r r[rei8 (G- ao)G']d() 

> fo27r IFI de+ 4 fo27r r31G'I2 de 

-2 fo2
7r ri(G- ao)l 2d8- 2 fo2

7r r 3 IG'I 2 d() 

fo 2
7r IFI de+ 2 fo2

7r I(G- ao)'l2 de- 2 fo2
7r ri(G- aoWde 

> fo27r IFI de. 

The equality holds if and only if (25.105) and (25.106) are both equalities, and 

fo 2
n r 2 I(G- ao)'l 2 d8 = fo2

7r I(G- aoWde. 

In particular, by (25.100) and (25.101), (25.107) holds if and only if 

an = 0 for lnl #- 1 or 0. 
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But if 

then 

-2fo2
7r IG- aol 2 de- 2 fo2

7r r 2 I(G- ao)'l 2 de= -81f(la1l 2r 2 + la-1l 2r-2). 

Comparing these two we have a 1 = 0. 
Thus we have 

and 

G(z) = a_ 1 + ao, 
z 

2 
G2( ) _ a_l 2 aoa-1 

z - 2 + a0 + 2 , 
z z 

Condition (25.97) then implies that a0a_ 1 = 0, so that F is of the form stated. D 

Remark 25.7 Note that in Case 2 the assumption (25.97) is not needed to deduce the 
inequality (25.98). Only in Case 1 did we use it, and there it is clearly necessary since, 
for example, (25.104) is false ifF is a non-zero constant. 

We now complete the proof of Theorem 25.5 by analysing when equality can hold in 
(25.95). Returning to (25.96) we see that for equality to hold in (25.95) we must have 

We therefore have four cases. 
Case 1. 

1/J3 
- = c1z, 1/J3g = b1z. 
g 

Then g is a constant, and so is ¢3 . It follows from (6.15), (6.18) and (6.26) that 

The image surface is in a plane, and the map X : A'---+ R 3 is a complex linear map into 
the plane. 

Case 2. 
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Again g is a constant, but this time 

The image is again a plane, but the map is this time the composition of 11 z with a 
complex linear map. 

Case 3. 

Then we have 'lj;3 = c, g = dl z, and ¢3 = cl z. Thus the Weierstrass data are g = dl z, 
fJ = (¢3lg)dz = (cld)dz. Making change z --t dl(, we see that g(() = (and (cld)dz = 
-c d( I (2• Thus c is real and the surface is part of a catenoid. 

Case 4. 

Again these give g = cz and fJ = b dz I z2 , and the surface is part of a catenoid. 
To prove the isoperimetric inequality for minimal annuli in the next section, we need 

further study the function L(r) for normalised surfaces. 

Lemma 25.8 For a non-zero flux normalised surface, 

L(r) 2: 21r for all r. (25.108) 

Equality can hold for at most one value of r. Moreover L(r0 ) = 21r if and only if the 
circle lzl = r0 maps onto a horizontal plane x3 = c and each radial direction along the 
circle maps· into a vertical direction in R 3 . 

Proof. Since X3(r) = logr, 

o = ~ f 21r[X3 (rei11 ) -logr]de. 
27r Jo 

Thus there is a well defined harmonic function v conjugate to X3 - log r in A such that 
f := X3 -log r + iv is holomorphic in A. Then by the Cauchy-Riemann equations and 
r 2 = zz, we have 

1 • • • X- iy 1 f = (X3 -logr)x + Wx = (X3)x- (logr)x- z(X3)y + z(logr)y = cP3- --2 - = ¢3--
r z 

and 'lj;3(z) = 1 + zf'(z). Since ¢i + ¢~ + ¢~ = 0, we have 
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Thus 

(25.109) 

The fact that L(r) can attain the minimum value 211 for at most one value of r is an 
immediate consequence of Theorem 25.5, which says L is a strictly convex function of 
logr. 

L(r0 ) = 211 if and only both of the inequalities in (25.109) become equalities. This 
means 

r A(r ei0) = 1"1'· (r ei0 )1 0 < () < 211 0 0 'f/3 0 ' - - ' 

fo2
7r I ?j;3 ( roeie) !de = I h2

1f ?j;3 ( roei0)del. 

Using the relation ?j;3 (z) = 1 + zf'(z) gives 

211 = fo 2
Jr ?j!3(roei8)dB = fo2

1f 8{[?j;3(roei8)]dB + i h2
7r 'S[?j;3(roei0 )]dB. 

Hence 

and 

(25.110) 

(25.111) 

I h2
1f ?j!3(roei0)dBI I /o2

1f ~[?j;3(roeie)]dBI :::; fo2
1f l~[?j;3(roei8 )]id8 (25.112) 

< h2
7r 17J'!3(roe0)ldB. 

For (25.111) to hold, we must have 

But 

(x + iy)[(X3)x- i(X3)y] = x(X3)x + y(X3)y + i[y(X3)x­

r(X3)r - i(X3)e. 

(25.113) 

(25.114) 

Thus (25.113) holds if and only X 3 (r0ei8 ) is constant, and DX3 is orthogonal to the 
circle izl = r0 . From (25.110), at each point of lzl = ro, 

(25.115) 
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But A= IXrl, and so (25.115) holds if and only if (Xi)r = 0 fori= 1, 2. 
Conversely, Xr is vertical means that (25.115) holds, and this implies (X3)r -1- 0. 

Thus by (25.114), SR?jJ3 cannot change sign on the circle lzl = r0 . The condition that X 3 

is constant on this circle implies (25.113), again using (25.114). These two facts yield 
equality in (25.112), hence in (25.111), while (25.115) gives equality in (25.110). This 
completes the proof of the lemma. D 

To prove the next theorem we need a lemma. 

Lemma 25.9 Let f(t) satisfy f"(t) 2: f(t) in some interval I. Then for all t0 , t in I, 

f(t) 2: f(to) cosh(t- to)+ f'(to) sinh(t- to). (25.116) 

Equality holds for some t1 -1- to if and only if it holds for all t between t0 and t 1 if and 
only if f"(t) = f(t) for all t between to and h. 

Proof. We have 

:t [f'(t) cosh t- f(t) sinh t)] =(!"-f) cosh t 2: 0. 

Hence t > t0 implies 

Thus 

and 

f' ( t) cosh t - f ( t) sinh t 2: .f' (to) cosh to - f ( t 0 ) sinh t0 . 

d ( f(t) ) 1 1 -d -- 2: [f (to) cosh to- f(to) sinh t 01--2-
t cosh t -cosh t 

j_~- f(to) 2: [f'(t0 ) cosh t 0 - f(t0 ) sinh to]( tanh t- tanh to). 
cosh r cosh t 0 

Multiplying out and simplifying, we obtain (25.116). 
An analogous argument holds for t < t 0 . 

For equality to hold, it must hold in (25.117), so that f" =f. 

(25.117) 

D 

Theorem 25.10 Let X : A '---+ R 3 be a minimal annulus. Further assume (by a 
reparametrisation of the form z = (jc if necessary) that L(r) attains a minimum L0 

for r = 1. Then the lengths the bov.ndary curves are greater than or equal to L0 /2n 
times the lengths of the corresponding boundary circles of the standard catenoid (the 
Weierstrass data are g = z, 17 = dz / z2 ) based on the same annulus. Equality can hold 
only if X is itself the standard catenoid. 

Proof. There are three cases, depending on whether L(r) is increasing throughout, 
decreasing throughout, or has an interior minimum. Again using the notation t = log r, 
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the minimum occurs at T = 1 or t = 0. If we use primes to denote derivatives with 
respect tot, then by Theorem 25.5, L"(t) 2: L(t), and by Lemma 25.9, 

L(t) 2: L(O) cosh t + L'(O) sinh t. 

In the case of an interior minimum, then L'(O) = 0, and 

for the values t 1 , t2 corresponding to the boundary curves. But we have seen that for 
the catenoid, the length function is L(t) = 21r cosh t. 

If Lis decreasing, then the boundary values are t = 0 and t = t 1 < 0. Using L'(O) :::; 0 
we obtain L(tr) 2: L(O) cosh t 1 , and the result is again true. A similar procedure applies 
if L is increasing. 

For equality to hold in any of these cases, it follows from Lemma 25.9 that (t) = 
L(t). According to Theorem 25.5, X must be a standard catenoid or else a plane 
annulus. However, a direct computation shows that for the plane annulus one has 
either L(t) = L(O)et, t 2: 0, or L(t) = L(O)e-t, t:::; 0, and which is strictly greater than 
L(O) cosh t. D 
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26 Isoperimetric Inequalities for Minimal Surfaces 

It is well known that for a plane Jordan curve with length L, the area A enclosed 
by the curve is less than or equal to L2 / 41f, with equality holding if and only if the 
curve is a circle. In this section we give such isoperimetric inequalities for simply or 
doubly connected minimal surfaces. For more general discussions and applications of 
the isoperimetric inequalities the reader can see [69]. 

The proof of the next theorem is from [68]. 

Theorem 26.1 Let M C R 3 be an immersed simply connected minimal surface with 
C = 8M a closed curve. Let L be the arclength of C, A the area of M, then 

(26.118) 

Proof. From (3.6) we have 

2A = fc(x- a)•nds 

for any a E R 3 . Here X is the coordinate function of M, n is the outward unit conormal 
to C and ds is the line element of C. Select a E C. We need prove that 

27r fc(x- a)•nds :S L2 . 

Let x(s) be the parametrisation of C by arclength and x(O) = x(L) =a. We want to 
select suitable frames in each Tx(s)R3 . For this purpose, let B(s) : Tx(s)M-+ Tx(s)M be 
the linear mapping which rotates n by 1r /2 and is zero in T1{s)· If we let (n, Bn, N) be 
the orthonormal basis of Tx(s)R3 , then B has the matrix form 

0 -1 0 

1 0 0 

0 0 0 

From this it is clear that 

1. \Bv\ :S \v\ for any v E R3 . 

Let ( e1 , e2 , e3) ( s) be vector fields along C such that 

e~(s) = yBei(s), i = 1, 2, 3, (26.119) 
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and (e1 , e2 , e3)(0) is an orthonormal basis of R 3 . Then property 2 guarantees that 
(ei • ej)(s) is a constant, thus (e1 , e2, e3)(s) is an orthonormal basis of R 3 for any 
s E [0, L]. We can write · 

3 

x(s)- a= I:Ci(s)ei(s). 
i=l 

Then 

3 7r 3 3 7r 

x'(s) = I:c~(s)ei(s) + L I:ci(s)Bei(s) = L:>~(s)ei(s) + -B[x(s)- a]. 
i=l i=l i=l L 

Thus 

lx'(sW 
3 I x' ( s) e B [ x ( s) - a] + x' ( s) • L c; ( s) ei ( s) 

i=l 

[3 l [3 ] I x' ( s) • B [ x ( s) - a] + t; c; ( s) ei ( s) J • t; c; ( s) ei ( s) 

+IB[x(s)- a]• [tc;(s)ei(s)] 

3 

Ix' (s) eB[x(s) -a]+~ c:(s )2 + IB[x(s) - a]o { x'(s) - IB[x(s) -a]} 

2n 3 n2 
yx'(s) eB[x(s) -a]+ L c;(s)2 - £2 B[x(s) -a] i!B[x(s)- a] 

,=1 
2n 3 2 
yx'(s) lll>B[x(s) -a]+~ c;(s)2 - ~2 lx(s)- al 2 

2 

+ ~2 (lx(s) - al 2 - IB[x(s) - aW) 

2{ x'(s) e~B[x(s) -a]+ t [c;(s )2 - ~: c7(s)] 

7r2 

+ £2 (lx(s)- ai 2 - IB[x(s)- aW). 

Since Bx'(s) = -n, 
[x(s)- a] en= -[x(s)- a]•Bx'(s) = x1(s)tJB[x(s)- a], 

we find that 

2n [(X- a)onds = 2n fL x'(s)•B[x(s)- a] ds 
.c Jo 
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= L2- L foL ~ [c~(s) 2 - ~:c~(s)] ds- ~ foL (lx(s)- al 2 -IB[x(s)- aW) ds. 

The fact x(O) =a and x'(O) exists give that ci(O) = 0, c~(O) E R, i = 1, 2, 3, thus the 
functions 

bi(s) = ci(s) 
sin ( 7) 

are well defined for i = 1, 2, 3. Using the identities 

'( )2 . 2 1l" 1l" d ( 2( ) . 21l"S) 
bi s sm L + 2L ds bi s sm L 

I 2 • 2 1f 1f d ( 2 1l"S) 
bi ( s) sm L + L ds ci ( s) cot T , 

and IB[x(s)- a] I ::; lx(s)- al, we obtain 

D 

Remark 26.2 This isoperimetric inequality is also true for simply connected minimal 
surfaces in Rn, n ~ 3. The proof is the same as above. See [68]. 

Next we study the doubly connected case, the proof is from [70]. We will use the 
notation in the last section. 

Theorem 26.3 Let A be the area of a minimal annulus X :A<-+ R 3 , £ 1 and L2 the 
length of its boundary curves C1 and C2; and let L = £ 1 + L2 • If Flux( X) = 0 or there 
are no planes separating the two boundary curves, then 

(26.120) 

or, equivalently, 
L2 - 4nA ~ 2£1£2. (26.121) 

For arbitrary minimal annulus, we have 

(26.122) 

Proof. From the area formula (3.6) we have 

2A= { X•nds+ { X•nds. 
lc1 lc2 

128 



In the proof of Theorem 26.1, we have 

M1 := Li- 27r [ (X- Pl)•rids;::: 0, 
Jc1 

where Pi E Ci. (Note that we did not use that Ci encloses a simply connected minimal 
surface in the proof of the above inequalities.) Now remember that 

- f rids= 1 rids= Flux(X). 
lc1 c2 

We have 
Li + L~- 41fA = M1 + M2- 21r(p2- PI)eFlux(X). 

So if Flux(X) = 0, then we have (26.120). If Flux(X) =/=- 0, then take a plane Pd 
defined by xeFlux(X) =d. All dE R such that Pd n Ci =/=- (/J form two closed intervals 
in R. If no planes separate C1 and C2 , then these two intervals have common points, 
and thus we can find Pi E Ci such that p1@ Flux( X) = p2 e Flux( X); again we get 
(26.120). 

Now we consider the case that Flux(X) =/=- 0 and there is a plane separating C1 and 
C2 . Note that after a homothety, both sides of (26.122) are multiplied by a positive 
constant, thus by Corollary 25.3 we can assume that 

Flux(X) = (0, 0, 21f). 

So we have X 3 (r) = logr. This implies that the planes Pi:= {x3 = logri} intersect Ci 
respectively. Thus selecting Pi E Pin Ci, we have 

and 

27r(P2- pi)iiiFlux(X) = 47r2 (logr2 -logri) = 47r2 log r2 , 
rl 

Li + L~- 47f A= M1 + M2 - 47f2 log r 2 . (26.123) 
r1 

We now apply Theorem 25.10. Recall that r 1 ::::; 1::::; r 2 and that L(r) is a minimum for 
r = 1. We let 

Ki := 1f (ri + :J , i = 1, 2, 

be the lengths of the corresponding boundary circles on the standard catenoid. Then 

2 r2 2 r2 
1r - < K1K2 < 47f -. 

rl rl 

By Theorem 25.10 and Lemma 25.8, K1K 2 ::::; L 1L2 . Finally, if we let ki = we 
have 
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The last inequality follows from the elementary fact that 

2log x < x log 2 for x > 4, 

combined with Ki 2: 21r, k1 k2 = L1L2 /1r2 2: K 1K 2 /1r2 2: 4. Substituting in (26.123) 
gives (26.122), and the theorem is proved. 0 

Remark 26.4 The inequalities (26.120) and (26.121) are also true for minimal annuli 
in Rn, n 2: 3, satisfying the corresponding conditions. The proof is similar, see [70]. 
The inequality (26.122) is true in R 3 since we have Theorem 25.10, thus if Theorem 
25.10 is true in Rn then (26.122) is also true in Rn. 
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27 Minimal Annuli in a Slab 

Recall that a catenoid is a rotation surface, hence is foliated bycircles in parallel planes. 
A good question to ask is whether there are other minimal annuli which can be foliated 
by circles. It was B. Riemann [72] and Enneper [14] who solved this problem very 
satisfactorily. The answer is that there is only one one-parameter family of such surfaces 
up to a homothety. Each minimal annuli in this one-parameter family is contained in 
a slab and foliated by circles, and its boundary is a pair of parallel straight lines. 
Rotating repeatly about these boundary straight lines gives a one-parameter family of 
singly periodic minimal surface; these surfaces are called Riemann's examples. 

For the details of the proof of existence and other properties of Riemann's examples, 
see [61], section 5.4, Cyclic minimal surfaces. For constructions of Riemann's examples 
using the Weierstrass functions please see [25]. It is also known that a pair of parallel 
straight lines can only bound a piece of Riemann's example, if they bound any minimal 
annulus at all, see for example, [17]. 

Now we are going to study minimal annuli in a slab. Let Pt = {(x, y, z) E R 3 lz = 
t} and S(t1 , t2 ) = {(x, y, z) E R 3 lt1 :::; z :::; t2 , t1 < t 2}. Consider a minimal annulus 
X : AR Y S(t1, t2) such that X( {lzl = 1/ R}) c Ptj) X( {lzl = R}) c Pt2 and X is 
continuous on AR· We will call such a minimal annulus a minimal annulus in a slab. 
By a homothety we can normalize t1 and t 2 such that t 1 = -1 and t2 = 1. We will 
denote the image X(AR) c S( -1, 1) by A and let A(t) = An Pt for -1 :::; t :::; 1. 
When discussing a minimal annulus in a slab, we often just refer to it by the image 
A= X(AR)· 

We want to derive the Enneper-Weierstrass representation of a minimal annulus in 
a slab. Let A be a minimal annulus in a slab. The third coordinate function X 3 is 
harmonic, X 3 l{lzl=l/R} -1, and X 3 klzi=R} = 1. By uniqueness of solutions to the 
Dirichlet problem 

{ 
6u= 0 

ul{lzl=l/R} = -1, Uj{lzi=R} = 1, 

where Int(AR) is the interior of AR, we have X 3 = lo~R log lzl, and 

8 3 d(l ) 11 
w3 = f(z)g(z)dz = 2 ozX dz = dz log R log z dz = log R-;- dz. 

Hence f ( z) = lo~ R zg(z)" Here of course g is the Gauss map in the Enneper-Weierstrass 
representation and f(z)dz ='fl. Thus by (6.26) we have 

wl - 1-.l(l- g)dz 
logR 2z g 

W2 1 i e + )dz 
JogR 2z g g (27.124) 

W3 1 ld 
!ogRz z. 
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The immersion is given by 

X(p) = -~J,P -(--g), -(-+g), - dz+C, 1 ( 1 1 i 1 1) 
log R 1 2z g 2z g z 

(27.125) 

where C = (a,b,O) E R 3 . Since X is well defined, for ry = {lzl = 1} cAR, 

1 ( 1 1 i 1 1) __, 
~ -(--g), -(-+g), - dz=O. 

7 2z g 2z g z 
(27.126) 

On the other hand, if g and f are meromorphic and holomorphic functions in AR, 
such that (27.124) defines three holomorphic 1-forms and (27.i26) is satisfied, then 
(27.125) defines a minimal annulus in the slab S(-1, 1). 

The conformal factor of a minimal annulus in a slab is 

and the Gauss curvature is 

K = _ [4logRizllgll9'1] 2 

(1 + lgl2)2 

One observation about the Gauss map of a minimal annulus in a slab is: 

(27.127) 

(27.128) 

Proposition 27.1 Let A be a minimal annulus in a slab such that X is smooth up to 
the boundary (in fact, C 2 will be enough), then the Gauss map g of A has no zeros or 
poles on AR. Furthermore, lgl and lgl-1 are both bounded. 

Proof. From (27.125) we see that for any -1 ::; t::; 1,A(t) =An Pt is the image 
X( {lzl = Rt} ). From Corollary 4.5 we get immediately that g has no zeros or poles in 
Int(AR), because otherwise the preimage of A(t) will have an equiangular system of at 
least order 4 at the pole or zero points. 

Since X is continuous on AR, A is compact. It remains only to prove that on the 
boundary of A, the Gauss map N is not perpendicular to the xy-plane. Since our 
boundary is smooth, the projection of the boundary into the xy plane satisfies the 
sphere condition, inner or outer. By boundary regularity theory, X is C 1'"', a E (0, 1), 
up to the boundary (see [12], Vol. 2, Chapter 7), hence at every boundary point there 
is a well defined normal direction. · 

Near any boundary point p that has a vertical normal, the surface is a graph over a 
small open disk D c P1 with p on oD, assuming that p E A(1). Then we can use the 
minimal surface equation (4.8). We write (x,y,z) E A, where z = z(x,y) satisfies 
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Since X 3 , the third coordinate function of A, is harmonic, by the maximum principle 
we have for any (x, y) ED that z(x, y) < 1 = z(p). Define a uniformly elliptic operator 
on a smaller domain if necessary, 

Lu = (1 + z~)uxx - 2zxZyUxy + (1 + z;)uyy· 

Then z satisfies Lz = 0. It is well known that 

8z 
8v (p) > O, 

where vis the outward normal to 8D at p (see [21], Lemma 4, page 34). But this means 
that the normal is not vertical. This contradiction proves that N is never vertical on the 
boundary of A. Since X is smooth, g and g-1 are continuous up to boundary (we can 
see this by g =ToN); hence by the maximum principle both lgl and lgl-1 are bounded. 
D 

If a minimal annulus A in a slab satisfies that A( -1) and A(1) are continuous convex 
Jordan curves, we will call A a convex boundary minimal annulus or CBA. 

Theorem 27.2 If A is a CBA and r = 8A is smooth, then An Pt is a strictly convex 
Jordan curve for every -1 < t < 1. In particular, X: AR Y 5( -1, 1) is an embedding. 

Proof. By Proposition 9.2 we have A = X(AR) for some R > 1. And by regularity 
theory, X is smooth up to the boundary. At any point of A(t) =An Pt, --1 :::; t:::; 1, 
draw a tangent vector to the curve A(t), and let 1/J be the angle made by this tangent 
vector with the positive x-axis. The 1/J may be a multivalued function, but we will see 
that it is harmonic. To see this, consider the unit normal vector n of the curve A(t), 
and its angle with the positive x-axis ¢. If we orient the surface such that the normal 
is inward to the unbounded component of S ( -1, 1) - A, then we have 1/J = ¢ + 1r /2. 
By Proposition 27.1, g f 0 or oo on AR, hence the unit normal vector n must be 
i!r E C ~ R 2 in complex form. Because ¢ = arg g = CS log g, ¢is harmonic and so is 1/J. 

Now suppose that s is the arc length parameter of the curve A(t) and notice that 
by (27.125) x-1 (A(t)) = {z : lzl = r = Rt}. Writing z = rei0 , we can calculate the 
curvature of At as follows: 

K, = 1/Js =cPs= ~(CS!ogg) = CS (~logg) = CS (~loggdz) 
ds ds dz ds 

G (g' dz de) _ G (g',. -lA-1) _ -1A-11n ( g') ::s --- - ::s -1zr - r :n z- . 
g~~ g g 

Here we have used the facts that on the curve {lzl = r = Rt}, 

dz . ;e . 
de = zre = zz, and ds = Aldzl = Arde. 
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Since h = 2R ( z f) = r A"' is harmonic and r A > 0, we see that if r is smooth (in fact 
· C2,a is enough) convex then h 2: 0 on oAR, and hence by the maximum principle, h > 0 

in Int(AR) and so"'= r-1A-1h is also positive. Thus A.(t) is locally strictly convex. 
Since r = A(I) U A( -1) consists of two Jordan curves, we have 

r "'ds = 21r. 
}JzJ=R±l 

By continuity it must be that 

{ K,dS = 21f for - 1 S t S 1. 
JJzJ=Rt 

This proves that A(t) must be simple. Since "'> 0 on A(t), we conclude that A(t) is a 
strictly convex Jordan curve for -1 < t < 1. D 

Remark 27.3 We have used the non-trivial regularity theorem which says that if oA 
is C2,a then X: AR '---+ S( -1, I) is also C2,a. See [12] II, Theorem 1, page 33. 

Theorem 27.4 Let A be a CBA and oA be smooth. Then there is a p > 1 such that 
the Gauss map g : AR -+ C is a conformal diffeomorphism to 0 C Ap = { z E C : 1/ p s 
lzl S p}. 

Proof. By Proposition 27.1, jgj and jgj-1 are both bounded, and so we need only prove 
that g is a diffeomorphism. Indeed, by Theorem 27.2, 

and so g' # 0 in Int(AR) and hence g is a local diffeomorphism. 
Consider the set 'Y = {z : ¢(z) = const}. Since argg = ¢ = 'ljJ- 1rj2 is strictly 

increasing on each {izl = r} C Int(AR) (remember that "' = ¢s > 0, in fact ¢ takes 
every value between 0 and 21r on {izl = r} exactly once), we see that 'Y is a smooth 
Jordan arc connecting {izl = 1/R} and {izl = R}. Let tbe the unit tangent vector 
of 'Y and n its unit normal vector, such that ({, n) has positive orientation. Then since 
logg = logjgj +iargg is holomorphic, we have -filogjgj = {¢ = 0 and so tlogjgj # 0 
on "(, as otherwise we would have g' = 0. Thus whenever arg g(z1 ) = arg g(z2) and 
z1 # z2, then log jg(zl)l #log jg(z2)j, so g(z1) # g(z2). The holomorphic function g is a 
one-to-one local diffeomorphism, hence is a conformal diffeomorphism. D 

Corollary 27.5 The total Gauss curvature of a CBA is larger than -41f. 

One interesting corollary of Theorem 27.4 is that 

Corollary 27.6 If A is a CBA with smooth boundary then the second eigenvalue of LA 
is positive. 
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Proof. By Theorem 27.4, N is an anti-conformal diffeomorphism. By Corollary 32.7 
of Appendix, the second eigenvalue of L-.s on (N(AR)) is larger than 2, thus A2 (A) > 0. 
0 

Remember that the index of A is 

Index(A) = L dimV,\(A), 
A<O 

where VA is the eigenspace corresponding to the eigenvalue A. 

Corollary 27.7 Let A be a CBA, then 

{ 
0, if A is stable or almost stable; 

Index(A) = 
1, if A is unstable. 

(27.129) 

Proof. We need only prove the unstable case. First assume that 8A is smooth. By 
Corollary 32.9 of Appendix and Corollary 27.6, dim V,\1 = 1 and A2 (A) > 0, hence 
Index(A) ::_:; 1. But if A is unstable, Index(A) 2: 1, thus Index(A) = 1. 

If 8A is only continuous, we define a family of diffeomorphisms of AR into itself by 

ft(z) = ft(rei 8 ) = r1-tei8 , 0 ::_:; t < 1. 

Then fa= IdAR' ft(AR) C !s(AR) for 0 ::_:; s < t < 1, and limt--ti ft(AR) = {z: jzj = 1}; 
thus limt--tiVol(ft(AR)) = 0. 

Using the embedding X, we get a family of diffeomorphisms of A into A, c1 = 
X oftox-I, 0 ::_:; t < 1, satisfying c1(A) =An S(t- 1,1- t). Note that by Theorem 
29.1 of Section 29, each Ct(A), 0 < t < 1 is a CBA and has smooth boundary, we can 
use Theorem 27.4 and Corollary 27.6. Moreover, we have 

1. co = identity; 
2. Ct(A) C c5 (A), for 0 ::_:; s < t < 1; 
3. limt--tiVol(ct(A)) = 0. 

Recall that nullity(c1(A)) =dim V0 (c1(A)). By a theorem of Morse, Simons, and Smale 
(see [46], p 52) we have that 

Index(A) = Lnullity(ct(A)). 
t>O 

If ct(A) is almost stable then 0 is the first eigenvalue of Ct(A), so by Corollary 32.9 of 
Appendix, nullity(ct(A)) =dim Vo(ct(A)) = 1. For any s > t, c8 (A) C c1(A) is a proper 
subdomain, so AI (cs(A)) > AI (ct(A)) = 0 and nullity(cs(A)) = 0. If c1(A) is unstable 
and nullity(ct(A)) > 0, then 0 is at least the second eigenvalue of Ct(A), contradicts 
Corollary 27.6. Hence we have proved that at most one t E (0, 1) can be such that 
nullity(ct(A)) = 1 and for the other t we must have nullity(ct(A)) = 0. We conclude 
that Index(A) ::_:; 1. But if A is unstable, Index(A) 2: 1, thus Index(A) = 1. 0 
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Theorem 27.8 The index of the catenoid is 1. 

Proof. Let C be the catenoid given by Example 14.2. C(t) := CnS( -t, t) is a CBA for 
t > 0. Thus index(C(t)) ::::; 1. Since any precompact domain Bin C- {0} is contained 
in some AR, it follows X(B) C X(AR) = C(log R). By the definition of index of C, see 
(20.85), we have index(C) ::::; 1. 

Since g(z) = z is one-to-one we know by Section 20 that any precompact domain 0 c 
5 2 - { (0, 0, 1), (0, 0, -1)} such that the first eigenvalue of t:-,. 8 , .:\1 (0) < 2, corresponding 
to an unstable precompact domain on C. Since the first eigenvalue of 1':-,.8 on 5 2 is 
0, there are plenty precompact domains in 52 - {(0, 0, 1), (0, 0, -1)} with the first 
eigenvalue less than 2, a consequence of the fact that .:\1 is continuously dependent on 
domains. Thus C is not stable and index( C) 2: 1. 0 
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28 The Existence of Minimal Annuli in a Slab 

Given two Jordan curves f 1 , f 2 in R 3 , does r := f 1 Uf2 bound a minimal annulus? 
This is called the Douglas-Plateau problem which is a generalisation of the original 
Plateau problem. If the answer to the Douglas-Plateau problem for a given r is yes, 
then we can ask that how many such minimal annuli are there? 

These are very hard and interesting problems. Generally, they are attacked with 
concepts and techniques, such as those from the geometric measure theory which are 
quite different from the classical setting as in our notes, 

One classical result due to Douglas says that if .!h and A2 are the areas least area 
minimal disks bounded by r 1 and r 2 respectively, and 

inf{Area(S)} < A1 + 

then there is a minimal annulus bounded by r. Here the infimum is taken over all 
surfaces of annular type bounded by r. See [13], or [9]. 

In many cases the answers to the Douglas-Plateau problem are no. One example is 
that of two coaxial unit circles and C2 . If the distance d between their centres is 
large then C1 U cannot bound a catenoid, and therefore as Shiffman's second theorem 
(Theorem 29.2) C1 u C2 cannot bound a minimal annulus. 

vVhen f 1 and r 2 are smooth convex planar Jordan curves lying in 
different) planes, the Douglas-Plateau problem has a very ansv1er. The 
combined result of Hoffman and Meeks [28], and Meeks and 

Let r = r 1 U r 2 . Then there are exactly three cases: 

1. There are exactly two minimal anmtli bounded by r, one is stable and one ;;s 
unstable. 

2. There is a unique minimal annulus A bounded by r; it is almost stable in the sense 
that the first eigenvalue of LA is zero. This case is not generic. 

3. There are no minimal annuli bounded by r. 

4. Moreover, if A is a minimal annulus bounded by r, then the 
A is the same as the symmetry group of r. 

group of 

We are not going to discuss the Douglas-Plateau problem in these notes. Rather, we 
would like to point out some necessary conditions on r if it bounds a minimal annulus. 

The next theorem is due to Osserman and Schiffer [70], we follow their proof. 

Theorem 28.1 Let o1 , o2 , c, d be posit,ive ntlmbers satisfying 

(28.130) 
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Let r 1 and r 2 be closed curves in R 3 . Let 

D2 := {x E R 3 1 (x1- c)2 +x~ < o~,x3 = d}. 

Then if r 1 c D 1 and f 2 c D2, there does not exist any minimal annulus spanning f 1 
and f 2 . More generally, the same conclusion holds if we replace Di by DL i = 1, 2, 
where 

D~ := {X E R 3
1 ( X1 - ~X3 r +X~ :S oi, X3 :S 0} , 

D; := {X E R3
1 (x1- ~X3 r +X~ :S 0~, X3 ~ d}. 

Remark 28.2 Note that r 1 or f 2 need not be Jordan curves. Moreover, the theorem 
is true for minimal annuli in Rn where n ~ 3, with the same proof, see [70]. 

Suppose f 1 c Po and f 2 c Pd. Let C1 and C2 in P0 and Pd be the smallest circles 
which enclose r 1 and r 2 respectively. Let their radii be 61 and 62 . The vertical distance 
between the centres of C1 and C2 is of course d. Let c be the horizontal distance between 
the centres of C1 and C2 . Since we can alway adopt coordinates such that C1 and C2 

are the boundaries of D 1 and D 2 in Theorem 28.1, we conclude that if f 1 and f 2 span 
a minimal annulus then 

(; + d2 r/2 
:S 61 + 62. (28.131) 

In case f 1 and f 2 are Jordan curves, this is a result of Nitsche, see [63]. 

To prove Theorem 28.1 we need a lemma. 

Lemma 28.3 Let u be harmonic in an annulus A:= {r1 :S lzl :S r 2 }. Suppose b ~a, 
and 

ln211" 8u iO b - a 
r-8 (re )dB ~ 21r 1 ( I )' 

o r og r2 T1 

Proof. Given E > 0, let 

b-a-E r 
v:=u-a- log-. 

log(r2/rl) r1 
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Then v is harmonic in A, and 

(28.132) 

Choose E1, 0 < E1 < E, such that Dv # 0 on the level curve C := {z E A I v(z) = E1}. 

Then C must consist of one or more analytic Jordan curves. But if any subset C' of C 
bounds a domain Sl c A, the function v would be constant on Sl, hence in the whole A, 
which contradicts (28.132). Thus C consists of a single curve not homologous to zero. 
Choose o such that 

r1 < o <min lzl. 
zEC 

Then Cis homologous to the circle lzl = o, and hence 

J av ds = 1 av ds. 
can lzi=J an 

But v :2: E1 outside c and v = E1 on C. Therefore avjon :2: 0 on c, where ojon is the 
exterior normal derivative. Thus 

Using the explicit expression for v, we obtain 

121f OU iO b - a - E 
--;::;-(oe )ode221r1 ( 1 )" 

o ur og r2 r1 

Since u is harmonic, the expression on the left side is independent of o, hence this 
inequality holds on every circle lzl = r. Since E was arbitrary, the lemma is proved. D 

Proof of Theorem 28.1. Suppose X : A = {r1 :::; lzl :::; T2 } '---+ R 3 is a minimal 
annulus such that XI is a parametrisation of ri, i = 1, 2. We shall show that 

lzl=ri 
(28.130) cannot hold. 

We define a function u(z) in A by 

Using the fact that Xi's are harmonic, one can calculate that 

by (6.19). 
We assert next that if b is an arbitrary real number then 

b2 
min{lw- W + lw2 + 11} = 2 + 1, 
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where the minimum is taken over all complex numbers w. Namely, setting w = b + reiiJ 
' gives 

lw- W + lw2 + 11 r2 + lb2 + 2brei1J + r2e2iiJ + 11 
> r2 + b2 + 1 + 2br cos e + r2 cos 2e 

b2 + 1 + 2br cos e + 2r2 cos2 e (28.135) 

b2 + 1 + 2r2 (cose + !!_) 2
- b2 > b2 + 1. 

2r 2 - 2 

This gives a lower bound which is actually attained when w = b/2. This proves (28.134). 
Returning to 6.u, we therefore have 

Using the notation 

t = logr, 1 1211" U(t) = - u(reie)de, 
21f 0 

we find, as in the proof of Lemma 25.1, that 

(28.136) 

But 

(28.137) 

by virtue of (25.114). Now the assumption that f 1 c D~, f 2 c D~ implies that 
X3 (r1eiiJ) ~ 0 and X3 (r2ei1J) 2: d. By Lemma 28.3, we have 

(28.138) 

where 
(28.139) 

Combining (28.136), (28.137), (28.138) gives 

(28.140) 
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By the definition of D~, the statement ri c D~ implies u(rei0 ) ::; 67, and hence 

We may assume that t 1 = log r 1 = 0 and t 2 = log r 2 = T. Set 

so that (28.140) becomes 
d2U 2B 
->- O<t<T. 
dt2 - T 2 ' 

Define V(t) to be the parabola 

satisfying 
d2V 2B 
dt2 T 2 , V(O) = 6i, V(T) = 6~. 

It follows from (28.141), (28.143), (28.144) that 

U(t) ::; V(t), 0 < t < T. 

The conditions (28.144) determine the coefficients a, b of V: 

B 
a= T2' b = ~ ( 6~ - 5i - B) T . 

Since a> 0, V(t) has a minimum at t = t0 , where 

It follows that 

Thus 

to=_!!_ = T (~- 6~- 6?) . 
2a 2 2B 

t 0 > 0 <=? 5~ - 6f < B, 

t 0 < T <* 6~ - 6i > -B. 

0 <to < T <* 15~- 6il <B. 

(28.141) 

(28.142) 

(28.143) 

(28.144) 

(28.145) 

(28.146) 

(28.147) 

(28.148) 

We consider two cases, according to whether (28.148) does or does not hold. If it 
does not hold, then 

(28.149) 

On the other hand, if (28.148) does hold, then, by virtue of (28.145) and the fact that 
U(t) > 0 for all t, 

li(to) ~ U(to) > 0. 
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But by (28.146) and (28.147), 

V(to) 
b2 

--+82 >0 
4a 1 

9 b2 < 4a8i 9 (8~- 8i) - 2B(8~ + 8i) + B2 < 0 

::::? B < (8~ + 8i) + V(8~ + 8i)2 - (8~- 8i)2 = (82 + 81)2. 

Comparing with (28.149), we see in both cases we must have B < (81 + 82 ) 2 . But 
going back to the definition (28.142) of B, we see that under the assumption that a 
spanning surface exists, inequality (28.130) must be violated. This proves the theorem.· 
D 
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29 Shiffman's Theorems 

Recall that we defined a CBA as a minimal annulus A E S( -1, 1) such that A(1) = 
An P 1 and A( -1) =An P_1 are continuous convex Jordan curves. In the article [76] 
published in 1956, Max Shiffman proved three elegant theorems about a CBA. They 
are as follows: 

Theorem 29.1 If A is a CBA, then An Pt is a strictly convex Jordan curve for every 
-1 < t < 1. In particular, X: AR Y S(-1, 1) is an embedding. 

Theorem 29.2 If A is a CBA and r = oA is a union of circles, then An Pt is a circle 
for every -1 :::; t:::; 1. 

Theorem 29.3 If A is a CBA and r = oA is symmetric with respect to a plane 
perpendicular to xy-plane, then A is symmetric with respect to the same plane. 

We are going to prove the three Shiffman's theorems by means of the Enneper­
Weierstrass representation. We have already proved a weaker version of Theorem 29.1, 
namely Theorem 27.2 

Let us first prove Theorem 29.1. We follow the proof of Shiffman. We will write the 
immersion as X = (x, y, z). For any ( = reie E AR, since X is conformal, by (27.124) 
we have 

,2 + 2 _ 2 ( 2 I 2) + 1 
Xe Ye - r x,. ' Y,. (log R)2 

The immersion X: AR Y S( -1, 1) satisfies 

2 2 1 
Xe + Ye ~ (log R)2. (29.150) 

Since X is continuous on AR, A(1) and A( -1) are convex and hence rectifiable. More­
over, x(R, e) and y(R, e) are functions of bounded variation. Thus x0 (R, e) and y8(R, e) 
exist almost everywhere. Let I denote the set on which x 8 (R, e) and Ye(R, e) both exist. 
We will first prove that: 

Lemma 29.4 For any e E I, 

lim xe(r, e) = .Te(R, e), lim Ye(r, e)= Ye(R, 8), 
r~R r~R 

(29.151) 

and 
2 2 1 

Xe(R, e)+ Ye(R, e) ~ (log R)2. (29.152) 
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Proof. Let x and y be harmonic functions defined over the disk DR := r :S R with 
·· boundary values given by x(R, B) and y(R, B) respectively. The functions x(r, B) -x(r, B) 

and y(r, B)- y(r, B), being harmonic in AR and having the boundary value 0 on r = R, 
can be extended across r = R by reflection. Thus 

xo(r, B)- xo(r, B) -+ 0, Yo(r, B) - y0 (r, B) -+ 0, 

as r-+ R. 
Let P be the Poisson kernel of DR, 

P(Reicf> reio) = ~ R2 - r2 
' 2n R2 + r 2 - 2Rrcos(¢- B) 

Then the harmonic function x can be expressed as 

{271" 
x(r, B)= lo x(R, ¢)P(Reicf>, rei0 )d¢ .. 

Differentiating, we have 

{k 8P {k 8P {k 
x 0 (r, B)= lo x(R, ¢) 8B d¢ =- lo x(R, ¢) 8¢ d¢ = lo Pdx(R, ¢). 

It follows, as in the proof of theorem of Fatou (see [59] pages 198 -200) that 

lim x0(r, B) = xo(R, B) 
r-+R 

on I. Similarly for y0 . From (29.150) it is obvious that (29.152) is true. D 

Consider the harmonic function '1/J(r, B), the angle of the tangent vector of An Pt 
with the positive x-axis. We denote the angle defined by the tangent direction at A(1) 
by 'l/;(R, B) on I. Because of the convexity of A(1), 'l/;(R, B) is a monotonic function 
of B on I of period ±2n. We can assume that the period is 2n, and we shall call the 
orientation described on A(1) as B varies from 0 to 2n the positive orientation of A(1). 
The following lemma will be proved. 

Lemma 29.5 The period of '1/J(r, B) is exactly 2n, and 

lim '1/J(r, B) = 'l/;(R, B) for B E I. 
r-+R 

The single valued function '1/J(r, B) - B is a bounded harmonic function in AR· 

Proof. Consider the convex curve A(1). Select a point Q1 on A(1) at which there is a 
unique supporting line L of A(1), and let Q3 be a point on A(1) where a line parallel 
to L, but not coinciding with L, is a supporting line of A(1). Select a direction not 
included among the directions of all the supporting lines of A(1) at the point Q3 and 
let Q2 and Q4 be two points of A(1) at which there are supporting lines, distinct from 
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each other, in this direction. The numbering is such that Q1 , Q2 , Q3 , Q4 occur in the 
positive orientation around A(1). Consider these four supporting lines as taken in the 
positive direction in describing A(1), and let angles made by them with the positive 
x-axis be a 1 , a 2 , a 1 + 1r, a 2 + 1r, respectively, where 

Let the points on the circle r = R which are mapped onto Q1 , Q2 , Q3 , Q4 , be denoted 
by q1 , q2 , q3 , q4 , respectively. On the circle r = R denote the open arc from q1 to q3 

(taken in the positive orientation and therefore including q2 ) by B1 , the open arc from 
q2 to q4 by B2, from q3 to q1 by B3, and from q4 to q2 by B4 . Finally, let Ci be a closed 
arc on r = R contained in Bi, i = 1, 2, 3, 4, such that the C; together cover r = R. 

Note that 
(xe, Ye) = (x~ + y~) 1 1 2 (cos1/J, sin 1/J), 

(ye, -xo) = (x~ + y~) 1 12 (sin 1/J,- cos 1/J). 

Consider first the function 

y1 (r, e) = y(r, e) cos 0:1 - x(r, e) sin 0:1, 

which is a harmonic function of (r, e) in AR. Then 

8Y1 (r, e) 
ae Ye(r, e) cos et1- xe(r, e) sin et1 

(ye, -Xe) (r, e) <11> (COS et1, sin et1) 

(x~ + y~) 1 12 (sin 1/J,- cos 1/J)"'" (cos a 1 , sin a I) 
(x~ + y~) 1 12 sin('l/J- a1). 

(29.153) 

(29.154) 

On the arc B 1 of r = R, the function Y1 ( R, e) is a monotonically increasing function 
of e, since the arc B 1 corresponds to the portion of A(1) from Q1 to Q3 ; thus a 1 ::; 1/J::; 

a 1 +Jr. In analogy to the proof of Lemma 29.4, the formula for aV1~,e) is 

(29.155) 

where CB1 is the complement of B1 . The first integral in (29.155) is 2: 0 for all (r,13), 
since Y1 (R, ¢) is an increasing function of ¢ in B1 ; the second integral in (29.155) 
approaches 0 as ( r, 8) approaches an interior point of B1 . Thus 

l . . f 8Y1(r, e) > 0 lm 111 . 
(r,O)--+C1 8() -

It follows that likewise 
l. . f 8Y1 (r,8) >O 
1m m . 

(r,8)--+C1 8e - (29.156) 
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Take a positive E and E1 = (log R)-1E such that 

. . ( cx2 - cx1 cx1 + 1r - Ctz) 6 = arcsm E < mm 2 , 2 . 

By (29.156) there is a region Rl in AR, enclosing cl, for which 

8Y1(r, e) ae > -El, (r, e) E R1. 

From (29.150) and (29.154) we therefore see that 

sin('l,b-cxl)>-E in R1 . (29.157) 

Selecting a determination of 1,b at a particular point of R1, we have 

(29.158) 

A similar argument applies to each of the other arcs B 2 , B3 , B 4 of the circle r = R, 
with cx2 , cx1 + n, cx2 + n, respectively, replacing cx1 in (29.153)-(29.158). On B 2 the 
function Y2 = y cos ();2 - X sin ();2 is an increasing function of e' leading to the result 

l. . f 8Yz(r, 8) > O 1m m . 
(r,O)-+C2 (I() -

There is, therefore, a region R2 of AR, enclosing C2 , for which 

And we have, analogously to (29.157), 

sin( 1,b- cx2 ) > -E m R2. 

But this means, from (29.158), begin with an already determined 1,b in the region com­
mon to R1, R2, that 

-6 < 1,b- Ctz < 1r + 6 in R2. 

Similar arguments apply successively to the determination of the regions R3 , R 4 and 
of the corresponding inequalities for 

(29.159) 

Therefore, in the portion common to R4 and R1, the value of 1,b returns to its initial 
value plus exactly 2n, or the period of 1,b is exactly 2n. 

The regions R 11 R2 , R 3 , R4 , together form a neighbourhood of the circle r = R in 

AR· 
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A similar argument as the above applies to the inner circler= 1IR and A(-1). By 
continuity, 1/J has period 2JT for every 11 R :::; r :::; R. 

Let e be a value ih the set I and take the limit of 1/J(r, e) as r ---+ R. By (29.151), 
(29.152) the limit of 1/J(r, e) is 1/J(R, e) modulo 2JT. But the inequalities (29.157), (29.158), 
(29.159) show that the limit must be exactly 1/J(R, e). The lemma is proved. 0 

We can now establish the inequality 

1/Je(r, e) > 0 (29.160) 

everywhere in the interior of AR· Let G = G(R, ¢, r, e) be the Green's function for the 
annular ring AR, with singularity at (r, e). In its dependence on¢ and e, G is a function 
of¢- e. We have 

where v is the inward normaL This follows by considering the analogous formula for an 
interior annular ring, and performing the passage to the limit. Differentiating (29.162) 
with respect to e, using 8( ac I 8v) I ae = -8( ac I av) I 8¢, and intergrating by parts, we 
find 

'i/Jo- 1 = i=R R~~ d['I/J(R, ¢)- ¢] + l=R-1 R- 1 ~~ d['I/J(R- 1, ¢)- ¢] 

or 
[ 8G 1 8G 

1/Je = Jr=R OV R d?j;(R, ¢) + r=R-1 8v R-1d'ljJ(R-1' ¢)' 

since 

1 8G Rd¢ + 1. 8G R-ld¢ = f 8G ds = 1. 
r=R OV r=R-1 OV laAR 8v 

Since 8GI8v > 0 and 1/J(R, ¢), 7/J(R-1 , ¢) are monotonic increasing functions of¢ 
period 2JT, inequality (29.160) is obtained. Thus each A(t) is a closed strictly convex 
curve and has total curvature 2JT, so it must be a Jordan curve. Therefore, X must be 
an embedding. Theorem 29.1 is proved. 0 

Theorem 29.2 is a special case of Theorem 30.1 in the next section, so we will 
postpone the proof until then. Instead we will prove Theorem 29.3 nexL 
Proof of Theorem 29.3 : We can assume that 8A is with respect to the 
xz-plane. By Theorem 29.1, each A ( z) is a strictly convex Jordan curve for -1 < z < 1; 
hence there are exactly two points on A n Pz at which the supporting lines of are 
perpendicular to the xz-plane. Varying z we get two curves on A, say o:1 and 0:2. Let 
P be the orthogonal projection on the xz-plane. The A consists of two pieces of graphs 
on the domain 0 = P(A) C xz-plane, thus we have (x, Yi(x, z), z), i = 1, 2. Moreover, 
f)fl = r 1 u r 2, where r 1 is the projection of A(l) u A( -1) and r2 = P(a1 u o:2). It is 
clear that on r 2 the graphs (x, Yi(x, z), z) are perpendicular to the xz-plane. 
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Now assume that A(1) and A( -1) are strictly convex. Reflecting the graph generated 
·· by y2 about the xz-plane we get a minimal graph generated by fh = -yz : S1 ---+ R. On 

f 1 , we have f;2 = y1 by the boundary symmetry. A theorem of Giusti ([22] Lemma 2.2) 
says that if (x, y1 (x, z), z) and (x, fh(x, z), z) are perpendicular to the xz-plane on f 2 

and y1 2: fJz on r 1, then Y1 2: fJ2 on S1. Since Y1 = fJz on f 1, we have Y1 = fJz in D. 
If A(l) or A( -1) is not strictly convex, then by continuity of the surface, we know 

that for any E > 0 there is a 6 > 0 so small that y1 (x, 1 - t) 2: f;2 (x, 1 - t) - E and 

y1 (x, -l+t) 2: f;2 (x, -1+t) -E for 0 < t < 6. Thus on Dn{(x, z) \-1+5 < z < 1-o}, 
y1 2: f;2. Letting E ---+ 0, we have Y1 2: fJ2 in D. Changing the role of Y1 and fJ2, we have 
Y1 = fJ2 in D. 

But y1 = f;2 means that A is symmetric about the xz-plane, the proof is complete. 
D 
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30 A Generalisation of Shiffman's Second Theorem 

Shiffman's second theorem says that if a minimal annulus is bounded by circles in 
parallel planes, then every level set is a circle. 

In [25], it is proved that the same conclusion is true if we replace the boundary 
circles in Theorem 29.2 by parallel straight lines and assume A is properly embedded. 

Furthermore, Toubiana [78] has proved that if two non-parallel straight lines lie in 
distinct parallel planes then they cannot bound any proper minimal annulus in the slab 
bounded by the planes. 

In this section we will give a generalization of the results stated above, with a unified 
proof. 

Theorem 30.1 Suppose A C S( -1, 1) is a minimal annulus in a slab and A(l) = 

An P 1 , A( -1) =An P_1 are straight lines or circles. 

1. If both A(1) and A( -1) are circles, then A( t) = An Pt is a circle for -1 < t < 1. 
In particular, A is embedded. 

2. If at least one of the A(1) and A( -1) is a straight line and A is properly embedded, 
then A(t) =An Pt is a circle for -1 < t < 1. 

Remark 30.2 The first part of Theorem 30.1 is exactly Shffiman's second theorem, 
Theorem 29.2. We will see that the second part of theorem 30.1 implies the results in 
[25] and [78]. 

Let A c S( -1, 1) be a proper minimal annulus such that A(1) = A n P1 and 
A( -1) = An P_ 1 are straight lines or circles and oA = A(1) U A( -1). In the case 
that there is only one straight line, we will always assume that A(l) is the straight line. 
Then the interior of A is conformally equivalent to the interior of 

for some 1 < R < oo. In fact the interior of A is conformally equivalent to 

{ z E c : p < I z I < P, 0 ::; p < p ::; 00}' 

for some p and P. Since A has !-dimensional boundary oA which is separated by 

the interior of A, it follows 0 < p and P < oo. Hence if R = J P / p > 1 then 
Int(A) ~ Int(AR)· 

There is a conformal harmonic immersion 

X: AR-c '---7 S(-1, 1), 

where Cis a subset of oAR and X( {lzl = R}-C) = A(1), X( {lzl = 1/ R}-C) =A( -1). 
If A(1) and A( -1) are both circles, then C = 0; if only A(1) is a straight line, then 
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C C {lzl = R}; if A(1) and A( -1) areboth straight lines, then C n {lzl = R} =/= 0 and 
·· C n {lzl = 1/ R} =/= 0. When C =/= 0 we assume that X is a proper embedding. 

The Enneper-Weierstrass representation of A is 

X(z) = ~ 1z (w1, w2, w3) + V, 

where V =(a, b, 0) E R 3 , and 

w1 = !(1- g2(z))f(z)dz, 

w2 = ~(1 + g2(z))f(z)dz, 

w3 = g(z)f(z)dz, 

(30.162) 

where g is the Gauss map and f is a holomorphic function. We first prove some facts 
about such a minimal immersion. 

Lemma 30.3 Suppose X : {1/R < lzl < R} -+ S(-1, 1) is a properly immersed 
minimal annulus and is embedded in a neighbourhood of {lzl = R} U {lzl = 1/ R}. Let 
g: {1/R < lzl < R}-+ C be the Gauss map of X. LetA= X({1/R < lzl < R}). 
Suppose that aA c g u P_1 and A(1) = aA n g, A(-1) = aA n P_1 are circles or 
straight lines. Let C C {lzl = 1/R} U {lzl = R} be the set such that IX(zn)l -+ oo 
whenever Zn-+ z E C, then C n {lzl = R} = p and C n {lzl = 1/ R} = q if they are not 
empty sets. The Gauss map g can be extended to a neighbourhood of AR such that the 
extended g at p and q has either zero or pole. Moreover, the Gauss map g has neither 
zero nor pole in a neighbourhood of AR except at p and q. 

Furthermore, the third coordinate function X 3 can be extended to the whole AR such 
that X 3 llzl=l/R = -1 and X 3 llzi=R = 1. 

Proof. Let J = X ( {I z I = 1}) be the Jordan curve on A and let A 1 be the proper 
minimal annulus in A with boundary A(1) and J. Suppose that A(1) is a straight 
line, then let S be the rotation around A(1) of angle Jr. By the Rotation Theorem 
(Theorem 8.2) and Extension Theorem (Theorem 4.2), A1 U S(A1) is a smooth proper 
minimal surface with boundary J U S(J). The conformal structure of A1 U S(A1) is 
then {1 < lzl < R2}- C n {lzl = R} (with the mapping Y(z) = X(z) for z EAR- C 
and Y(z) = S(X(R2z/lzl 2 )) for z E {R < lzl < R2 } ). 

Since {lzl = R} - C and {lzl = 1/ R} - C are homeomorphic to straight lines or 
circles, they are connected. It turns out that C n {lzl = R} and C n {lzl = 1/ R} are 
also connected, hence simply connected as an interval. 

Let D C {1 < lzl < R2 } be a disk like neighbourhood of C n {lzl = R} such 
that z E D if and only if R2z/lzl E D and aD is diffeomorphic to a circle, and the 
Y(aD) is a Jordan curve on A1 U S(A1 ) which bounds a properly embedded minimal 
annulus A= Y(D-Cn{lzl = R}). Since A1 nS(AI) is contained in the slab S(-1,3), 
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by the Cone Lemma (Theorem 21.1), A has finite total curvature. Then by Lemma 
10.5, Propositions 10.7 and 10.6, this annular end has the conformal structure of a 
punctured disk, and the Gauss map of A can be extended to the puncture. In particular, 
C n {lzl = R} is a single point p and the Gauss map g: D---+ C of Y can be extended 
top, and g(p) is either zero or oo. Similarly, we can prove that Cn {lzl = 1/R} = {q} 
if it is not empty and g(q) is either zero or oo. 

Since p corresponds to an embedded flat annular end, by Theorem 11.8 we know 
that there is a 61 > 0 such that when 1 - 61 < z < 1, Pz n A is compact. By Lemma 
23.2, the tangent plane of A at any point of An Pz is not parallel to the xy-plane. In 
particular, dX3 i- 0 on (X3 )-1(z). Thus (X3)-1(z) is a !-dimensional submanifold of 
AR consists of smooth loops. If it has more than one loop or any loop is homologically 
trivial, then using the maximum principle we can show that A is contained in a plane. 
Thus (X3)-1(z) is a homologically non-trivial smooth Jordan curve. Similarly, if A(-1) 
is a straight line, then there is a 62 > 0 such that when -1 < z < -1+62 , (X3 )-1 (z) is a 
homologically non-trivial smooth Jordan curve. Let A~ be the closed annulus bounded 
by (X3 )-1(z) and (X3)-1(-z), for 0 < 1- z < min{61,62}. Clearly A~ is compact and 
A~ = x-1(A n S( -z, z)) . Since An Pz is compact for -1 < z < 1, by Lemma 23.2, 
the extended Gauss map g of Y does not equal to zero or oo in a neighbourhood of AR 
except at p or q. 

For any sequence Zn ---+ p, since p tj_ A~ for 1 - 61 < z < 1, Zn tj_ A~ for almost all 
Zn. Thus X 3(zn) must converge to 1. Similarly, for any sequence Zn ---+ q, X 3(zn) must 
converge to -1. Thus the third coordinate function X 3 can be continuously extended 
to the whole AR such that X 3 llzi=1/R = -1 and X 3 llzi=R = 1. D 

The harmonic third coordinate function X 3 satisfies X 3 llzi=1/R = -1 and X 3 llzi=R = 1 
and -1 < X 3 lrnt(AR) < 1. Hence we have 

and 

Thus 

and 

1 
X 3 = --loglzl, 

logR 

8X3 d ( 1 ) 1 1 
w3 = f(z)g(z)dz = 2--a;:dz = dz logR logz dz = logR:;-dz. 

1 1 
f(z)--­

- logRzg(z)' 

w1 = - 1-1... (l -g) dz logR 2z g 

1 . (1 ) w2 = - _!:_ - + g dz 
logR 2z g 
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and X can be represented as 

Let 

1 fP ( 1 i 1) 
X(p) = log RSR J1 2z (1/ g- g), 2z (1/ g +g),-; dz + V. 

n=-oo 

1 

g(z) n=-oo 

Then by (27.126), (30.163) gives a minimal annulus if and only if 

S'(bo) = S'(ao), SR(bo) = -SR(ao). 

(30.163) 

(30.164) 

(30.165) 

Remark 30.4 Let S be the 180°-rotation around the straight line A(1) in R 3 , and 
S =Au S(A). Then 

f K dA = ~ f K dA, 
lA 2 ls (30.166) 

where K is the Gauss curvature, and dA is the area element of A. 

As in the proof of Theorem 27.2, "' = r-1 A - 1SR(zg' /g) in the interior of AR. We 
must prove that "' is a non-zero constant on each {lzl = r }, 1/ R < r < R. This is 
equivalent to prove that "-o = 0. For that we calculate 

Let 

H(z) 

(30.167) 
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Note that 
v := r A"'e = '25H. (30.168) 

Since r A > 0, to prove "'e = 0 we only need prove that v = 0. 
Since 

~ (zg') 2
- z.!!_ (zg') 

2 g dz g 
is holomorphic, we have 

6.H = 
02 H 02 [ 1 (zg') 2

] 0 -i? (zg') 2 

4 azaz = - 4 azaz 1 + lgl 2 g = - 4 az (1 + lgl2)2 g 
lg'l2(1 + lgl 2)- 2g'ggg' (zg') 2 

. gg' ( g') d ( g') 4 - +8 z- - z-(1 + lgl2)3 g (1 + lgl2)2 g dz g 
-8lg'l 2 [1lgl2- 1 (zg') 2 d ( g')] 

(1 + lgl2)2 2lgl2 + 1 g - z dz zg . 
By (7.28) and (7.30), 

A2 = _411!12 (1 + lgl2)2' K [ 4lg'l ] 2 
=- 1!1(1 + lgl 2)2 ) 

hence we have 

Thus 
(30.169) 

Taking the imaginary part, we have 

(30.170) 

Remember that 6.A = A ~2 6.AR = A - 2 6.. If r = A(1) and A( -1) are straight lines or 
circles, then "'e = 0 on oAR - c. Hence on AR, v satisfies 

{ 
6.Av- 2Kv = 0, 

vlaAR-C = 0, 

(30.171) 

We want to prove that vis continuous on AR and vlaAR = 0, i.e., vis an eigenfunction 
corresponding to the eigenvalue zero. When A(1) and A( -1) are circles this is certainly 
true. The next lemma shows that it is always true. 

Lemma 30.5 Let A be as in Theorem 30.1, p, q be as in Lemma 30.3, and v be as 
defined in {30.168). Then vis continuous on AR and vlaAR = 0. 
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Proof. Without loss of generality, we can assume that p = R. By Lemma 30.3, we 
·· can assume that the Gauss map g has limit zero at p = R and g can be extended to a 

holomorphic function g. Let ( = z- Ron a disk DP centered at z = R, we have 

where his a holomorphic function on Dp and h(R) #- 0. 
By definition, v = C:SH and 

H(z) = ~ lgl 2 - 1 (zg') 2 -zj_ (zg') = ( 1 - 1 ) (zg') 2 -~ (zg') 2 -zj_ (zg'). 
2 lgl 2 + 1 g dz g · lgl 2 + 1 g 2 g dz g 

For convenience, we will write g and h instead of g and h. Note that 

(2 (zg'(z))2 
g(z) 

is holomorphic on DP and since lgl 2 = lz- Rl 4lh(z)l2 = l(l 4lh(z)l 2 , 

-; (1- 1 2) =-; f(-1)k+llgl2k = (2 f(-1)k+ll(l4(k-l)lh(z)l2k 
( 1 + lgl ( k=l k=l 

is a coo complex function in a neighborhood of R. Thus 

w z . = 1 - 1 z g' = ~ 1 - 1 2 z g' ( z) ( ) ( )2 ( ) ( )2 
( ) · lgl 2 + 1 g ( 2 1 + lgl 2 ( g(z) 

is a c= complex valued function near z = R. If we can prove that 

1 (zg') 2 d (zg') <P(z) := -2 g - z dz g 

is holomorphic in a neighbourhood of R, then H is a coo complex valued function in a 
neighbourhood of R. In particular, v = CSH is coo in a neighbourhood of R, and thus 
v(R) = 0 since on lzl =Rand z #- R we already know that v(z) = 0. 

Since R corresponds to an embedded flat end, and that end intersects P1 at a straight 
line, we have n = 2 by Proposition 11.14. Hence 

where 

g'(z) 2R h'(z) 
zg(z) = z-R+2+zh(z)' or 

g'(z) _ a_l ~ ;-k 
z . ( ) - ;- + L..t aks , 

g z S k=O 

h'(R) 
a_ 1 = 2R and a0 = 2 + R h(R). 
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Moreover 

and 

(
7 g'(z)) 2 = a:_1 2a_lao ~b ;-k 

~ g(z) (2 + ( + f;:a k'> ' 

.!!___ ( g'(z)) = _ a_lR _ a_l (~" R) ~ k ;-k-1 
z dz z g(z) (2 ( + " + 6_ ak-, ' 

a~ 1 - 2a_lR = 0. 

We would like to prove that a_ 1a0 - a_ 1 = 0 and thus <I> is holomorphic near z = R. 
The a0 can be calculated as follows. The Weierstrass representation for the extended 

surfaceS is 
w1 = _l _ _l (l- g) dz 

log R 2z 9 

w - _l _ _j_ (l +g) dz 
2 - logR 2z 9 

W3 = lo~R~dz, 
as commented after Lemma 30.3. Let C be a loop around z = R in a small disk. Then 
since X: {z: 1/R < [z[ < R3}- {R} -t R 3 is well defined and 

X(z) = R {z (w1, w2, w3), 
}PO 

we must have 

?R k 21z (gtz) - g(z)) dz = 0, -8' k 21z (gtz) + g(z)) dz = 0, 

and 

r 2_dz = r !!..dz = 0, 
Jc zg lc z 

since g(z)jz is holomorphic at z = R. Hence we know that the residue of 1/zg(z) at 
z = R is zero. Hence we have 

0 = r ((z-R?)' r ( 1 )' 
zl!11 zg(z) = z~ zh(z) 

. ( 1 h'(z) ) 
}l!11 - z2 h(z) - zh2 (z) 

1 h'(R) 
R2 h(R) Rh2 (R). 

155 



Thus 
h'(R) 
h(R) 

1 
R' 

and 
h'(R) 

a0 = 2 + R h(R) = 1. 

This shows that a_lao - a_l = 0. 
Note that by orientability, if g(p) = 0 then g(q) = oo. Using 

(1/g)' g' 

1/g g 

we can prove that <P is holomorphic near q exactly as above. 

Now by (30.170) and Lemma 30.5, v is a Jacobi field. Moreover, v satisfies 

Recall that v = CSH = rA"'e· 

{ 
l:,Av -_2Kv = 0, 

vlaAR- 0. 

0 

(30.172) 

If v t:- 0, then the zero set of v divides AR into connected subdomains, called nodal 
domains. As mentioned in Section refsec, any proper subdomain of a nodal domain is 
stable. Thus by Theorem 20.3, the total curvature of each nodal domain is less than or 
equal to - 2n. Suppose that there are k nodal domains; the total curvature of A must 
be less than or equal to - 2kn. 

By our hypothesis that A is embedded and the proof of Lemma 30.3, A(t) is a Jordan 
curve for -1 < t < 1. By the four-vertex-theorem, see [36], which says that if "'e t:- 0 
then the zero set of K,g divides each A(t) into at least four components, we know that 
there are at least four nodal domains. Thus if v t:- 0, then K(A) :S -81r. 

The next lemma shows that in fact, K(A) 2: -4n. This contradiction then shows 
that v = 0, which is equivalent to"' being constant along each A(t) for -1 < t < 1. 
Since A(t) is a Jordan curve, we know that A(t) must be a circle. 

Lemma 30.6 Suppose that A c S( -1, 1) is a proper minimal annulus, and 8A = 
A(1)UA(-1). If A(1) = AnP1 and A(-1) = AnP_1 are circles or straight lines, then 

iKdA 2: -4n. 

Proof. If A(l) and A( -1) are both circles, then by Theorem 27.4 the Gauss map g is 
one-one onto a sphere domain. Hence fA K dA > -4n. 

Now assume that A(1) is a straight line and Cn {lzl = R} = {p}, then A(-1) is a 
circle. We will use the extended surface S in the proof of Lemma 30.3 to calculate the 
total curvature of A. Notice that S has an embedded flat annular end corresponding 
to the point p. Since the end is embedded, the order of A at that end is 2. Let 
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Dp C {1/ R < lzl < R 3 } be a disk centred at p and radius p. Note that x( {1/ R < lzl < 
R3 } - {p}) = -1. By the Gauss-Bonnet theorem 

K(S) = -21r -1 "'9ds- { "'9ds- { "'9 ds. 
lzl=1/ R Jlzi=R3 laDp 

Using the same argument as in Theorem 23.1 we have 

lim r K,gds = 21!". 
p-+O lenp 

Notice that the other two integrals are larger than -21r because A( -1) and R(A( -1)) 
are circles and 

We have 

r K, ds = r K, ds 
jlzi=1/R g jA(-1) g ' 

r K, ds = r K, ds. 
jlzi=R3 g j R(A( -1)) 9 

is KdA > -81r. 

By (30.166), we conclude that the total curvature of A is larger than -41!". 
Assume {p} = C n {lzl = R} and {q} = C n {lzl = 1/ R}, i.e., A(1) and A( -1) are 

both straight lines. Then let D~ and D~ be two disks centered at p and q with radii 
p and let MP = AR- (D~ u D~). Since p and q correspond to embedded ends, A has 
order 2 at p and q. Thus 

where O:i and Pi are the exterior angles at 3D~ n oAR, and obviously 

lim ( o:i + Pi) = 1r. 
p-+0 

Again by the same argument as in Theorem 13.4, noting that A has poles at p and q, 
we have 

lim r . K,g ds = 1!". 
p-+O len;,nAR 

Since A(1) and A( -1) are straight lines, 

Thus we have 

lim r . K,g ds = r K,g ds = 0. 
p-+0 1aMp-U8D'p laAR 

K(A) =lim { K dA = -41!". 
p-+O}Mp 

The proof of theorem 30.1 is complete. 

0 

Note that the proof of K(A) 2:: -41!" only used the fact that A is embedded in a 
neighbourhood of the straight line boundary. Thus we see immediately that 
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Corollary 30.7 Suppose that A C S(-1,1) is a proper minimal annulus. If A(1) == 
·· A n P1 is a straight line and A is embedded in a neighborhood of A(1), and A( -1) = 
An P_1 is a circle, then each A(t) =An Pt is a circle for -1 < t < 1. In particular, 
A is embedded. 

Proof. We only need point out that we can still use the four-vertex theorem, even 
though some level sets A(t) may not be Jordan curves. It is shown in [36], that all 
curves which have exactly two vertiCes are curves which have exactly two simple loops, 
on each loop the curvature is positive or negative and hence its total curvature must be 
0. Note that A( -1) has total curvature 271'. Since A ( t) is a closed curve for -1 ::; t < 1, 
by continuity every A(t) has total curvature 271'. Hence the four-vertex theorem is 
applicable to A(t) for -1 ::; t < l. D 

Corollary 30.8 Suppose that A C S( -1, 1) is a proper minimal annulus. If A(1) = 
An P1 and A( -1) =An P_1 are straight lines and A is embedded in neighbourhoods of 
A(1) and A( -1), then each A(t) =An Pt is a circle for -1 < t < 1. In particular, A 
is embedded. 

Proof. We have X 3 =log lzl/logR. Let E > 0 such that on {R- E < lzl ::; R} X is 
an embedding. Then A(t) is a Jordan curve when log(R- c)/logR < t < 1. Thus we 
can still use the four-vertex theorem. D 

Remark 30.9 Corollaries 30.7 and 30.8 are slightly better than Corollary 1 in [17]. 
There do exist properly iJ;D.mersed minimal annuli in S ( -1, 1) whose level sets are not 
circles, see [78]. 

Since all minimal surfaces foliated by circles must be a part of a Riemann's example, 
we have proved that: 

Corollary 30.10 Let L1 C P1 , L_1 C P_1 be two parallel straight lines. Ifr = L1 UL_1 

is the boundary of a properly embedded minimal annulus A in S(-1, 1), then A is one 
of Riemann's examples. 

Finally, we have a non-existence theorem: 

Corollary 30.11 Let L1 C P1 , L_1 C P_1 be two non-parallel straight lines. Then 
r = L 1 U L_1 cannot bound a properly embedded minimal annulus in S(-1, 1). 

Corollary 30.10 is the main theorem of [25], in which it is proved via elliptic function 
theory. Corollary 30.11 is a result of Toubiana [78]. The proof of Theorem 30.1 is 
adapted from [17]. 
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31 Nitsche's Conjecture 

Conjecture 31.1 (Nitsche) Let A C R 3 be an embedded complete minimal annulus 
such that An Pt is a Jordan curve for t1 < t < t2, where -oo :::; t1 < t2 :::; oo. Then A 
must be a catenoid. In particular, t 1 = -oo and t2 = oo. 

Nitsche made this conjecture in [62], it is still open. We only know that the con­
jecture is true under certain extra hypotheses, In this section we will give two such 
theorems. The first one, Theorem 31.2, is due to Nitsche [62]; the proof given here is 
essentially Nitsche's proof. 

Theorem 31.2 If each An Pt is a starshaped Jordan curve for t 1 < t < t2 , then A is 
a catenoid. 

Proof. By a translation we may assume that t 1 < 0, t2 > 0. Let 0 < a < t2 and let 
AnS(O,a) be a compact minimal annulus with Jordan curve boundary. By Lemma 9.1 
and Proposition 9.2, its conformal structure is 

AR(a) = {z E C 11:::; lzl:::; R(a)}, 

where R(a) > 1. 
Let X(a) : AR(a) -----t R 3 be the conformal embedding. Then we know that the third 

coordinate X (a )3 must be 
a 

X(a)s = log R(a) log lzl. 

Let 0 <a< b < t2. The moduli of AR(a) and AR(b) are R(a) and R(b) respectively. 
Since An S(O, a) cAn S(O, b), we have R(a) < R(b) and thus AR(a) c AR(b)· We have 
X(b) : AR(b) -----t R 3 such that 

b 
X(b)s = log R(b) log lzl. 

It must be that X(b)siAR(a) = X(ah, thus 

b (b) log R(a) = X(b)3(R(a)ei 11 ) = X(a)s(R(a)ei 11 ) =a, 
logR 

which implies that 
b a 

logR(b) logR(a)" 
(31.173) 

Now let 0 < a1 < a2 < · · · < an < · · · t2 and limn---+oo an = t2; we have AR(al) C 

· · · C AR(an) C · · ·. Let R = limn---+oo R(an) :::; oo. Then the conformal structure 

159 



of Int(A n S(O, t2)) is the interior of AR and the conformal embedding is. given by 
··X : Int(AR) --+ R 3 and X3 (z) =clog lzl, where 

is well defined by (31.173). 
Let g: AR--+ C be the Gauss map of An S(O, t2). As before, we have 'fJ = dzjzg(z) 

and the angle of the outward unit normal of An Pt with the x-axis is given by '1/J(r, 0) = 
8'logg(z), where z = rei8 such that t = clogr. Thus '1/J is a multivalued harmonic 
function. Since each An Pt is a Jordan curve for 0 ~ t < t2 , we have 

'1/J(r, 0 + 21r) = '1/J(r, 0) + 21r, 

which implies that 8'log(g(z)/z) is a well defined harmonic function in AR. Thus 
h(z) :=log; is a well defined holomorphic function, and 

g(z) = zeh(z). (31.174) 

The Laurent expansion of h is 

-1 00 

h(z) = 2: anzn + 2: anzn = h1(z) + h2(z); 
-oo n=O 

thus h1 is holomorphic in {izl > 1} U { oo} and h2 is holomorphic in lzl < R. 
If 8'hi is bounded for i = 1, 2, then SR.hi is also bounded, and thus h = h1 + h2 is 

bounded. In this case, if R < oo, by the Enneper-Weierstrass representation we know 
that A is not complete. Thus if the 8'hi are bounded, then R = oo. 

Next we prove that indeed 8'hi are bounded. 
Let Dt c Pt be the bounded domain bounded by AnPt. Let a(r, 0) := (XI. X 2)(rei8 ) 

be a parameter representation of An Pt, 0 ~ t < t2 , where clog r = t. For a point 
x0 E Dt, let l(r, 0) be the ray starting from x0 and passing through a(r, 0). Consider 
the angle ¢(r, 0) made by l(r, 0) and the x-axis in Pt. We can make ¢ a continuous 
function of 0 such that ¢(r, 0 + 21r) = ¢(r, 0) + 2m?T, where m is an integer depending 
both on x0 and a. 

Since A n Pt is starshaped, there is an Xt E Dt such that the l(r, 0) intersects a 
only at a(r, 0). Thus for this Xt, ¢(r, 0 + 21r) = ¢(r, 0) + 21r, and ¢is a non-decreasing 
function of 0. 

Recall the angle '1/J(r, 0) = 8'logg(ri8). Fix '1/J(r, 0) = 8'logg(r) for 1 < r < R. 
Comparing the angles ¢and '1/J, by their definitions we have 

¢(r, 0) ~ '1/J(r, 0) + 2n?T ~ ¢(r, 0) + 1r /2, (31.175) 

where the integer n is decided by 

¢(r, 0) ~ '1/J(r, 0) + 2n?T ~ ¢(r, 0) + 1r /2. 

160 



Now for any()' and()" in [0, 2n), we have 

¢(r, ()') - ¢(r, ()") ...., 1r /2 :::; 7/J(r, ()') - 7/J(T, ()") :::; ¢(r, ()')- ¢(r, B") + 1r /2. (31.176) 

Since 7/J(r, ()) = () + CSh(rei0 ), (31.176) gives that 

¢(r, ()') - ¢(r, ()") - 5n /2 :::; CSh(ri0') - CSh(ri0") :::; ¢(r, ()') - ¢(r, ()") + 5n /2, 

or 
ICSh(ri 11')- CSh(Ti0")1:::; 9n/2, 

since l¢(r, ()')- ¢(T, ()")I:::; 2n. 
Now fix z0 such that lzol =To E (1, R). Define 

mi ( r) = min CS hi ( z) , Mi ( T) = max CS hi ( z) , i = 1 , 2, 
lzl=r lzl=r 

and 
si(T) = min (CShi(z')- CShi(z")) = mi(T)- Mi(T), 

lz'l=lz"l=r 

Si(T) = max (CShi(z')- CShi(z")) = Mi(T)- mi(r) = -si(T). 
lz'l=lz"l=r . 

From the relation 

CSh1(z")- CSh1(z') = CSh(z")- CSh(z')- [CSh2 (z")- CSh2 (z')] 

(31.177) 

(31.178) 

(31.179) 

(31.180) 

we find, using (31.177) and the maximum principle for harmonic functions (S2(T) :::; 
S2 (To) for 0 < r:::; To), that 

ICSh1(z")- CSh1(z')l :S 9n/2 + S2(To) for 1 < lz'l = lz"l = T :S To. (31.181) 

On lzl = T:::; rowe have, denoting by z a point with lzl =rand CSh1(z) = M1(T), 

By the minimum principle, applied to the harmonic function CSh 1 in 1 < lzl :::; ro, there 
must be a point z with lzl = T for which CSh1 (z):::; CSh1(zo), and consequently 

(31.182) 

This inequality, originally derived for 1 < lzl :::; To, holds automatically in To :::; lzl < 
R as well because M1 ( T 1) :::; M1 ( r) for T :::; T 1• An argument similar to the one leading 
to (31.182) yields 

m1(T) 2::: CSh1(zo)- [9n/2 + S2(ro)] for 1 < T < R. (31.183) 

Applying analogous reasoning to the function CSh2 we find 

(31.184) 
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(31.185) 

for 1 < r < R. These relations show that the harmonic functions CShi are bounded from 
both sides in 1 < lzl <Rand thus R = oo. 

Similarly, consider An (t1 , 0). By the same argument, its conformal type is also 
{1 :s; lzl < oo }. 

Thus we know that the conformal type of A is S 2 - {p, q }. Without loss of generality, 
we can assume that it is C - {0}. Similar argument shows that the third coordinate 
function can be written as 

X 3 (z) =clog lzl, 
where cis a real constant. Then the same argument shows that g(z) = zeh(z) and h is 
a bounded holomorphic function on C - {0}. Passing to the universal covering C of 
C- {0} and using Liouville's theorem, his a constant function. Then by the Enneper­
\Veierstrass representation, h must be a real constant. Thus g(z) = az, a > 0 is a real 
constant, and A must be a catenoid. The proof is complete. D 

~/ 

One observes that if A has finite total curvature, then K(A) = 2n(x(A)- 2) = -4Jr. 
Corollary 14.6 then tells us that A must be a catenoid. Since A has two annular ends, 
it is enough to prove that each end has finite total curvature. By Theorem 23.1, we 
know that if A is properly embedded and if one end of A is above a catenoid, then that 
end has finite total curvature. Thus if A is a counter-example to Nitsche's conjecture, 
either it is not properly embedded or one of its two ends is neither above nor below any 
standard catenoid type barrier. Given the level sets are Jordan curves, such a surface 
is very hard to imagine its existence. 

The second theorem is due to G. D. Crow [11], which shows that uniformly bounded 
Gauss curvature implies finite total curvature for complete minimal surfaces of conformal 
type S 2 - {p, q}. 

Theorem 31.3 Let X: M = S 2 - {p; q} Y R 3 be" a minimal immersion satisfying: 

1. IKI < C (M is of bounded Gauss curvature); 

2. The immersion is given by X= (Xl, X 2 , X 3 ) and is such that the limits as z-+ p 
and z-+ q of X 3 (z) exist uniformly as extended real numbers. 

Then M is of finite total curvature. In particular, if M is embedded then M is a 
catenoid. 

Proof. We only need prove that M has finite total curvature. 
First by Remark 16.4, IKI bounded implies that the convex hull of X(M) is R 3 . 

Thus X 3 (z) -+ ±oo as z-+ p or q and the two limits must be different. So without loss 
of generality we may assume that M = C- {0} and X 3 (z) =clog lzl. The Weierstrass 
data for X then is g and 'r/ = (1/zg(z))dz and the Gauss curvature is given by 

K(z) = _ .( 4lzllgllg'l ) 2 

(1 + lgl2)2 
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To prove that ]\If has finite total curvature it is enough to prove that g has no essential 
singularity at either 0 or oo. Let h = g2 and r = lzl, then K can be written as 

, ( 2rlh'l ) 2 
K =- (1 + lhl)2 

Now IKI is bounded implies that 

2rlh'l 
(1 + lhl)2 <c. 

Since 
1 1 2 

~--~- < < ~--~-
(1 + lhl)2 - 1 + lhl2 - (1 + lhl)2' 

IKI is bounded implies that 
!zllh'l 

1 + lhl2 <C. 

The next lemma shows that if h has an essential singularity at oo, then h cannot 
miss any value inC U {oo}. But X 3 (.z) =clog lzl means that the Gauss map g must 
miss 0 and oo in M, since if g(zo) = 0 or oo then lzl = lzol would not be a level set. 
Since h = g2 , we know that g does not have an essential singularity at oo. 

If h has an essential singularity at 0, using ( = 1/z, and observing that 

lzllh'(z)l < C Vz E C- fO} if and only if 
1 + !h(z)l2 ' L 

lzllh'(l/z)l C V ..., 
1+lh(1/z)l2<' zEC, 

Thus by the above argument, h and hence g could not have essential singularity at 0 
either. Thus g is a meromorphic function on C U { oo} and hence M has finite total 
curvature as mentioned in Remark 19.3. 0 

Lemma 31.4 Let h be a meromorphic function in a neighbourhood U of oo, and suppose 
h has an essential singularity at oo. Suppose h satisfies the inequality 

. lzllh'(z)l 
hm sup lh( )! 2 < oo. 

z-+oo 1 + Z 

Then h cannot omit any value. 

Proof. ([48], pages 7 and 8) Let ry be a simple divergent path in U tending to oo. Then 
ex is said to be an asymptotic value of h at oo if h( z) ---+ ex as z ---+ oo along ry. Suppose h 
omits the value ex. Then by Iversen's Theorem ([65], page 4), ex is an asymptotic value 
at infinity along a simple divergent path ry. By the above theorem, h is normal in U 
slit along the path ry. By Theorem 2 of [47], page 53, and the remark that follows, h 
converges uniformly in U - ry toward ex, no matter of which way z goes to oo. This 
contradicts the hypothesis that h has an essential singularity at z = oo. Hence h cannot 
omit any value. 0 
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Remark 31.5 Under the conditions of Theorem 31.3, if A := X(M) n Pt is a Jordan 
.. curve, then X is an embedding, so A must be a catenoid. Moreover, by [51] and [85], if A 
satisfies the condition of Nitsche's conjecture and the Gauss curvature is bounded, then 
conformally A is S 2 - {p, q}. Thus Nitsche's conjecture is true if the Gauss curvature 
is bounded. 
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32 Appendix The Eigenvalue Problem 

In order to discuss the stabilities of a minimal surface, we need some general knowledge 
of the (Dirichlet) eigenvalues of a self-adjoint second order elliptic operator. 

Let Sl C Rn be a bounded domain and L be a self-adjoint second order elliptic 
operator 

Lu = Di(aij Dju + biu)- b;Diu + cu, 

where ( aij) is symmetric. We suppose that L satisfies 

n 

:L laij(xW:::: A2 , 2)\- 2 L (W(xW + A- 1 lc(x)l):::: v2 , Vx En, 
i=l 

for some constants A, A, v > 0. 
Define (u, v) = fn uv dx, and a quadratic form on H = H(Sl) = Wt'2 (0) by 

£(u, v) = k (aij D;uDjv + biuDiv + bivDiu- cuv)dx = -(Lu, v). 

The ratio 
J(u) = £(u, u) ,+ H 

( ) , u ::r= 0, u E , 
u,u 

is called the Rayleigh quotient of L. 

(32.186) 

By (32.186) and (32.187) we see that J is bounded from below. In fact, writing 
b = (b\ · · ·, bn) and lbl 2 = I:i lbil 2 , we have 

£(u,u) [ (aij DiuDju + 2biuDiu- cu2 )dx 
Jll 

> k [J\1Dul 2 - (tJ\IDul2 + 2,\-1 1Wu2 + cu2) J dx 

(by (32.186) and Schwarz's inequality) 

> k (t,\1Dul 2 - ,\v2 lul 2) dx (by (32.187)) (32.188) 

> (~c- 1 - ,\v2) k lul 2 dx (by Poincare's inequality). 

Hence we may define 
A1 = inf J. 

H 
(32.189) 

We claim now that ,\1 is the minimum eigenvalue of L on H; that is, there exists 
a non-trivial u E H such that Lu + ,\1u = 0 and ,\1 is the smallest number for which 
this is possible. To show this we choose a minimizing sequence { um} C H such that 
llumll£2 = 1 and J(um)--+ A1. 
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By (32.188) and llumllu = 1, we have 

~ k 1Duml 2dx :S 2Av2 + £(um, Um) :S 2()..v2 + 1)..11), 

hence { um} is bounded in H. Thus by the compactness of the embedding H---+ L2 (D), 
a subsequence, which we still note as { um} itself, converges in L2 (D) to a function u 
with llullu = 1. Since Q(u) = £(u, u) is quadratic, we also have for any l, m, 

Since 

£ (Ul + Um Uz + Um) 
2 ' 2 

(inf J) ( Uz + Um Uz + Um) = ).. ( Uz + Um Uz + Um) 
> H 2' 2 1 2' 2' 

we have 

Q (Uz ~ Um) :S ~ (Q(uz) + Q(um))- )..liiUz ~ Um 11:2---+ 0. 

Again by (32.188), 

~ k ID(uz- um)i 2dx < £(ul- Um, Uz- Um) + 2)..v2 k iul- uml 2dx 

( Ul- Um) 2 2 < 4Q 2 + 2)..v llu1- umllu ---+ 0, 

and so we see that { um} is a Cauchy sequence in H. Hence Um ---+ u in H, and moreover 
Q(u) =At. 

Let v E H and consider 

J(u+tv) = £(u+tv,u+tv) = Q(u)+2t£(u,v)+t2 Q(v) 
(u +tv, u +tv) (u, u) + 2t(u, v) + t2 (v, v) · 

By (32.189), we have 

= dJ(u -Hv) I = 2£(u, v)(u, u)- 2(u, v)Q(u) = [~'( ) _ , ( )] 
0 d ( )2 2 '-' u, v /\1 u, v ' t t=O u, U 

i.e., k (aij DiuD1v + biuDiv + bivDiu- cuv- ?.1uv)dx = 0. 

Integrating by parts we obtain 

L [Dj ( aij Diu+ l}u) - biDiu + cu + ?.1u] vdx = k (Lu + A1u)vdx = 0. 
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By the arbitrariness of v E H, we must have Lu + A1u = 0. 
On the other hand, suppose v E H satisfies Lv + av = 0 (such a a is called an 

eigenvalue and v is called an eigenfunction corresponding to a). Then 

0 = k (Lv + av)vdx = -£(v, v) + a(v, v). 

We have 
a = J ( v) ?': i)}f J ( u) = A 1, 

and thus is the minimum eigenvalue. 
Let A be an eigenvalue, the eigenspace V>, corresponding to A is defined by 

{ u E H I Lu + AU = 0}. 

If we arrange (as we will always do) the eigenvalues of L in increasing order )'l, A2 , 

· · ·, and designate their corresponding eigenspaces by V1 , \12, · · ·, we may characterize 
the eigenvalues of L through the formula 

Am= inf{J(u) I u "¥:- 0, (u, v) = 0, '1/v E {V1, · · ·, Vm-1} }. (32.190) 

vVe summarize the above in the following result. Readers can refer to the books [21] 
(Theorem 8.37, p 214) and [10] (Chapter V, especially page 424 ). 

Theorem 32.1 Let L be a self-adjoint operator satisfying (32.186) and (32.187). Then 
L has a countably infinite discrete set of eigenvalues, 2: = {Am}, given by (32.190). 
Whose eigenfunctions span W~'2 (S1). Furthermore, dim Vm < oo and limm-+oo Am= oo. 

We a;lso need the Harnack inequality, 

Theorem 32.2 (See [21] Corollary 8.21, page 199) Assume L satisfies (32.186) and 
(32.187), u E W 1,2 (S1) satisfies u ?': 0 in Sl, and Lu = 0 in Sl. Then for any Sl' cc S1 
we have 

supu < Cinfu, 
f2' - f2' 

where C = C(n,AjA,v,Sl',Sl). 

Theorem 32.3 Given v1 , · · ·, vk_ 1 E H, let 

f_L=inf{J(u)luEH, u"¥:-0, (u,vi)=O, 1~i~k-1}. 

Then we have Ak ~ f_L. 
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Proof. Take ¢i as the i-th eigenfunction corresponding to the i-th eigenvalue Ai, 1 ::; 
·· i ::; k. We can assume that ¢/s are orthonormal in £ 2(0). We can select k constants 

d1, · · ·, dk, not all zero, such that 

k 

2:: di r ¢ivjdx = o, 1 ::; j ::; k - 1. 
i=1 ln 

Let ci = di(L:j=1 d])- 112 and define f = 2:::~ 1 CicPi· Then (!,f) = 2:::~=1 c~ = 1, and 
(!,vi) = 0 for 1 ::; i ::; k - 1. By the definition of J.L we have 

k k 

J.L ::; J(f) = £(!,f) = L c~ Ai ::; Ak L c~ = Ak. 
i=1 i=1 

D 

Theorem 32.4 Let 0 1, · · ·, Om be pairwise disjoint domains in 0. Considering the 
eigenvalue problem for each oi and arrange all the eigenvalues of 01, .. ·, O.m in an 
increasing sequence 

then we have 

Proof. Choose 1./Ji to be the eigenfunction corresponding to Vi in the related domain 
and extend '1/Ji by 0 such that '1/Ji E H = wJ-·2 (0) for 1 ::; i ::; k. We can assume that 
the '1/J/s are orthonormal. For any h1, · · ·, hk_1 E H, as in the proof of Theorem 32.3 
we can select ci not all zero, and f = 2:::~=1 ci'l/Ji such that (!,f) = 1 and (!,hi) = 0 for 
1 ::; j ::; k - 1. If we select hi as the i-th eigenfunction corresponding to Ai, then by 
Theorem 32.3 and (32.190), 

k 

Ak ::; J(f) = £(!,f) = L C~Vi ::; Vk· 
i=1 

D 

Combining the above with the Harnack inequality, we have an immediate corollary: 

Corollary 32.5 If 0' C 0, and the eigenvalues of L on H(O') are A~, A;, · · ·, then 

A~ 2:: Am, m = 1, 2, 3 · · ·. 

If 0' c 0 is a proper subdomain, i.e., 0 - 0' contains an non-empty open set, then 

A~ > Am, m = 1, 2, 3 · · · . 
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Remark 32.6 We have neglected the boundary regularity of subdomains in the the­
orems, but it is true that if u on S1' satisfies Lu + >..u = 0 and ulan' = 0, then 
u E W5'2 (S1') c H. See [5], page 2L 

Let ~ = S 2 and L = L'-.L: be the sphere Laplacian, S1 = ~ and 8S1 = 0. Then it is 
well known that >.. 1 = 0 and >.. 2 = 2. Hence we have 

Corollary 32.7 Let S1 C ~ be a proper domain, then the second eigenvalue of the 
sphere Laplacian on S1 is larger than 2. 

Let Um be the m-th eigenfunction corresponding to the m-th eigenvalue Aw Define the 
nodal set of Um as Zm = {x E S1: um(x) = 0}. 

Theorem 32.8 ([10], p 452) Zm divides the domain S1 into no more than m subdo­
mazns. 

Proof. Suppose Zm divides S1 into more than m subdomains; label them as S11 , S12 , 

· · ·, nk, k > m, and let Zm U U7=1 Di =D. 
Since Um does not change sign on each ni, 1 s i s k, Harnack's inequality tells 

us that Um 'I= 0 on ni (in fact, the nodal set has measure zero). Hence for each ni, 
1 S i S m, we can define a vi E H by vi = Um on ni, and vi = 0 elsewhere. Define 
Wi = II vi 11£ivi, then ( wi, wi) = L We see that wi satisfies Lwi + AmWi = 0. Since 
fq W(Wjdx = 6j, { wi}~1 is linearly independent. 

For the m - 1 eigenfunctions u 1 , · · ·, Um_ 1 in H corresponding to the first m - 1 
eigenvalues, as in the proof of Theorem 32.3, we can select m constants c1 , · · ·, em, not 
all zero, such that 

and L,'J:=1 c] = 1. Define ¢ = 2:~1 ciwi; then (¢, ¢) = 2:~1 c7 = 1 and (¢, ui) = 0 for 
1 S i S m - 1. Let S11 = Int U~1 S1i; then ¢ E H(S1') c H(Sl). Notice that S11 is a 
proper subdomain of n, since the are nonempty subdomains of S1 form+ 1 S i S k. 

By (32.190) we have 

£( ¢, ¢) = - r ¢L¢dx = - L CiCj r WiLwjdX ln ln 
m m 

- I:Cr>..m f wfdx = I::c7>-m = >-m· 
i=1 lo i=l 

Hence ¢ is an eigenfunction corresponding to the m-th eigenvalue, but ¢1 (S1 - S1') = 0 
contradicts Harnack's inequality. This contradiction proves the theorem. D 

Corollary 32.9 The first eigenfunction ¢1 corresponding to the first eigenvalue does 
not change sign in Sl. All other eigenfunctions must change sign in Sl. Moreover, 
dim v)q = 1. 
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Proof. (h does not change sign by Theorem 32.8. This also shows that the eigenfunc-
.· tions corresponding to the first eigenvalue must be either positive or negative, but two 

of them cannot orthogonal to each other, thus dim V.A 1 = 1. Let ¢i be the i-th eigen­
function where i > 1, then by (¢1 , ¢i) = 0 we know that ¢i has to change sign in 0. 
0 
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