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Abstract. In the identification of linear systems the aim is to estimate the impulse response to 
within a given tolerance based on a finite number of noisy observations of the output. Whether this is 
possible depends upon the model set, that is, the set of impulse responses to which that of the system 
is assumed to belong. We give conditions on the model set which ensure that such identification is 
possible and also briefly review recent results concerning the complexity of identification, that is, the 
minimum number of required output samples. 

AMS subject classifications. 62G05,62G20. 

1. Introduction. The objective of time-domain system identification is to esti­
mate the unknown impulse response h of the system by measuring its response to a 
carefully chosen input signal u. The output signal y is the sum of the system response 
to u and a noise term ry, that is, 

y = U*h+ry, (1.1) 

where * denotes a convolution. It is assumed that h belongs to some prescribed model 
set M, and an estimate h* is made on the basis of a finite number of output values y 
and the known input signal u. Worst-case identification requires a prescribed upper 
bound on the approximation error, that is, the estimate h* must differ from h in norm 
by no more than some specified amount. It also differs from stochastic identification 
[8] in that it presupposes no statistical properties of the noise "1 other than a uniform 
bound. 

Such identification is possible only for certain types of model sets. In these cases 
the minimum number of sample output values required for identification has practical 
significance. This is the complexity of identification. 

Worst-case identification has been studied in a variety of settings, involving dis­
crete and continuous model sets, and various time domain and frequency domain 
based norms. We shall give conditions that guarantee that worst-case identification is 
possible within a given model set, and briefly describe known results concerning the 
complexity of identification in some commonly used model sets. These include the 
discrete finite impulse response (FIR) systems and discrete exogenous autoregressive 
(ARX) model sets, and their continuous counterparts. 

The reader is also encouraged to read the review articles [10] and [15]. The 
first of these focuses on convergence issues and on the computation of optimal or 
near-optimal algorithms, and the second also addresses model validation and control 
relevancy issues. 

2. Identification via functionals. In this section we give the framework for 
worst-case identification within an arbitrary model set. In the discrete case (1.1) 
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becomes 

k 

y(k) = L u(k- j)h(j) + 17(k) fork~ 0, 
j=O 

and for continuous systems it has the form 

y(t) = 1t u(t- ()h(() d( + ry(t) fort> 0. 

In ~':::.--:h case the estimate h* is based upon the input u and a finite number of values 
of the output y. For discrete systems these are usually the first N values, and for 
continuous systems the sample points are typically successive integer multiples of a 
fixed number. The maps h -+ (u * h)(k) and h -+ (u * h)(tk) are linear functionals, 
and so worst-case identification in both the discrete and continuous cases fits within 
a more general framework, which we now describe. 

Suppose that X is a normed linear space and that zp1 , zp2 , ... , <p N are continuous 
linear functionals on X. Suppose also that 

Yk = i.pk(h) + 7Jk and 117kl :S: 0 for 1 :S: k s; N, (2.1) 

where his an unknown element of a given subset M of X. The aim is to estimate h 
on the basis of the noisy observations Yk of the functional values i.pk(h). Problems of 
this type have been studied in [11]. 

The feasibility set S(zp, y, 8) contains all elements of M that satisfy for some 
noise term 7J, and hence are consistent with the data y = (Yl, Y2, ... , y N), the finite 
set <p = ( zp1 , zp2 , ..• , <p N) of test functionals and the noise bound 6. Thus 

The elements of S(zp, y, o) are the possible candidates for the true system response, 
and hence the size of this set determines the bounds for the worst-case identification 
error. Recall that the diameter and radius of a subset }( of the normed space X are 
defined by 

diamlC = sup llx1 - x2\l and rad}( = inf sup \Jx - c\1 . 
X1,X2EIC cEX xEIC 

A point c EX for which supxEIC \Jx- c\1 = rad}( is called a centre of K. The diameter 
and radius are related by the inequalities 

~diamlC s; rad}( S diamlC. 

Since each element of S ( zp, y, 15) is a candidate for h, any bound for the set of 
possible identification errors \\h- h*ll must be at least as large as radS(zp, y, 8) .. This 
lower limit is achieved if h* is a centre of S(zp, y, 6), and algorithms that produce such 
estimates are called central. However central algorithms are often hard to construct, 
and so we shall assume merely that h* is given by an interpolatory algorithm, that 
is, h * E S ( <p, y, 8). In this case diamS ( <p, y, 8) is a bound for the set of possible 
identification errors. Furthermore, diamS ( zp, y, 8) is the smallest bound that works 
for all interpolatory algorithms. For this reason we regard diamS ( zp, y, 8) as a measure 
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of the local worst-case identification error. It is local in the sense that it is a bound 
for the identification error that applies for a given set of output data y. 

The (global) worst-case identification error E(rp, 8), for a given set of test func­
tionals <p and noise bound .5, is the supremum of the local worst-case errors, taken 
over all possible output data y. Thus 

E( <p, 8) = sup diamS ( <p, y, 8). (2.2) 
yECN 

We say that <pis a (8, 7)-identifying set forM if E(rp, J) ::::; 7, and that M is identifiable 
iffor each 7 > 0 there is a finite (6, 7)-identijying set forM for some J > 0. In other 
words M is identifiable if it is possible to estimate elements of Jvt to any specified 
accuracy using any interpolatory algorithm and noisy outputs of a finite set of test 
functionals, provided only that the noise is sufficiently small. 

We say that a model set M is absolutely convex if >..If1 + >..2!2 E M whenever /1 
and hEM and IA.1I + !>..2! ::::; 1. For absolutely convex model sets the feasibility set 
S(rp, 0, 8), which consists of all elements of M consistent with the zero noisy response 
to the functionals <fJk, is greatest in diameter. 

Proposition 2.1. If M is absolutely convex then 

diamS(rp,y,<l)::::; diamS(rp,O,o) for any y E eN. 

Proof If h1, h2 E S(rp, y, .5) then (h1 - hz)/2 E M by absolute convexity. Fur­
thermore, 

for 1 ::::; k ::::; N, and so (h1 - h2 )/2 E S(rp, 0, o). A similar argument shows that 
(h2 - h 1)/2 E S(rp,0,8). So 

llh1- h2ll = !i(hl- h2)/2- (hz- hl)/211::::; diamS(rp,O,c5), 

and the result follows. 0 

It follows from Proposition 2.1 that if M is absolutely convex then E(rp, o) = 
diamS(rp, 0, 8). Furthermore, in this case S(rp, 0, 8) is also absolutely convex, and so 

diamS(cp,O,b) = 2radS(r,o,0,8) = sup{j!hll: hE S(rp,O,o)}. 

This leads to the following useful criterion for identifiability in absolutely convex 
model sets. 

Lemma 2.1. Linear functionals t,ol,rpz,rp3,··· ,t,ON form a (8,7)-identifying set 
for the absolutely convex model set M if and only if 

(2.3) 
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where Mr ={hEM: \lh\1 = r}. 

We say that a finite set ('P1, cp2, ... , 'PN) satisfying (2.3) is a (8, r)-cover for M. 
Clearly each (o, r)-identifying set forM is a (8, r)-cover forM, and by Lemma 2.1 the 
converse is also true if M is absolutely convex. The following result is a generalization 
of Lemma 2.1 that applies to model sets that are not necessarily absolutely convex. 
For any model set M we write M# for the set 

M# = {(x- y)/2: x,y EM}. 

Note that M = M# if M is absolutely convex. 

Lemma 2.2. Each (8, r)-cover forM# is a (8, 2r)-identifying set forM. 

Proof. Suppose that cp = (cpl,'P2,• .. ,cpN) is a (o,r)-cover forM#, y E eN and 
that h1 , h2 E S(cp, y, 8) .. Then, as in the proof of Proposition 2.1, \cpk((h1 - h2)/2)1 s; 
8 for each k. Now {h1 - h2 )/2 EM#, and since cp is a (8,r)-cover forM# it follows 
that ll(hl- h2)/2\l s; r. Therefore diamS(cp,y,o) s; 2r, and since y is arbitrary it 
follows that E ( cp, 8) s; 2r. D 

The following theorem describes the relationship between compactness and iden­
tifiability in closed, absolutely convex model sets. The proof is given in Section 5. 

Theorem 2.lo An absolutely convex subset M of a normed space is identifiable 
if and only if each closed and bounded subset of M is compact. 

An easy modification establishes the following criterion for identifiability of model 
sets which are not absolutely convexo 

Theorem 2.2. A subset M of a normed space is identifiable if each dosed and 
bounded subset of M# is compact. 

3. Identification via convolution. We return now to the problem of more 
practical interest, where the functionals used for identification are of the form cp(h) = 
(u * h)(t), where u is the chosen input signal and t belongs to a specified set of real 
numbers. We say that M is *-identifiable if M is identifiable using this restricted 
set of linear functionals. Clearly any *-identifiable model set is identifiable. We give 
conditions on the underlying normed space which ensure that identifiable model sets 
are *-identifiable. For the sake of simplicity we deal with discrete and continuous 
model sets separately. 

3.1. Discrete systems. Here we assume that the model set M is a dosed subset 
of a normed sequence space X ~ £=, where £= is the Banach space of all bounded 
sequences. We assume also that the norm topology on X is finer than the topology 
induced by the c= norm, that is, we assume that there exists C > 0 such that 

II/II= s; C llfll for each f EX. (3.1) 
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Condition (3.1) ensures that the convolution functionals arising from any fixed £1 
sequence are uniformly continuous. To see this suppose that '1/J E £1 and that for each 
n ~ 0, Wn is the linear functional defined on X by 

Wn(j) = ('1/J * f)(n) for each f EX. 

Then by (3.1), 

IWn(f)l =It; '1/J(m)f(n- m)l::; II'I/JII1IIflloo::; C II'I/JII1IIfll, 

and so IIWnll ::; C II'I/JII 1 for each n ~ 0. 

(3.2) 

The following theorem shows that condition (3.1) on the underlying normed space 
is enough to ensure that identifiable model sets are *-identifiable. The proof is given 
in Section 5. 

Theorem 3.1. Suppose that X is a normed subspace of l 00 , and that the norm 
topology on X is finer than the topology induced by the co-norm. Suppose also that 
M is an absolutely convex subset of X. Then M is *-identifiable if and only if each 
closed and bounded subset of M is compact. 

FUrthermore the proof of Theorem 3.1 can be modified to establish the following 
result. 

Theorem 3.2. Suppose that X is a normed subspace of l 00 , and that the norm 
topology on X is finer than the topology induced by the co-norm. Then a subset M is 
of X is *-identifiable if each closed and bounded subset of M# is compact. 

The £P norm of a sequence f is given by llfllv = CE~=O lf(n)IP)1/P, for 1 ::; p < 
co, and llflloo = supn~o lf(n)l. Since llflloo ::; llfllv for any sequence f and any 
1 ::; p::; co, condition (3.1) is satisfied by each of the £P norms. 

The HP norm off is defined in terms of its z-transform f(z) = L~=0 f(n)zn. 
Iff E £00 then f(z) is analytic in the open unit disc lzl < 1. The HP norm off is 
defined by 

llfiiHP = r~zr- ( 2~ 12tr jf(reill) lp d()) 1/p' 

and the H 00 norm is defined by llfiiHoo = suplzl<1 jf(z)j. 

To establish (3.1) for the HP norms we argue as follows. By Cauchy's integral 
formula we have, for each n E z+ and 0 < r < 1, 

1 i ~ f(n) = -2 . z-n-1 f(z) dz, 
7rZ Gr 

where Cr is the circle lzl = r. Therefore 

lf(n)l::; 2:rn 12tr jJ(rei11 )1 d()::; r-n llfiiH1 ::; r-n llfiiHP · 
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It follows that 1\JIL)Q ::; 11!1\Hv for any sequence f and any 1 ::; p::; oo. This leads to 
the following corollary of Theorem 3.2. 

Corollary 3.1. Suppose that M is a subset of fP or HP, where 1::; p::; oo. Then 
M is *-identifiable if and only if each closed and bounded subset of M# is compact. 

If M is absolutely convex, then M# may be replaced by M in Corollary 3.1. 

3.1.1. Applications. Three important classes of discrete model sets have been 
studied in the literature, and will be considered in detail below. These are the 
FIR model sets [1], [4], [7] and [14], the so-called bounded model sets [5], and the 
ARX(n,n -1) model sets [3]. 

FIR Models. The appropriate model set for a discrete FIR system is Pn, the set 
of all 'polynomial' sequences h = (h(j))~0 for which h(j) = 0 for all j 2: n, where 
n is a fixed positive integer. Each Pn is an n-dimensionallinear subspace of £P and 
of HP, for any 1 ::; p ::; oo. So P n is absolutely convex, and its closed and bounded 
subsets are compact. It follows from Corollary 3.1 that Pn is *-identifiable in any fP 

or HP norm. 

Bounded model sets. The model sets 
negative sequence g in £1, 

are introduced in [13]. For each non-

K(g) = {h = (h(n))~=O : Jh(n)\ ::; for each n ;::=: 0}. 

For systems in which the terms of the impulse response sequence are known to decay 
exponentiall.y a model set lC(g), where g(n) = .xn and 0 < >.. < 1, is appropriate. Any 
model set of the form lC(g) is absolutely convex, and compact in any fP or HP norm. 
So by Corollary 3.1 it is *-identifiable in any f.P or HP norm. 

Discrete ARX models. A discrete ARX system is governed a constant-coefficient 
difference equation and the z-transform of the impulse response is a rational function. 
For such systems the sets V(n, r) form a useful class of model sets. These are defined 
for n 2: 1 and 0 ::; r < 1 and consist of all ARX ( n, n - 1) models with poles, if 
any, lying outside the circle lzl > r-1 . Thus V(n,r) is the set of all sequences h, 
whose transfer functions have the form h(z) = where p(z) is a polynomial 
of degree less than n, is a polynomial of degree at most n and the zeros of 
lie outside the circle \zl = r- 1 . 

The sequences in r) are linear combinations of sequences oft he form ( ki .X k) k=o, 
where IA.I ::; r and 0 ::; j < n, and hence their terms decay exponentially. This can 
be used to show that dosed and bounded subsets of V(n, r) are compact in any fP or 
HP norm. 

The model set r) is not absolutely convex if r > 0, but V(n, r)# C V(2n, r). 
So by Corollary 3.1 the model sets V(n, r) are also *-identifiable in any f.P or HP norm. 

3.2. Continuous systems. Here we assume that the underlying normed space 
X consists of measurable functions defined on R +, the positive half line. As in the 
discrete case it will be necessary to impose a growth condition on the functions in 
X in order to guarantee the uniform continuity of certain families of convolution 
functionals. 
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We define the mixed norm llfllcoo,l) for any measurable function f defined on R+ 
by 

llfllcoo,l) =sup { r+l lf(t)l dt}' 
n~O Jn 

and denote by £(oo,l) the Banach space of all measurable functions with finite (oo, 1) 
norm. 

We assume that M is a subset of a normed space X~ £(oo,l), and that the norm 
topology on X is finer than the topology induced by the ( oo, 1) norm, that is, we 
assume that there exists C > 0 such that 

llfllcoo,I) ~ C 11!11 for each f EX. (3.3) 

Condition (3.3) ensures that convolution functionals arising from an essentially bounded, 
compactly supported function are uniformly bounded. To see this suppose that '1jJ is 
essentially bounded and supported on [0, T], and that for each t ~ 0 Wt is the linear 
functional defined on X by 

Wt(f) = (¢ * f)(t) for each f EX. 

Then 

I"Wt(f)j ~ 1T 1'1/J(s)f(t- s)l ds ~ (T + 2) 11'1/JIIoo llfll(oo,l), 

and so by (3.1), /Wt(f)J ~ (T + 2) 11'1/JIIoo C llfll· 
The following result is the continuous analogue of Theorem 3.1. 

(3.4) 

Theorem 3.3. Suppose that X is a normed subspace of £(oo,l), and that the 
norm topology on X is finer than the topology induced by the ( oo, 1) -norm. Suppose 
also that M is an absolutely convex subset of X. Then M is *-identifiable if and only 
if each closed and bounded subset of M is compact. 

Condition (3.3) is satisfied by the familiar LP norms. To see this suppose that 
f E LP for some 1 ~ p < oo. Then by Holder's inequality 

r+l (1n+1 ) 1/p ( r= ) 1/p Jn lf(t)j dt ~ n !f(t)JP dt ~ Jo lf(t)jP dt = llfllp 

for each n ~ 0, and so llfli(oo,l) ~ llfllp· The same inequality applies if p = oo. 
The Laplace transform F(s) of a measurable function f defined on R+ is defined 

by 

(3.5) 

Iff E £(oo,l) then F(s) is analytic in the open right half plane Res> 0, and the HP 
norm of f is defined by 

IIJIIHP = lim (1 00 /F(x + iyW dy) l/p, 
x---ro+ -oo 
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for 1:::; p < oo, and llfiiH"" = sup{IF(s)l :Res> 0}. 
Consideration of functions of the form eio:t2 where a > 0 shows that (3.3) does not 

hold for every HP norm. However there are some special cases. Firstly, llfll 2 = llfl1H2 
by the Paley-Weiner theorem, and so llfll(oo,l) :::; llfiiH2· 

A similar inequality can be established for the H 1 norm. H f E H 1 , then F(s) 
is analytic in Res > 0, and by the inversion formula for Laplace transforms, for each 
t > 0 and x > 0 

f(t) = -21 . { F(s)est ds, 
nz lr z 

'.':here r X is the line Res= X. Therefore 

ext roo ext 
lf(t)l:::; 27!" }_

00 
IF(x+iy)ldy:::; 27!" llfiiHl · (3.6) 

Since (3.6) holds for all positive x and t, llfll(oo,l) :::; llflloo :::; llfiiHl /2n for each 
f E H 1 . So we have the following corollary of Theorem 3.3. 

Corollary 3.2. Suppose that M is an absolutely convex subset of LP for any 
1 :::; p:::; oo, or of H 1 or H 2 . Then M is *-identifiable if and only if each closed and 
bounded subset of M is compact. 

3.2.1. Applications. We apply the above results to three classes of continuous 
model sets for continuous linear systems. 

Bounded model sets. For each decreasing non-negative integrable function g, we 
define 

JC(g) = {!: lf(t)l :::; g(t) for all t 2:: 0}. 

These are the natural analogues of their discrete counterparts. Each JC(g) is closed 
in any LP or HP norm, and is absolutely convex. However it is easy to see that JC(g) 
is not compact in any LP or HP norm, unless g = 0. So by Theorem 2.1, JC(g) is not 
identifiable, in any LP or HP norm. 

Bounded model sets with continuity constraints. Suppose that g is a decreasing, 
non-negative integrable function defined on R+ as before, and that 'Y is an increasing, 
concave, positive-valued function on R+ with 'Y(t) -t 0 as t -to+. Let JC(g, 'Y) consist 
of all functions f E JC(g) for which lf(t)- f(t')l :::; 'Y(t- t') for all 0 :::; t' :::; t. Thus 
'Y is the 'uniform modulus of continuity' of functions in JC(g, "f). The set JC(g, 'Y) is 
absolutely convex and compact in any LP or HP norm. So by Corollary 3.2 JC(g, 'Y) 
is *-identifiable in any LP norm or in H 1 or H 2 norm. It has also been shown that 
}( (g, 'Y) is *-identifiable in the H 00 norm [ 6]. 

Continuous ARX models. A continuous ARX system is governed by a constant­
coefficient differential equation, and the Laplace transform of the impulse response is 
a rational function. For such systems the sets M(n, r) form a useful class of model 
sets. These are defined for n 2:: 1 and 0 :::; r < 1, and consist of all functions h whose 
Laplace transforms have the form H(s) = p(s)/q(s), where p(s) is a polynomial of 
degree less than n, q(s) is a polynomial of degree nand the zeros of q(s) lie inside the 
disc Dr= 1(1 + s)/(1- s)l :::; r. 

The functions in M ( n, r) are linear combinations offunctions of the form ( ti .V) ~0 , 
where >. E Dr and 0 :::; j < n. Since Dr is a compact subset of the open left half plane 
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Res< 0, the functions in M(n, r) decay exponentially. This can be used to show that 
dosed and bounded subsets of M ( n, r) are compact in any LP or HP norm. 

The model set M(n, r) is not absolutely convex if r > 0, but M(n, r)# c 
M(2n, r). There is a continuous analogue of Theorem 3.2, and so M(n, r) is *­
identifiable in any LP norm and in the H 1 and H 2 norm. It has also been shown that 
M(n, r) is *-identifiable in the H 00 norm [3]. 

4. Complexity. In the previous section we showed that worst-case identification 
is possible in various types of model sets and norms using noisy output data. It is also 
important for practical purposes to obtain estimates of the amount of data required for 
this type of identification. Problems of this sort have been studied by various authors 
in the last decade [1] [9] and [16], with most attention directed to identification within 
Pn the model set for discrete FIR systems. We summarize here some key results. 

For simplicity we shall assume that the output samples are of the form y0 , ... , YN-l 

for discrete models, and y(~), y(2~), y(3~), ... , y(N ~), where ~ > 0, for continu­
ous models. We shall also assume that all impulse responses in our model sets are 
real-valued. 

We say that an input sequence (or function in the continuous case) u is a (15, T)­
identifying signal of length N for a model set M, if the functionals h -+ (u * h)(k) 
(or h -+ (u * h)(k~)) for 0 :::; k < N, form a (6, r)-identifying set for M. For given 
noise and tolerance levels 6 and T, the complexity of identification N(o, r) in a model 
set M is the minimum length of (6, T)-identifying signals u for which \\ulloo :::; L The 
numbers N(6, T) are generally difficult to determine, but useful bounds have been 
obtained in some cases. 

4.1. Discrete model sets. Since llfl\ 2 = IIJIIH2 ::S 1\/\IH= ::S llf\\ 1 for any 
sequence f, the complexity of identification of any model set increases if we change 
from the £2 norm to the H 00 norm, or from the H 00 to the £1 norm. We shall see 
that £1 identification is typically 'exponential' in complexity, whereas H 00 and £2 

identification is 'polynomial'. 

4.1.1. Identification within Pn· 
£1 norm. It is well known [9] that a sequence that contains as substrings all strings 

of the form v1 v2 ... Vn, where each vi E { -1, 1}, is an f1 ( T, T )-identifying signal for 
Pn· The point is that such a sequence u has the property that for each h E Pn, at 
least one of the terms of u * h equals \lh\\ 1 . There are 2n binary strings of length n, 
and so the length of any such string is at least 2n + n - 1. It is a remarkable fact 
[2] that there are such sequences, called Galois sequences, with this minimal length 
for each positive integer n, and they are easily generated using shift registers. So the 
complexity of £1 (15, r)-identification in Pn is no greater than 2n/2 + n- 1 for each 
0 :::; 8 :::; r. In fact it is not difficult to show that the complexity of ( T, T )-identification 
is exactly 2n/2 + n - 1. It is shown in [16] that there are shorter identifying signals 
if 8 < T, but probabilistic arguments based on the Central Limit Theorem show that 
in such cases the complexity of £1 (8, T)-identification in Pn is of order j3n for some 
j3 > 1, that is, there are numbers c1 and c2 such that c1j3n :::; N(6, r)::S c2 j3n for each 
n. The numbers /3, c1 and c2 depend only on the ratio OjT. 

H 00 norm. We can obtain H 00 identifying signals for Pn by concatenating n­
strings of the form 

(1 -1 -2 -n+l) ,w ,w , ... ,w ' 
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where w is any mth root of unity for some positive integer mo Any sequence u obtained 
in this way has theyroperty that for each hE Pn, the terms of U*h include all numbers 
of the form w-n+lh(w), and so at least one of the terms l(u * h)(k)l is dose to llhllw"' 
if m is sufficiently large" Since m can be chosen to be of order n [7], we have identifying 
signals of order n 2 " It is shown in [7] that the complexity of H 00 identification is of 
order n2 , and so inputs of this type are in a sense best possible" 

f 2 norm" It turns out that f 2 identification in Pn is merely linear in n It is 
shown in [12] that minimal length £2 identifying signals for Pn can be constructed 
using the coefficients of polynomials which are 'large everywhere on the unit circle'" 
The interested reader is encouraged to consult [13] for a full description of these signals 
anrl ..,orne fascinating related problems concerning the behaviour on the unit circle of 
polynomials whose coefficients are all of modulus L 

4.1.2. Other discrete systems. The key to identification in V(n, r) or K(g) 
is the fact that there are uniform bounds on the rates of decay of the 'tails' of the 
elements. In other words, the elements in any such model set M can be approximated 
uniformly well by their finite truncations. So M can be effectively replaced by a 
subset of a suitable polynomial space Pn', and any (8, r')-identifying signal for Pn' 
for a suitably chosen 7 1 < T is a ( r5, T )- identifying signal for M. 

So to determine bounds for the complexity we need bounds on n 1 as a function 
of the parameters n, r and g. These have been obtained in [3] and [5]. For example, 
it is shown in [3], that for the model sets V(n, r) the cut-off n' is bounded by a linear 
function of n, (for fixed r, 8 and r). So it follows that identification in V(n, r) is no 
greater than an exponential function of n in the £1 case, a quadratic function of n in 
the H 00 case and a linear function of n l.n the £2 case. Similar lower bounds are also 
obtained in [3]. 

The complexity of identification in K(g) is difficult to determine in general. How­
ever it is possible to give estimates in some special cases. For example, using the 
methods presented in [5] we can show that if g(k) = where 0 < .A < 1, then the 
complexity of identification is essentially exponential in (1- >.)-1 in the £1 case, and 
low order polynomial in (1- .A)-1 in the H 00 and £2 cases. 

4.2. Continuous model sets. The complexity of identification in the contin­
uous ARX model sets M(n,r) has been studied in [3], and results similar to those 
for the discrete analogues V(n, r) have been obtained. In particular, the exponential 
and quadratic nature of L 1 and H 00 identification persists, but the bounds are not 
as sharp. Interested readers may check [3] for full details. Similar results to 
K(g, "f), but here we merely give the appropriate reference 

We conclude with the observation that there is another natural measure of the 
complexity of identification in continuous model sets, apart from the minimum sample 
size. This is the minimum total sampling time. The two are related if a fixed sampling 
rate D. is assumed. What can be said if there is no restriction on the sampling rate? 
It can be shown that in model sets such as M(n,r) and K(g,ry), where the rate of 
change of functions is bounded, there is no point in sampling too fast. In fact in these 
model sets the sampling time complexity has the same types of bounds for L1 and 
H 00 as the sample size complexity [3] and [6]. 

5. Proofs. 

5.1. Proof of Theorem 2.1. Suppose that M is absolutely convex and iden­
tifiable, and that T > 0 and c: > 0. Then by Lemma 2.1 there are linear functionals 
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<p1, <p2, , .. , 'PN and J > 0 such that 

m.ax I'Pj(h)l 2: 8/2 for every hE M";2 . 
1:5.J5.N 

(5.1) 

Define .P(x) = (<p1(x), .. ,,<pN(x)) for each x E X. Then 'l>Mr is a bounded subset 
of CN (with the supremum norm), and hence its closure is compact. Choose a finite 
subset G of Mr such that .PG is a 8-net for 'l>Mr. Then for each hE Mr there exists 
g E G such that //'l>(g)- ~(h)lloo < J. Therefore, since <if> is linear, 1/.P((g- h)/2)// 00 < 
oj2. But (g- h)/2 EM by the absolute convexity of M, and so //(g- h)/2)11 < c/2 
by (5.1). So G is an c-net for Mr, and it follows that every dosed and bounded 
subset of M is compact. 

Now suppose that 0 <a< T, and let c =T-o. Since Mr is relatively compact, 
there is a finite c-net G = {91, ... , 9N} in Mr. By the Hahn Banach theorem, there 
are linear functionals <p1, ... , 'PN on X, each with norm 1, such that 'Pk(9k) = //gk// = T 
for 1 :::; k:::; N. LethE Mr and choose k so that //gk- h/1 <c. Then 

and so (2.3) holds. 

5.2. Proof of Theorem 3.L The proof proceeds by an number of preliminary 
lemmas. 

Lemma 5.L Suppose that 'ljJ E £1, !Cis a compact subset of X, and c > 0. Then 
there is an infinite set :E of positive integers such that 

/('1./J * h)(m)- ('1./J * h)(m')/ < c for each hE/( and each m, m 1 E :E. 

Proof. For each n 2: 0, let Wn be given by (3.2), and let 

:En= {mE z+: sup /Wm(h)- "l]!n(h)/ < c/2}. 
hEIC 

Since 1/"l]!nl/ :::; C 11'1./JI/ 1 for each n 2: 0, the linear functionals Wn, for n 2: 0, are 
uniformly bounded, and hence equi-continuous on X. So by the Arzela-Ascoli theorem 
at least one of the sets :En is infinite, and it is easy to check that any such set has the 
desired properties. D 

The next result shows how a finite number of convolution functionals of the form 
(3.2) can be approximated by convolution functionals arising from a single 1!1 sequence. 
First we introduce some notation. We denote by S the shift operator defined for any 
sequence f by 

(Sf)(O) = 0 and (Sf)(n) = f(n- 1) for n 2: 1. 

It is easy to verify that S('lj; *f) = S'lj; * f = 'ljJ *Sf for any sequences'¢ and f. 
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Lemma 5.2. Suppose that JC is a compact subset of X, c > 0, and 'l!1, 'l!2, ... WK 
are continuous linear functionals on X of the form 'l!k(f) = ('¢k * f)(mk) for each f E 
X, where '¢k is a sequence and mk E z+ for each 1 ~ k ~ K. Then there is a finitely 
supported sequence u, and n1, n2, ... , nK E z+, such that llulloo = max19::;K 11'1/Jklloo, 
and 

l(u * h)(nk)- 'l!k(h)l < c for each hE JC and 1 ~ k ~ K. 

Proof. We may assume that each '¢k is finitely supported, in particular that 
.fik(n) = 0 if n ~ mk. The proof is by induction on K. If K = 1 we choose n1 ~ m1 
and set u = Sn1 -m2 '¢1· Then for each f E /C, 

For the inductive part, assume that v is finitely supported, nk ~ 1 for 1 ~ k < K, 
and that 

l(v * h)(nk)- 'l!k(h)l < c/2 for each hE JC and 1 ~ k < K. 

Choose M such that v(n) = 0 for n > M, and such that M > max{nK-1,mK}· 
By Lemma 5.1 there are positive integers m > 2M and m 1 > m + M such that 

l(v * h)(m)- (v * h)(m1)1 < c for each hE /C. (5.2) 

Let u = v- sm'-mv + sm'-mK'l/JK, and nK = m 1• We shall show that u and 
n1, n2, ... , nK-1, nK have the desired properties. 

First observe that v, sm' -mv, and sm' -mK '¢K have disjoint supports, and so 

Now suppose that 1 ~ k < K and that h E /C. Since m 1 - m > M > nk and 
m 1 - mK > M > nk, (sm'-mv * h)(nk) = (sm'-mK'l/JK * h)(nk) = 0, and so 

l(u * h)(nk)- 'l!k(h)l = l(v * h)(nk)- 'l!k(h)l <c. 

Also (sm'-mK'l/JK * h)(m1) = ('¢K * h)(mK) = 'l!K(h) and (sm'-mv * h)(m1) = (v * 
h)(m), and so by (5.2), 

l(u * h)(nK)- WK(h)l = l(v * h)(m1)- (v * h)(m)l <c. 

0 

In order to prove the main theorem it is enough to show that if each Mr is 
compact then M is *-identifiable. So suppose that Mr is compact. We shall show 
that there exists 8 > 0, N ~ 0, and a finitely supported sequence u with llulloo = 1 
such that 

max l(u * h)(n)l > 8 for each hE Mr. 
1:Sn:SN -
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Suppose that Wn is the linear functional on X defined by {3.2), where n;::: 0 and 
where '1/J is a finitely supported sequence, with 11'1/JIIoo = 1. Since Wn is continuous, the 
set U('ljJ, n, "') = {! E X : IWn{f)l > "'} is open in X for each "'> 0 .. Furthermore, 
Mr is covered by sets of this form. To see this suppose that hE Mr. Since h =/= 0, 
lh(n)l =/= 0 for some n;::: 0. Let '1/J = e-ill8(o), where fJ = argh{n). Then ('1/J * h)(n) = 
lh{n)l, and soh E U('ljJ, n, "') if 0 <"' < lh{n)l. 

Since Mr is compact, there is a finite family {wl, w2, ... 'WK} of linear func­
tionals of the form {3.2) and "'> 0 such that 

Choose 8 such that 0 < 8 < ,..,, and let e = "'- 8. Then by Lemma 5.2 there exists 
a finitely supported sequence u with llulloo = 1, and n1,n2, ... ,nK E z+, such that 
i(u * h)(nk)- wk(h)l < e for each hE Mr and each 1 ~ k ~ K. 

Let N = max{nk: 1 ~ k ~ K}, and suppose that hE Mr. Then IWk{h)l >"'for 
some 1 ~ k ~ K. So it follows that 
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