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Abstract. We study the algebraic consequences of the traditional descriptions of dynamics 
based on differential equations. We thus show how C* -dynamical systems consisting of an action 
of a locally compact group on a C*-algebra provide a common framework for studying the time 
evolution and symmetry groups of systems in classical and quantum physics. 
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One thing which emerged dearly at the workshop in March is that there are many 
different ideas about what constitutes a "dynamical system." In my talk, therefore, 
I tried to explain how the dynamical systems operator-algebraists study arise from 
the more classical notion of dynamical system as a system of ordinary differential 
equations. In discussions afterwards, I became aware that many workers in my own 
area are unaware of the circle of ideas that led to the general acceptance of C''­
dynamical systems as an important field of research. So I have included in this 
written version a discussion of how these also arise in quantum mechanics. 

Dynamical systems were originally mathematical formulations of dynamics - how 
physical systems change in time. By exploring the algebraic properties of dynamics, 
we shall arrive at a notion of dynamical system which provides a common framework 
for studying time evolutions and symmetry groups in classical mechanics. We then 
seek a parallel framework for Hilbert-space models of quantum mechanics; carrying 
out this program raises a variety of interesting mathematical issues. We finish by 
showing how C*-algebraic dynamical systems bring these ideas together in one neat 
conceptual package. 

1. Classical dynamical systems. We consider a physical system in which the 
different states of the system are described by points of a state space X. The time 
evolution is given by an ordinary differential equation x' = f(x), in which the unknown 
is a function x : R 1-t X, and the value x(t) represents the state of the system at time 
t. To see what happens to a system which starts in a given state x0 , we solve the 
initial-value problem 

x' = f(x), x(O) = xo. (1.1) 

We know from experience that the general solution of x' = f(x) will involve an 
arbitrary constant c E X, which should be determined by the initial condition; thus 
we expect the initial-value problem (1.1) to have a unique solution. More formally, if 
f : X --+ R satisfies a Lipschitz condition 

lf(x)- f(y)l::; Klx- Yl, 

then the global existence and uniqueness theorem implies that (1.1) has a unique 
solution valid on all of R. 

EXAMPLE 1.1. Consider a particle of mass m moving in R 3 according to New­
ton's laws; we assume that there are no external influences, so that the system is 
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conservative in the sense that energy is conserved. Then the position of the particle 
is described by a vector-valued function q : R -+ R 3 which satisfies an equation of 
the form q11 = g(q, q') (really a system of 3 ordinary differential equations). If we 
introduce the momentum p := mq' and set f(q,p) := (pfm, g(q,p)), then the function 
x := (q,p) : R-+ R 6 satisfies the first-order equation x 1 = f(x), and the motion of 
the particle is determined by its initial position and momentum (q(O),p(O)) E R 6 . 

Thus we can make this system fit our model by taking X := R 6 for the state space. 
The conservative nature of the system is reflected in our implicit assumption that the 
right-hand side f(x) depends only on the position and momentum of the particle and 
not directly on time; this is crucial for the analysis which follows. 

Solving the initial-value problem (Ll) gives us a state x(t) which depends both 
on the timet and the initial value x0 ; to emphasise this, we write t · x0 := x(t). This 
pairing (t, x0 ) t-+ t · x0 of R x X into X has a key algebraic property: 

s · (t · xo) = (s + t) · xo. (1.2) 

To establish this, note that t · x0 := x(t) and (s + t) · x0 := x(s + t) are defined using 
the solution x of (1.1). To define s · (t · x 0 ), we have to solve instead 

y' = f(y), y(O) = t · xo, (1.3) 

and takes· (t · x0 ) := But the function y(r) := x(r + t) satisfies (1.3), and the 
initial-value problem (1.3) has a unique solution, so = x(s + t) = (s + t) · x0 . 

The algebraic property says that we have an action of the additive group 
(R, +)on the state space X. This action is continuous, in the sense that (t, t-+ t·xo 
is a continuous map of R x X into X; this amounts to saying that the solution x(t) 
to (Ll) depends continuously on the initial data x0 , and follows from the inequality 

!x(t)- I::; lx(to)- y(to)leKit-tol 

enjoyed by any pair of solutions to x' = f(x). (See, for example, [7, p.l69]; the 
constant K appearing here is the Lipschitz constant of We can sum up the 
discussion so far by saying that solving the initial-value problem gives us a continuous 
action of R on the state space X. 

To reach this conclusion we have had to impose some non-trivial hypotheses; 
for example, the existence of the global Lipschitz constant K is not much weaker 
than linearity. Nevertheless, now that we have this description, we can see that it is 
physically reasonable: we expect conservative systems to have the additive property 
(1.2) (it shouldn't matter when we start the dock), and we want physical models to 
be stable in the sense that small perturbations in the initial data don't change the 
system much, which is precisely what the continuity says. So one is naturally led to 
wonder why we bother with the differential equation at all: 

DEFINITION 1.1. The time evolution in a classical dynamical system is given by 
a continuous action of R on the state space. 

One immediate advantage of such a formulation is that it can be trivially modified 
to handle discrete-event systems, in which the only times of interest are multiples of 
a fixed unit to: the time evolution is given by an action (n, x0 ) t-+ n · x0 = (nt0 ) • x0 of 
Z on the state space. In other words, we simply look at actions of a different group. 
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By pushing this idea a little further we can accommodate symmetries in the same 
formalism. 

A symmetry of a geometric object is a transformation which does not change the 
shape of the object. For example, if the object is a square, we can rotate it through 
multiples of 1r /2 or reflect it in one of several axes; if it is a circle, we can rotate it 
through any angle or reflect it in any diameter. These symmetries always form a group 
under composition. For the square, the symmetries form a group D of order 8 called 
the dihedral group: D is generated by an element a of order 4 (rotation through 1r /2, 
say) and an element b of order 2 (reflection in they-axis, say) satisfying ba = a3 b. In 
any model of a physical system in which identical objects are located at the vertices 
of a square, we would expect to find an action of the group D on the state space. 

Symmetries of a physical system can arise in other ways. For example, if a particle 
moves in R 3 under the gravitational attraction of an object at the origin, the system 
will be invariant under rotations about the origin, and there should be an action of 
the group 80{3, R) of rotations on the state space. 

In general, we think of the group operation as multiplication rather than addition 
{because we have been trained through linear algebra not to expect multiplications 
to commute), and an action of a group G on a space X is a continuous pairing 
(g, x) 1--t g · x such that g · ( h · x) = (gh) · x. We arrive at a notion of dynamical system 
which allows us to study time evolution and symmetry simultaneously: 

DEFINITION 1.2. A classical dynamical system consists of an action of a group 
G on a state space X. 

At this point we have a very broad definition, which could be tightened up in 
several ways by adding structure. Thus, for example, a differential geometer would 
naturally insist that the group be a Lie group, that the state space be a manifold and 
that the action be smooth; a topologist might ask that G be a topological group and 
that X be a polyhedron. Our own prejudices would lead us to suppose that G is a 
locally compact group and that X is a locally compact Hausdorff space, and these 
assumptions will help to ensure that what follows can be rigorously justified. 

At this stage, in preparation for the discussion in the next sections, we introduce a 
couple of mathematical devices, both of which are knee-jerk reactions for an operator­
algebraist. 

Our first device is to replace the space X by the algebra C0 {X) of continuous 
functions a : X --+ C which vanish at infinity. {If X = Rn, for example, "a vanishes 
at infinity" means that a(x) --+ 0 as lxl --+ oo.) Here we use the word algebra in 
a technical sense, to say that C0 {X) has a multiplication which is compatible with 
the linear space structure: (ab)(x) := a(x)b(x). The point is that C0 {X) has a 
great deal more structure than the space X: it is a C* -algebra. Thus it also has 
an involution a 1--t a* (given by pointwise complex conjugation) and a norm (defined 
by llall := sup{ja(x)l : x E X}) which satisfies the C*-identity I Ia* aii = llall2 and 
is complete, in the sense that Cauchy sequences converge. In fact, Co(X) is the the 
prototypical commutative C* -algebra: the Gelfand-Naimark Theorem says that every 
commutative C*-algebra is isomorphic to one of the form C0 (X). 

A continuous action of a locally compact group G on X lifts to an action r of G 
by automorphisms of C0 {X); the automorphism r9 corresponding tog E G is given 
by r9 (a)(x) := a(g-1 • x). The presence of the inverse is just bookkeeping to ensure 
that g 1--t r9 is a homomorphism of G into the group AutC0 (X) of automorphisms 
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under composition: 

rgh(a)(x) = a((gh)-1 0 x) = a((h-lg-1) 0 x) = a(h-1 . (g-1 . x)) 

= rh(a)(g-1 
0 x) = r9(rh(a))(x)o 

The action r is strongly continuous in the sense that g 1--t r9 (a) is continuous for each 
fixed a, and every strongly continuous action of G on a commutative C* -algebra arises 
this way. (See [10, Lemma 7.1] for a more detailed statement.) So now a classical 
dynamical system consists of a strongly continuous action r of a locally compact group 
G by automorphisms of a commutative C*-algebra C0 (X). 

Our second mathematical device is to represent everything by operators on a 
Hilbert space 1i. The algebra B(1i) of bounded operators on 1-l is itself a C* -algebra: 
the multiplication is given by composition, the adjoint is the map T 1--t T* charac­
terised by (Th I k) = (hI T*k), and the norm is the radius of {Th : llhll :::; 1}. A 
representation of a C*-algebra A is a linear map n : A -+ B(1-l) which preserves 
the multiplication and adjoint; all C* -algebras have lots of them. For example, 
one can obtain representations of C0 (X) by fixing a measure J.L on X, and defin­
ing n : C0 (X) -+ B(L2 (X,dJ.L)) by (n(a)h)(x) = a(x)h(x) for hE L 2 (X,dJ.L). To 
represent groups, one uses unitary operators: the linear operators V on 1-l satisfying 
VV* = V*V = 1. These are the automorphisms of Hilbert space, and form a group 
U(1-l) under composition. A unitary representation of a group G on 1-l is a homo­
morphism U : G -+ U(1-l). If the group is locally compact, we insist that unitary 
representations are strongly continuous: g 1--t U9 h is continuous for every h E 1i. 

The automorphisms of B(1i) all have the form Ad V : T H VTV* for some 
V E U(1l); it is easy to check that each Ad Vis an automorphism, and not ridiculously 
hard to see that they all have this form. (The proof of [10, Proposition 1.6] carries 
over, for example.) When we want to represent the whole system (C0 (X), G, r) by 
operators on Hilbert space, we ask that the automorphisms r9 take the form Ad U9 . 

Thus a covariant representation of the dynamical system (C0 (X), G, r) consists of a 
representation n : C0 (X) -+ B(1-l) and a unitary representation U : G -+ U(1-l) on 
the same space such that 

1r(r9 (a)) = U9n(a)u; for a E C0 (X) and g E G. 

A third mathematical device which we shall not follow up here is to encapsulate 
the covariant representation theory of the dynamical system in one C* -algebra, called 
the crossed product. We shall discuss this briefly in Section 4. 

2. Quantum mechanical systems on Hilbert space, In the most basic 
mathematical models of quantum mechanics, the states are given by unit vectors 
h in a Hilbert space 1-i, with the proviso that if A E C and IAI = 1, then >.h and h 
represent the same state. We write (· I ·) for the inner product, which we assume to 
be linear in the first variable (we apologise to any physicist who has stumbled across 
this). The time evolution in such a quantum mechanical system is given by a differen­
tial equation 'lj;1 = -iH('IjJ) called Schriidinger's equation, in which the unknown is a 
function 'ljJ : R-+ 1-l and the Hamiltonian H is a linear operator on 1-l. If the system 
is in state h at time 0, then its state at time t is obtained by solving the initial-value 
problem 

'1/J' = -iH('IjJ), 'lj;(O) = h, (2.1) 
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and evaluating at t to obtain '1/Jt = '1/;(t). The Hamiltonian H is typically a partial 
differential operator, so Schrodinger's equation is a partial differential equation; nev­
ertheless, provided H is self-adjoint in a technical sense, the initial-value problem 
(2;1) has a unique solution valid on all of R. The operator His typically unbounded 
and defined only on a dense subspace D of 1-l, so as well as the formal self-adjointness 
condition (Hh I k) = (hI Hk) for h, k E D, one needs to impose conditions on the 
domain D: loosely speaking, one insists that Dis as large as possible (see [11, Chap­
ter VIII]). In the Example 2.1 below, we try to give some idea of what this means. 
However, if H is self-adjoint, the maps Ut which send the initial value '1/;0 = h to the 
solution '1/;(t) form a unitary representation U: R-+ U(1-l) [11, Theorem VHI.7]. We 
write Ut = e-itH. 

DEFINITION 2.1. The time evolution in a quantum mechanical system with un­
derlying Hilbert space 1-l is given by a unitary representation of R on 1-l. 

The notion of self-adjointness turns out to be intrinsic to this view of quantum 
mechanics. First of all, if we are to use this definition of time evolution, H has to be 
self-adjoint: a theorem of Stone asserts that every unitary representation U : R -+ 
U(1-l) has the form e-itT for some self-adjoint operator T [11, Theorem VIII.8]. The 
operator T is called the infinitesimal generator of U, and is defined by 

Th := i!!_(Uth)l = i lim Uth- h 
dt t=O i-tO t 

with domain consisting of the set of vectors h for which this limit exists. Second, the 
observable quantities of the system correspond to self-adjoint operators on 1-l. The 
Hamiltonian H, for example, corresponds to the energy of the system. Third, the 
hypothesis of self-adjointness has deep mathematical implications: spectral theory 
allows one to reconstruct the operator from a projection-valued measure on the Borel 
subsets of R called the spectral measure of the operator (see [11, Chapter VIII.3]). To 
see how this is useful physically, note that it is in the nature of quantum mechanics 
that one cannot expect to measure things exactly, and for each observable T and 
state h there is a probability distribution describing the values of the observable T in 
the state h. The number (Th I h) represents the expected value of this distribution; 
the distribution itself involves the spectral measure of the self-adjoint operator T. 
Indeed, if ET is the spectral measure ofT, so that ET(B) is a projection on 1-l 
for each Borel set B C R, then (ET(B)h I h) is the probability that measuring the 
observable quantity T in the state h gives an answer lying in the set B. 

We have described the Schrodinger picture of quantum mechanics, in which the 
states evolve; one can also use the Heisenberg picture, in which the states are viewed 
as fixed and the observables evolve. If Ut describes the evolution in the Schrodinger 
picture, then the observable T at time 0 moves to the observable UtTUt at time t. 
To prove this, one merely has to fix an initial state h, and verify that the measures 
B 1--t (EU,*TU, (B)h I h) and B 1--t (ET (B)(Uth) I Uth) coincide, which amounts to 
showing that EU,*TU, = Ut ETUt. 

EXAMPLE 2 .1. Consider a particle of mass m moving in R 3 under a potential 
V : R 3 -+ R; in classical mechanics, V(x, y, z) would be the potential energy of the 
particle when it is located at (x, y, z). The underlying Hilbert space is L2 (R3 ), and the 
unit vectors are functions 'lj; : R 3 -+ C satisfying J I'I/JI 2 = 1. If B C R 3 , then JB I'I/JI2 is 
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the probability that a particle in the state 1/J is located in the set B. The time evolution 
is described by the map 1/Jo '"""* 1/Jt, where the function 1/J : (t,x,y,z) '"""* 1/Jt(x,y,z) 
satisfies Schrodinger's equation 

. 81/J n,2 
~n-8 (t,x,y,z) = --!l('lj;)(t,x,y,z) + V(x,y,z)'lj;(t,x,y,z), 1/J(O,x,y,z) = 1/Jo(x,y,z), 

t m 

where D. is the usual Laplacian D. : f '"""* fxx + f 1111 + fzz and li is Planck's constant. 
Because they have no impact on the mathematical ideas, authors often choose units 
so that li = 1 and m = 1. 

The operator Mx of multiplication by the variable x is self-adjoint on the domain 

this operator corresponds to the observable in which we measure the x-coordinate of 
the position of the particle. For constant coefficient differential operators L such as 
the Laplacian !l, we can write down suitable domains by using the Fourier transform 
to convert L to a multiplication operator (see [12, Theorem IX.27]). On the other 
hand, it can be a very delicate matter to decide if there is a self-adjoint version of the 
Hamiltonian -!l + Mv; there is if, for example, Vis the sum of an £ 2-function and 
a bounded function (see [12, Theorem X.15]). 

Symmetries of quantum mechanical systems should be bijections on the set of 
states. One would expect these symmetries to preserve some of the algebraic struc­
ture we have imposed, and Wigner identified the transition probabilities as the key 
feature. If h and k are unit vectors, the transition probability is the absolute value 
l(h I k)l of the inner product; one interprets this physically as the probability of a 
positive answer when we ask whether the state his in the state k. Notice that mul­
tiplying h or k by scalars of absolute value one does not affect l(h I k)l, so transition 
probabilities are well-defined on the state space P(1i) of unit rays, which we can view 
as the quotient space of the unit sphere 8(1-l) := {h E 1-l : llhll = 1} by the action 
ofT := {.A E C : I.AI = 1}. We write [h] for the state in P(1i) corresponding to 
hE 8(1-l). 

Theorem 2.1 {Wigner). Iff : P(1i) ---+ P(1i) is a bijection which preserves 
transition probabilities, then there is a unitary or antiunitary operator U on 1-l such 
that f([h]) = [Uh] for all hE 8(1-l). The operator U is unique up to multiplication by 
a scalar .A E T. 

This theorem was formulated by Wigner in 1931; a proof in the spirit of his 
original argument was given by Bargmann in 1964 [1]. Other authors have started 
from different definitions of symmetry, but, remarkably, all seem to arrive at a theorem 
of this sort. (For surveys of these ideas, see [14] or [4].) So to exploit symmetry in 
quantum mechanics one has to study representations of the appropriate group as 
unitary or antiunitary operators on Hilbert space. Since mathematicians instinctively 
prefer linearity to antilinearity, we immediately look for excuses to stick with unitary 
representations, and this leads to some interesting mathematical ideas. 

Suppose that G is a symmetry group of a quantum mechanical system, so that we 
have a homomorphism T of G into the group Symm P(1i) of transition-probability­
preserving bijections of the state space P(1i). By Wigner's theorem, each symmetry 
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T9 is implemented by a unitary or antiunitary operator. If g = h2 for some h E G, then 
T9 = Th o Th is implemented by a unitary, because the composition of two antilinear 
maps is linear. Thus if every element of G is a square, then every symmetry T9 is 
implemented by a unitary operator. This is the case if G = R (because the group 
operation is+, and every x = ~x+ ~x), and more generally whenever G is a connected 
Lie group. So for such G we can always choose unitary operators U9 which implement 
the symmetries T9 • 

Can we choose the unitaries U9 so that U: G-+ U(H) is a (strongly continuous) 
unitary representation? Let us first make an arbitrary choice g I-? U9 • Since two 
unit aries U, V induce the same symmetry if and only if U = A.V for some A E T 
(this is the uniqueness assertion in Wigner's theorem), and since the product U9 Uh 
implements T9 h = T9 o Th, there is a scalar w(g, h) E T such that U9 Uh = w(g, h)Ugh· 
A comparison of the unitaries implementing T(gh)k = T9(hk) shows that 

w(g, h)c.,J(gh, k) = w(g, hk)w(h, k); 

such functions w : G x G -+ T are called 2-cocycles. Trivial examples of 2-cocycles 
are the coboundaries, which are given by 8>.. : (g, h) 1--7 A.(g)-1 >..(h)-1 >.(gh) for some 
map>.: G-+ T. It turns out that w is a coboundary 8>.. precisely when we can choose 
g 1--7 U9 to be a homomorphism: just replace the U9 we first chose by ),(g)U9 • The 
2-cocydes form an abelian group under pointwise multiplication, and the quotient 
by the subgroup of coboundaries is called the second cohomology group of G with 
coefficients in T, and denoted H 2 (G, T). In fancy language, we have just shown that 
there is a complete obstruction in H 2 ( G, T) to implementing T : G -+ Symm P(H) 
by a homomorphism U : G -+ U(1-l). The group H 2 (G, T) is the 2-dimensional 
component in a well-developed cohomology theory, which includes powerful tools for 
computation, so at this stage we have reduced our problem to a well-understood one. 
Before we get too excited, though, we have to remember that we expect our unitary 
representations to be strongly continuous. 

We shall have to impose a continuity condition on our action T of G by sym­
metries, and we shall do this by appealing to Wigner's theorem. The set G(H) of 
unitary and antiunitary operators on H has a natural topology called the strong op­
erator topology, which is determined by the seminorms IIUIIh := IIUhll for hE 1-l, and 
G(H) is a topological group in this topology. Wigner's theorem says that Symm P(1-l) 
is the quotient of G(H) by the subgroup Tl of multiples of the identity operator 1. 
We give Symm P(1l) the quotient topology, and ask that T be continuous for this 
topology. This is reasonable: one symmetry S is near another one T if for each finite 
collection [hi] of states we can choose implementing operators U for S and V for T 
such that I!Uhi- Vhill is small for all i. 

DEFINITION 2.2. The symmetries of a quantum mechanical system with underly­
ing Hilbert space 1-l are given by a continuous homomorphism of a topological group 
G into Symm P(1l). 

We now have to ask if we can lift a continuous homomorphism T : G -+ U(1l) /T to 
a (strongly continuous) unitary representation U : G-+ U(1-l). It turns out that there 
are topological obstructions to doing this: not every continuous map f into U(1l)/T 
lifts to a continuous map into U(1l). It is, however, possible to do this locally. (For 
example, one can identify U(1l)/T with the group AutK(H) of automorphisms of the 
C*-algebra of compact operators, and appeal to [10, Proposition 1.6].) We can piece 
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these locally defined maps together to give a Borel lifting g f-t U9 , and then the cocycle 
w is a Borel map of G x G into T. If w = 8.\ for some Borel map,\: G-+ T, then we 
have a Borel lifting g f-t .\(g)U9 which is a homomorphism, and hence automatically 
strongly continuous by, for example, [9, Proposition 5]. The relevance of the group 
H 2 ( G, T) of Borel 2-cocycles modulo Borel co boundaries was pointed out by Mackey 
(see, for example, [8, Chapter 18], where 2-cocycles are called multipliers). Nowadays 
H 2 (G, T) is called the second Moore cohomology group of G, because C.C. Moore has 
developed systematic tools for studying this version of group cohomology with Borel 
cochains ([9]; see [10, Section 7.4] for more recent references). 

We can sum up our progress so far: 

Theorem 2.2. Suppose G is a connected Lie group such that H 2 (G, T) = 0. 
Then every continous action T : G f-t Symm P(1i) is implemented by a strongly con­
tinuous unitary representation U: G-+ U(1i). 

This theorem applies, for example, if G = R (see [14, Theorem 8.1]), giving inde­
pendent confirmation of our Definition 2.1 of time evolution. We could now deduce the 
existence of Schrodinger's equation: Stone's Theorem implies that the time evolution 
is given by the differential equation 1/J' (t) = -itH('Ij;(t)) where His the infinitesimal 
generator of U. (This route to the foundations of quantum mechanics is followed in 
[15].) Theorem 2.2 also applies to any connected and simply-connected semisimple 
Lie group [15]. It does not apply to the group G = 80(3, R) of rotations, where we 
would have to pass to the simply-connected covering group G to get H 2 (G, T) = 0. 
Thus not every action of 80(3, R) is implemented by a unitary representation of 
80(3, R); this observation leads to the concept of spin (and to the name Spin(3, R) 
for the covering group). 

3. Quantum mechanical systems on C*-algebras. As in Example 2.1, a 
quantum mechanical system with n particles is modelled using the Hilbert space 
L 2(R3n). When there are infinitely many particles - for example, in statistical 
mechanics, where one considers infinite lattices -there is no obvious Hilbert space 
to use. Some models avoid this problem by focusing on the observables, as in the 
Heisenberg picture, and using the self-adjoint elements in a C* -algebra A as the 
observables of the system. The states are then given by the linear functionals w on A 
of norm one which are positive in the sense that w(a*a) ~ 0 for every a E A; if a= a* 
is self-adjoint and w is a state, then w(a) is a real number which is the expected value 
of the observable a in the state w. For an interesting discussion of how C*-algebraic 
models were developed and why the context seems appropriate, see the introduction 
to [2]. 

When there is a natural Hilbert space 1i, we take A= B(1i), and each unit vector 
hE 1i determines a state Wh : T f-t (Th I h). Conversely, we can always represent an 
abstract C* -algebra as operators on a Hilbert space 1i, and then each state w will 
extend (in a noncanonical way) to a state on B(1i). This state will not necessarily 
have the form wh: see [11, Theorem VI.26] for a description of the states on B(1i). 
But if we start with a given state w of a C*-algebra A, then the GNS-construction 
gives us a Hilbert space 1iw, a representation 'Trw : A -+ B(1iw), and a unit vector 
h E 1iw such that w(a) = (rrw(a)h I h). Thus we can always tailor a Hilbert-space 
system to study any given state. 

The time evolution of a C* -algebraic quantum system should be given by a one­
~~rameter group { O!t : t E R} of symmetries of the set of observables. We have 
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to decide what "symmetry" should mean: a symmetry should certainly preserve the 
physical structure, but it is not clear how much of the C* -algebra structure is a math­
ematical convenience. For example, note that if a, b E A are self-adjoint but do not 
commute, then the product ab will not be self-adjoint, and hence will not represent 
an observable quantity. On the other hand, the Jordan product {a, b} := ab + ba is 
self-adjoint, and one could ask that symmetries be given by Jordan automorphisms 
of A: linear isomorphisms which preserve the Jordan product. It turns out that these 
are precisely the linear isomorphisms ¢ : A -l- A such that ¢*(w) := w o ¢is a state 
whenever w is [2, Theorem 3.2.3], so this definition is intuitively reasonable. Auto­
morphisms and antiautomorphisms of the C*-algebra A give Jordan automorphisms 
of A, but there can be many more. However, if { O:t : t E R} is a strongly contin­
uous one-parameter group of Jordan automorphisms, then each O:t is a C*-algebra 
automorphism [2, Theorem 3.2.12]. Thus: 

DEFINITION 3.1. The time evolution in a quantum mechanical system whose 
observables are the self-adjoint elements of a C* -algebra A is given by a strongly 
continuous action a : R -l- Aut A of R by automorphisms of A. The observable rep­
resented by the self-adjoint element a = a* E A at time t = 0 evolves to the observable 
O:t (a) at time t; alternatively, a state w at time 0 becomes the state w o O:t at time t. 

When we realise our C* -algebraic system by operators on Hilbert space via a 
representation 1r : A -l- B(1-l), we want this notion of time evolution to match up 
with the one we had in the previous section, given by a unitary representation U : 
R -l- U (11). Since representations of C* -algebras are *-preserving, the operator n( a) 
corresponding to an observable a = a* E A is a (bounded) self-adjoint operator on 
1l representing an observable in the Hilbert-space system, which in the Heisenberg 
picture evolves according to the rule t 1-t Utn(a)Ut. Thus the pair (n, U) must satisfy 

in other words, the pair ( 1r, U*) is a covariant representation of the dynamical system 
(A, R, a) in the sense of Section 1. If we start with a state w of A, then as before we can 
represent A on a Hilbert space 1lw using theGNS-representation 7rw: loosely speaking, 
1lw is the completion of A with respect to the inner product (a I b)w := w(b*a), and 
nw(a)b = ab forb E A C 1-lw. If the state w is invariant in the sense that w o O:t = w 
for all t E R, then b H- O:t (b) extends to a unitary operator Ut on 1-lw such that 

1rw ( at(a)) = Ut1rw (a)Ui\ 

and the whole system is realised by a covariant representation. 

REMARKS 3.1. (I) In motivating Definition 3.1, we claimed it was reasonable 
that symmetries should take states to states. However, we should point out that 
there are important models where this does not happen. For example, in [3, Chapter 
5.2] several different statistical mechanical models are considered; in some of these 
the time evolution is given by an automorphism group, and in some it is not. So 
one should not interpret this as a universal rule. It is nevertheless interesting to 
see the standard notion of C* -dynamical system emerging from physically plausible 
assumptions. 

(2) In describing the time evolution inC* -algebraic systems, we have done exactly 
what we advocated in Section 1: we haven't bothered with differential equations at all. 
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In fairness, though, we should mention that strongly continuous one-parameter groups 
of automorphisms do have densely-defined infinitesimal generators c5, which satisfy the 
relation c5(ab) = c5(a)b+ac5(b) for a, bin a dense *-subalgebra V of A; loosely speaking, 
this relation comes from differentiating the function t f--t O:t(ab) = O:t(a)o:t(b) using 
the product rule. Such maps c5: V ~A are called (unbounded) derivations, and an 
enormous effort has gone into their study (see, for example, [2, Chapter 3] and [13]). 

To require that more general symmetry groups act by automorphisms of the un­
derlying C* -algebras seems to be more an act of faith. But it is certainly true that the 
original impetus for. studying actions of locally compact groups on noncommutative 
C*-algebras came from exactly these considerations (see [5], [2, Chapter 4.3]). 

DEFINITION 3.2. Consider a quantum mechanical system whose observables are 
the self-adjoint elements of a C* -algebra A. A symmetry group of the system is a 
strongly continuous action a: : G ~ Aut A of G by automorphisms of A. 

When we represent the C* -algebraic quantum system on Hilbert space via a rep­
resentation 1r: A~ B('H.), we want to implement the symmetries o:9 by symmetries 
of the Hilbert-space system. For actions of R, these are given by a unitary repre­
sentation of R, but we saw earlier, for other groups more complicated things could 
happen, and these complications can be of physical significance. Nevertheless, the 
most important representations are the covariant representations ( 1r, U), in which U 
is a unitary representation of G and 

1r(o:9 (a)) = U91r(a)u; for a E A and g E G. 

As in our discussion of time evolution, any invariant state gives rise to a covariant 
representation (7rw, U) extending theGNS-representation 'Trw· 

4. Concluding remarks. We have now arrived at the standard notion of C*­
dynamical system: a triple (A, G, a:) consisting of a C*-algebra A, a locally compact 
group G, and an action of G by automorphisms of A. We have shown that this formal­
ism encompasses in a mathematically precise way the time evolution and symmetry 
groups of classical mechanics, via actions on commutative C* -algebras, and the time 
evolution of C* -algebraic models in quantum mechanics, and that it is also useful in 
exploiting symmetry in quantum mechanics. Our operator-algebraic instinct of rep­
resenting everything by operators on Hilbert space is particularly relevant: covariant 
representations relate the C* -algebraic models of quantum mechanics to the more 
traditional Hilbert-space ones. 

We shall close by saying briefly why covariant representations are important in 
other areas of mathematics. They arose first in Mackey's theory of induced represen­
tations of locally compact groups: a representation U of a locally compact group G 
is induced from a given closed subgroup H if and only if it forms part of a covari­
ant representation of the system (Co ( G /H), G, r) in which G acts by left translation 
on G/H (this formulation of Mackey's lmprimitivity Theorem was pointed out by 
Glimm; see [10, Section C.5] for more details). Takesaki subsequently showed that 
Mackey's machine for computing the irreducible unitary representations of G carries 
over to a large class of dynamical systems involving noncommutative algebras A, and 
a deep and powerful version of the Mackey machine was subequently developed by 
Green based on ideas of llieffel [6]. 
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Green's analysis of (A, G, a) focused on the structure of the crossed product A>4,.G 
- which, interestingly, had been introduced earlier with applications to physics in 
mind [5]. This C* -algebra is generated by a covariant representation of (A, G, a), and 
is universal for such representations: there is a one-to-one correspondence between 
representations of A >4 a G and covariant representations of (A, G, a) (see [10, Section 
7.1) for further references). Over the past 20 years, these crossed products have 
turned up all over the place, and provide many of the most important examples of C*­
algebras. For example, the irrational rotation algebras which were the key example in 
Cannes' noncommutative differential geometry are by definition the crossed products 
of C(T) by actions of Z by rotations. Crossed products have been instrumental 
in noncommutative topology, where they allow one to deal with group actions in 
a systematic way. And our knowledge of the relationship between the structure of 
dynamical systems and their crossed products has led via nonabelian duality to the 
modern theory of Hopf C*-algebras (or quantum groups) and their actions on C*­
algebras. 
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