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Abstract. This survey article (also containing a few new results) is devoted to a consideration 
of various properties of some well known classes of operators, such as decomposable operators, gen
eralized scalar operators, well-bounded operators and AC-operators, for example, when attention is 
restricted to the particular (but important) setting of Fourier p-multiplier operators on the real line 
group. The aim is to highlight some relevant phenomena and to pose several natural questions which 
occur in this setting. 
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1. Introduction. One of the great successes of operator theory in Hilbert spaces 
was the spectral theorem for normal operators, which can be viewed as a natural 
extension of the theory of diagonalizable matrices in finite dimensional spaces. In the 
late 1940's and early 1950's, N. Dunford extended the notion of a normal operator 
(actually any operator similar to a normal operator) to the Banach space setting. He 
considered any operator S having an integral representation of the form 

8= i >..dE(>..), (1.1) 

where E(·) is a projection-valued measure on the Borel sets of C having its support 
equal to the spectrum a(S) of S and which is countably additive for the strong 
operator topology. The operatorS is called scalar-type spectral and the measure E(·), 
necessarily unique, is called the resolution of the identity of S. Actually, Dunford's 
theory also allows for operators of the form S + N, where N is any operator commuting 
with Sand which is quasinilpotent (i.e. a(N) = {0} ). Such operators S + N are called 
spectral; see [15] for the general theory. Unfortunately, as attractive as the theory is 
it turned out to be more restrictive than had been anticipated, [18]. Indeed, the 
analogue in £P-spaces of many normal operators in £ 2-spaces fail to be spectral or, 
require additional (and somewhat stringent) assumptions (eg. [30]). Even such natural 
candidates as constant coefficient partial differential operators in LP(Rn), for p ::j:. 2, 
turn out to be (unbounded) spectral operators only if the polynomial symbol defining 
the operator is constant; see [4]. 

The above remarks make it clear that for applications to concrete and natural 
examples the theory of spectral operators has serious limitations. This was soon 
realized by the mathematical community and myriad new theories arose. We wish to 
discuss a few of these. 

It is clear from (1.1) that any scalar-type spectral operatorS acting in a Banach 
space X can be viewed as possessing a special kind of operator-valued distribution. 
Indeed, let coo (C) ~ coo (R 2) denote the Frechet algebra of all infinitely differentiable 
(and C-valued) functions defined on R 2 , equipped with the sequence of seminorms 

I aa9 I qn,k : g t-t 2: (a)-1 sup a 01 (x) , 
JaJ9 JlxJJ~n X 

n;:::: 1, k;:::: 0, 
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where x = (x1, x2) E R 2 and we use standard multi-index notation for o: = (all o:2) 

with o:i E N U {0}. Then there exists a continuous homomorphism <I> : C00 (R2 ) -+ 
.C(X) satisfying <I>(l) = I (the identity operator on X) and <I>(idc) = S. Here l 
denotes the function constantly equal to 1 on R 2 , ide is the identity function on 
R 2 :::: C, and .C(X) is the space of all bounded linear operators of X into itself 
(equipped with the operator norm topology). Of course, the particular <I> required 
is given by g H fc g(A.)dE(A.), for each g E C00 (C). Moreover, the distributional 
order of <I> is zero since lll})(g)ll :::; K sup{lg(>.)i : >. E o-(S)} :::; Kqn,o(g), where 
K = 4sup{IIE(8)11 : 8 ~ C, (i Borel } and n is the least positive integer for which 
(J(S) ~ {z E C: !zl:::; n}. Observations of this kind led I. Colojoara and C. Foia§ to 
initiate the theory of generalized scalar operators, namely, those operators S E .C(X) 
possessing a homomorphism <I> : C00 (R2 ) -+ .C(X) with the above properties (but not 
required to have distributional order zero). Such a mapping I}) (which is a special case 
of the more general notion of a functional calculus) is called a spectral distribution for 
S. If S possesses a spectral distribution which takes all of its values in the bicommutant 
algebra {syc ~ C(X) of S, then Sis called a regular generalized scalar operator and 
such a spectral distribution is also called regular. For the theory of generalized scalar 
operators we refer to [13]; see also [17] and [35]. 

In a different direction, it is possible to view the restrictive nature of scalar-type 
spectral operators given by (1.1) as being due to the fact that the resolution of the 
identity of Sis required to generate unconditionally convergent integrals (for the strong 
operator topology), thereby generating a functional calculus for S based on the algebra 
of aU bounded Borel functions on (J(S). Adopting a Riemann-Stieltjes type approach 
to integration D.R. Smart, [33], developed the notion of a well bounded operator 
S E .C(X) as one satisfying (J(S) ~ R and which admits a continuous functional 
calculus <I> : AC(J) -+ .C(X), where AC(J) is the algebra of all absolutely continuous 
functions defined on an interval J 2 o-(S) and equipped with the usual variation norm 
for functions of bounded variation. If the underlying Banach space X is reflexive, then 
it is possible to retain an integral representation for S of the form 

(1.2) 

where the right-hand-side of (1.2) now exists as the strong operator limit of certain 
Riemann-Stieltjes sums with respect to an increasing, uniformly bounded spectral 
fam-ily F : R-+ .C(X) which is concentrated on J; see [9] for these definitions. The 
main feature of such a theory is that it can accommodate functional calculi based 
on integration theories which do not require a a-additive measure. Well bounded 
operators (on arbitrary spaces X) admitting a representation of the type (1.2) are said 
to be of type (B). For the general theory of well bounded operators we refer to [14]. 
It is worth noting that every well bounded operator is necessarily generalized scalar. 
Indeed, such an operator S admits a spectral distribution ei> : C00 (R2 ) -+ C(X), of 
order at most one, given by <I>(g) := (giJ)(S), for g E C00 (R2 ), where f H f(S) 
denotes the functional calculus for S based on AC(J). Actually, 

In order to extend the theory to admit some operators with complex spectra, J.R. 
Ringrose, (27], introduced the notion of well boundedness on curves. Further gen
eralizations are also known, such as polar operators, [9], (i.e. S E C(X) is polar if 
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there exist commuting well bounded operators R, A of type (B) such that S = ReiA), 
trigonometrically well bounded operators, [11], and 

AC-operators, [10], (i.e. those operators S possessing a continuous functional 
calculus based on the algebra AC(JxK) for suitable intervals J, K ~ R). The estimate 

II(YIJxK)(S)II = 0 (~~191 + ~~ ~~~~ + ~~ ~~~~ + ~~ 1:::yl)' 
forgE c=(R2 ), shows that each AC-operator admits a spectral distribution of order 
at most two, [[10]; p.308]. In particular, AC-operators are generalized scalar. 

Finally we mention an extensive class of operators introduced by C. Foi8.§, [19], 
namely the decomposable operators. An operator S E .C(X) is decomposable (in the 
sense of Foi8.§) if, for every finite open cover {Uj }j=1 of C there are closed invariant 
subspaces {Xj}J=l for S such that X= X1 + ... + Xr and a(Six;) ~ Uj for alii:::; 
j :::; r. Despite the generality of the definition the class of decomposable operators has 
many desirable features; all of its members have the single-valued extension property, 
the spectrum always coincides with the approximate point spectrum, [[13]; p.31], 
and so on. Moreover, it contains many well known classes of operators such as the 
generalized scalar operators, spectral operators, compact operators, etc .. 

Our aim is to examine various aspects of operators from the above classes when 
we restrict our attention to the special setting of Fourier multiplier operators in LP
spaces. There are several reasons for considering this more specialized setting. Firstly, 
multiplier operators play a fundamental role in harmonic analysis and so some more 
refined aspects of such operators in a specific setting are not without interest. Sec
ondly, the setting of multiplier operators is rich enough in that it is a non-trivial class 
of operators and yet is concrete enough to provide examples illustrating much of the 
general theory of the various classes of operators alluded to above, especially from 
the viewpoint of functional calculi. Furthermore, there have been some significant ad
vances made in recent years concerning certain global aspects of constant coefficient 
partial differential operators in Euclidean LP-spaces, [4], [5], [6], [7], where the meth
ods are based on local spectral theory and the construction of suitable functional 
calculi within the space of multiplier operators. Such a differential operator of the 
type mentioned can be viewed as an unbounded Fourier p-multiplier operator. The 
context of this note concerns only bounded operators. However, by passing to a con
sideration of the resolvent operators of the differential operator the same phenomena 
occurring for the differential operator are also exhibited by certain bounded Fourier 
p-multiplier operators. This does not lead to any significant loss of generality and still 
exhibits most of the essential phenomena that we wish to illustrate. For simplicity of 
presentation, attention will be restricted to the line group R. 

Several questions are formulated throughout the text. We hope these will be of 
some interest to people from a variety of areas such as operator theory, Banach alge
bras and/or harmonic analysis. 

2. Fourier multiplier operators. The Fourier transform 

j(x) = (27r)-1/2l e-ixt f(t)dt, a.e. x E R, 

is defined for all f E L1 (R). The Hausdorff-Young theorem states that if 1 :::; p:::; 2 
and f E L1 (R) n LP(R), then llfllq :::; II!IIP where q (called the conjugate index of 
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p) satisfies p-1 + q-1 = 1. Accordingly, the mapping f 1--t j extends by continuity 
to a bounded linear operator :F : LP(R) -t Lq(R). Elements :F(f), for arbitrary 
f E LP(R), are also denoted by ]. An element of £(LP(R)), 1 ~ p < oo, is called a 
(Fourier) p-multiplier operator if it commutes with each translation operator Tx, for 
x E R. Of course, Tx is defined by Txf: y I-t f(x- y) for a.e. y E R, with f E LP(R). 
It is known that T E £(LP(R)) is a p-multiplier operator iff there exists'¢ E L00 (R), 
necessarily unique, such that 

(Tft= ¢}, (2.1) 

The function '¢ is called a p-multiplier and the associated p-multiplier operator T 
is denoted by s;:). The space of all p-multiplier functions is denote by M(P). The 
inequality 

(2.2) 

is well known. So is the fact that M(2) = L00 (R) and M(l) = {P, : J.L E BM,.} := 
BAfrA· Here BM,. is the algebra (with respect to convolution) of all regular, complex 
Borel measures on Rand P, denotes the Fourier-Stieltjes transform of J.l E BMr. If we 
equip M(P) with the norm 

(2.3) 

then M(P) becomes a commutative, unital Banach algebra with respect to pointwise 
multiplication. Moreover, for each '¢ E M(P), the functions Re('¢), Im('¢) and the 
complex conjugate "if also belong to M(P). Since M(P) is isometrically isomorphic to 
M ( q), where q is the conjugate index of p E ( 1, oo) we will often restrict our attention 
to 1 :::; p ~ 2. The space {syl : '¢ E M(P)} of all p-multiplier operators will be denoted 

by Op(M(P)), 1 ~ p < oo. The subalgebra of BMr consisting of the discrete measures 
is denoted by BM~d). 

Let Bp := {E ~ R: XE E M(Pl}, where XE denotes the characteristic function 
of E. Since elements of M(l) are continuous it is dear that B1 = {0, R} and since 
M(2 ) = L00 (R) it is dear that B2 is the family of all measurable subsets of R What 
about 1 < p < 2? Since M(P) is an algebra offunctions under pointwise multiplication 
it follows that Bp is an algebra of subsets of R. It is known that all intervals in R belong 
to every Bp, 1 < p < oo. Of course, there are sets in l3p which are more complex than 
finite disjoint unions of intervals. Let {Ak}~0 be a Hadamard sequence of positive 
numbers, i.e. inf P.kH/A.k : k E No} ;::: r > 1, where No := {0} UN. Define 
f:l.i = [>.j-t. Aj) if j > 0, L'l..o = ( ->.o, A.o) and L'l..j = (->..Iii, -A.Iii-Il if j < 0. Then 
{.6.j : j E Z} has the Littlewood-Paley property. So, if {akhEZ is any 0-1 valued 
sequence, then the function '1/J : R -t C given by '1/J := ~kEZakXak belongs to M(P) 
and so both '¢ - 1 ( { 1}) and '¢ -l ( { 0}) belong to Bp. There are still other types of sets in 
BP" For instance, if K is a connected subset of T : = { z E C : I z I = 1} and s E R, then 
the function t 1--t XK (eist), fortE R, belongs to M(P), 1 < p < oo, [20]. Accordingly, 
the periodic set { t E R : eist E K} belongs to Bp for all 1 < p < oo. So, the algebra 
of sets Bp is rather rich. 

One of the interesting features about multiplier sets stems from Banach space 
geometry since elements of Bp yield a characterization of translation invariant, com-

plemented subspaces of LP(R). Clearly if XE E M(P), then s?2 is a projection onto 
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some translation invariant, complemented subspace of LP(R). Conversely, a result of 
H. Rosenthal, [32], implies that every complemented, translation invariant subspace of 
LP(R), 1 < p < oo, is the range of some projection of the form s}!l withEE !3p. Re
cent work of I. Kluvanek, [23], [24], shows that Bp is also of interest for certain aspects 
of operator theory related to integration theory; see also [[20],[21],[25],[27],[28],[29]]. 
The following result is therefore of some interest. 

Proposition 2.1. 
(i) Let 1 < p < oo, p 1- 2. If E E Bp, then there exists an open set U ~ R such that 
XE = Xu a.e.. In particular, E is (up to a Lebesgue null set) equal to a countable 
union of pairwise disjoint intervals. 
(ii) For each p-¥- 2 there exists an open set V ~ [0, 1] such that V f{ Bp. 
(iii) Let 1 < p < oo and let {E(n)};;'=1 ~ Bp be a sequence of sets such that 

E := {t E R: lim XE( l(t) exists} 
n~oo n 

has the property that R \E is a Lebesgue null set and supn lllxE(nJ I liP < oo. If gl- := 

{t E R: limn-+ooXE(nJ = 1}, then both E+,E E Bp and {S}!2(n);:o=l converges to 

srL_ in the strong operator topology of £(LP(R)). 
:6' 

Part (i) is due to V. Lebedev and A. Olevskii, (26]. Part (ii) follows from a careful 
examination of the well known construction of a set of ·uniqueness due to A. Figa
Talamanca and G.L Gaudry; see the proof of Theorem 3.3.8 in [27], for example. For 
(iii) we refer to [[28]; Theorem 6]. As a consequence we have the following fact. 

Proposition 2.2. Let 1 < p < oo, p 1- 2. Then the algebra sets Bp fails to be 
a o·-algebm. Moreover, sup{!llxE I liP: E E Bp} = oo. 

Proof Let V ~ [0, 1] be an open set such that V f{ Bp; see Proposition 2.l(ii). 
Then V = U;;'=1In for pairwise disjoint intervals In ~ [0, 1], n E N. Since In E Ep, 
for each n E N, thi.s already shows that Bp is not a a-algebra. Define E(n) ·
U'J=1 Ij, for n E N and note, in the notation of Proposition 2.1(iii), that E+ := 
{ t E R; limn-+= XE(n) (t) = 1} coincides with V up to a Lebesgue null set. If 
supn{lllxE(nJIIIP : n E N} < co, then it follows from Proposition 2.l(iii) that E+ 
(and hence also V) belongs to Bp which is contrary to the choice of V. Accordingly, 
sup{l!lxEIIIP: E E Ep} is infinite. D 

Note that Propositions 2.1 and 2.2 imply that U1<p< 2!3p is an increasing union of 
algebras of measurable sets (each one containing all intervals) which is not a a-algebra. 

From the above discussion it is dear that the algebra sim(Bp) of all simple func
tions based on Bp (which is contained in M(P) of course) contains many non-trivial 

elements. Indeed; it is known that {SY') : 'P E sim(Ep)}, 1 < p < oo, is dense 
in Op(M(P)) with respect to the strong operator topology, ([25]; Examples 9 and 
19]. The situation for the closure of sim(Bp) in the operator norm topology (i.e. in 
(M(P), lll·lllp)), denoted by sim(Bp), is quite different and will be discussed later. 
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At this point we merely record the fact if cp E sim(Bp), then also cp, Re(cp) and Im(cp) 
belong to sim(Bp), [[28]; Lemma 2]. 

We conclude this section by noting that there are no non-zero multiplier operators 
which are compact; in fact, a bit more is true. For a Banach space X let K(X) denote 
the operator norm dosed, two sided ideal of all compact operators. For each T E £(X) 
define 

~>,(T) := inf{IIT- Cll: C E K(X)}. 

Then T is called a Riesz operator if limn-+oo[~>,(Tn)jl/n = 0. Since Tn E K(X) for 
all n E N, whenever T E K(X), it is clear that every compact operator is a Riesz 
operator. The spectrum of a Riesz operator T E £(X) is a countable set with zero as 
only possible limit point. Moreover, if A E a(T)\{0}, then the spectral projection P>. 
corresponding to the spectral set {A} of T, which is given by 

(2.4) 

for any contour 7 in the resolvent set p(T) := C\a(T) separating A from a(T)\{.A}, 
is necessarily a finite rank projection. For these basic facts, definitions and further 
properties of Riesz operators we refer to [14], for example. 

Proposition 2.3. Let 1:::; p < oo and T E Op(M(P)) be a Riesz operator. Then 
T=O. 

Proof Suppose there exists a point .A E a(T)\{0}. Since the integrand in (2.4) 
is a continuous function on the compact set 7 and dp, is a finite measure, it follows 
that the integral (2.4) can be formed as an operator norm limit of Riemann sum 
approximations. But, T commutes with all translations and hence, so does (T-p,I)- 1 

for each p, E ry. Accordingly, all such Riemann sums are multiplier operators and hence, 
so is the limit operator P>.,. 

Let 1 < p < oo. Since P;.. = Sf2 for some E E Bp and P>. =/= 0, it follows from 
Proposition 2.l(i) that there must exist a non-trivial interval J t:;;; E. Then the range 
of the projection s}!J, which is easily seen to be infinite dimensional, is contained in 

the range of Sf2 = P>.. This contradicts the fact that P>. is a finite rank projection. 
Accordingly, a(T) = {0}. It is dear from (2.2) that the Banach algebra Op(M(P)) is 
semisimple (i.e. contains no non-zero quasinilpotent elements) and soT= 0. 

For p = 1 we have seen that Bp = {0, R} and soP;.., if it is a non-zero idempotent 
multiplier operator, must equal the identity operator. This again contradicts P>. being 
finite rank and so a(T) = {0}. For the same reason as above T = 0. 0 

3. Decomposable multiplier operators. For a systematic study of decompos
able multiplier operators on general LCA groups we refer to [[3], [16]], for example, 
and the references therein. As mentioned before our attention will be restricted to R. 

It is known that M(l) t:;;; M(P), for all 1 :::; p < oo, with the inclusion being strict 
if p =/= 1. Indeed, since M(l) = BMr. is contained in the bounded continuous functions 
we see that X[o,IJ E M(P)\M(l) for all 1 < p < oo. A general fact about multiplier 

132 



operators is the inclusion 

ess range(so) ~ a(Sf)'l), (3.1) 

valid for 1 :S p < oo, [36], where ess range( <p) denotes the essential range of the 
function <p. Let D(P) denote the family of all functions <p E M(P) such that the 
multiplier operator sf:l E .C(LP(R)) is decomposable. A multiplier function <p E M(P) 

is said to have the spectral mapping property if 

ess range(<p) = a(Sf)'l). (3.2) 

The first part of the following result shows that decomposable multiplier operators 
have a very desirable feature. 

Proposition. 3.1. 
(i) Suppose 1 :S p < oo. Then every multiplier <p E D(P) satisfies the spectral mapping 
property. 
(ii) If p f:- 2, then M(1)\D(P) f:- 0 and hence, D(P) f:- M(P). 

For part (i) we refer to (the proof of) Lemma 3.2 in [3], or [[4]; Corollary 3.4], for 
example. If p f:- 2, then there exists f.1p E BMr such that ess range(fi,p) f- a(sj;;l), [[37]; 
p.239]. This together with (i) establishes part (ii). It is worth noting, for 1 < p < oo 
(and in Rn and Tn), that M. Zafran even exhibited p-multipliers in C00 (R) which 
vanish at infinity and fail the spectral mapping property, [[37]; Theorem 3.2]. 

It was noted in the Introduction that every decomposable operator has the single 
valued extension property (see [[13]; p.l] for the definition). Multiplier operators 
provide a natural class of examples showing that the converse is false. Indeed, every 
element of Op(M(P)), 1 :S p < oo, has the single valued extension property; see 
the proof of [[3]; Theorem 3.4], for example. However, since M(P)\1J(P) f- 0 for all 

1 :S p < oo (c.f. Proposition 3.1(ii)) it follows that every multiplier operatorS~), for 
r.p E M(P)\1J(P) and 1 :S p < oo, has the single valued extension property but is not 
decomposable. Of course, examples of operators without the single valued extension 
property are also known, [[13]; p.lO], [22]. 

In general, the sum and product of commuting decomposable operators need not 
be decomposable. However, for multiplier operators some positive conclusions can be 
made. 

Proposition 3.2. ([3]; §3]) (i) 1J(l) is a (proper) closed subalgebra of M(l) and 

contains both i} := {g: g E L 1(R)} and (BM$d))':= {.U: 11 E BM$dl}. 
(ii) If <p E D(1) ( ~ M (p l) and 'lj; E 1)(P), then both <p'lj; and r.p + 'lj; belong to D(P) for all 
1 :S p < oo. In particular (put 'lj; = 1!}, we have D(l) ~ 1)(P), 1 :S p < oo. 
(iii) 1J(P) is a closed set in M(P) and hence, the closure ofD(l) in (M(P), III·IIIP) is 
contained in D(P), 1 :S p < oo. 
(iv) Letp E (l,oo). Ifr satisfies I~-~~< I~- ~1, then M(r) nCo(R) ~ D(P), where 
C0 (R) is the space of continuous functions on R which vanish at infinity. 

For the inclusion £1 ~ D(l) we also refer to [[13]; p.205]. 
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Some of the conclusions of Proposition 3.2 as proved in [3] rely on a general limit 
result of C. Apostol, [[8]; Corollary 2.8], which is valuable to formulate in its own 
right in our setting. 

Proposition 3.3. Let 1 ~ p < oo, r.p E M(P) and { 'Pn}~=l ~ V(P) be a sequence 
such that 

lim (sup{ I .AI : .A E a(S(P) - S(P)) = a(S(p) _ )} ) = 0. 
n-+oo 'Pn cp 'Pn cp (3.3) 

Then r.p E V(P). In particular, if limn-+oo III'Pn -'PiliP = 0, then (3.3) is satisfied since 
the spectral radius of any bounded linear operator is at most equal to the norm of 
the operator. Or, if 'Pn - cp has the spectral mapping property, for each n E N, then 
limn-+oo II'Pn- 'PIIoo = 0 suffices for (3.3) to hold (c.f. (3.2)). 

In view of Proposition 3.l(i) and the fact that the containment V(P) ~ M(P) is 
strict, we refer to elements of V(P) as "good p-multipliers". Some natural questions 
arise. 

Qu..l. (a) For p r;!. {1, 2} is V(P) a vector subspace or a subalgebra of M(P)? 

(b) The same question as in (a) arises for the set of p-multipliers with the spectral 
mapping property. Also, is the set of p-multipliers with the spectral mapping property 
closed in M(P)? 

Qu..2. How extensive is the collection V(P) and are there ways of identifying some 
nat·ural subcollections of V(P) within M (P)? 

Qu..3. Is there a "reasonable" characterization of V(P)? 

The answers to Qu.l and Qu.3 seem difficult and we are unable to give any insight 
in general, other than a suggestive remark concerning Qu.3. A plausible criterion in 
this regard might be that the elements of V(P) are precisely those elements of M(P) 

which satisfy the spectral mapping property. For the line group R this conjecture may 
be correct. However, for other LCA groups it is known that there exist groups G and 
elements [1. E M(1l(G) with J1 E BMr(G) such that the spectral mapping property 
a(Sl1l) = p.(r) holds (with r the dual group of G), but S~1 ) r;!. V(1l(G); see [[3]; p.32] 
and [[36]; Example 3.4]. This same example (c.f. [[3]; p.32]) shows that the answer to 
Qu.l(b) is negative for general LCA groups. However, the answer for the line group 
R is still unknown. 

For the remainder of this section we wish to consider Qu.2 and allude to a positive 
answer for both parts of this question. Let m(P) denote the closure of i} in M(P). 

We have already seen that m(P) ~ V(P). Also, Proposition 3.2(i),(ii) shows that all 
trigonometric polynomials belong to V(P), 1 ~ p < oo. Hence, any linear combination 
of translation operators is a decomposable multiplier operator, for all 1 ~ p < oo. 
We will see that D(P) is significantly larger than both m(P) and the closure in M(P) 

of the space of trigonometric polynomials. Our starting point is the observation that 
if a multiplier operator has a rich enough functional calculus, then it will necessarily 
be decomposable (the converse failing to be true in general). This approach is used 
effectively in [13]; see also [4], (5], [6], [7], for example. 

Let BV denote the Banach algebra of all functions on R with bounded variation, 
equipped with the usual BV-norm II ·IIBv, [[13]; p.208]. Then for each 1 < p < oo 
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there is a constant Kp > 0, ([13]; p.208] such that 

rp E BV. 

In particular, BV c;;; M(P) for all 1 < p < oo. Since the inequality 

/lg o IPIIBv ::; 1/rp/IBv · sup{/g(x, Y) I + I~~ (x, Y) I + I~~ (x, Y) I : I (x, y) I ::; IIIPI!Bv} 

is valid for all g E C00 (R2), [[13]; p.210], it is clear that g f--7 S~~~' forgE C00 (R2 ), 

is a spectral distribution for sf:l. Accordingly, sf:l is generalized scalar and so, in 
particular, decomposable, [[13]; p.65]. This shows that BV c;;; V(P), 1 < p < oo. It 
is dear from (2.2) and the fact that j} c;;; eo(Z) (via the Riemann-Lebesgue lemma), 
that m(P) c;;; c0 (Z). Accordingly, the inclusion BV c;;; V(P) implies that V(P)\m(P) is 
non-empty for all 1 < p < oo. 

The class of decomposable multiplier operators given by BV can be further ex
tended, [[3]; §3]. Recall the dyadic decomposition of R is given by the intervals 
{Llj}jEZ, where = [2i-1,2J) if j > 0, ~0 = (-1,1) and ~i = (-2-i,-2-i-1] if 
j < 0. Denote by !m the set of all bounded functions <p : R -+ C satisfying supjEZ 
Var(rpj) < oo, where Var(rpj) denotes the variation of rp on ~j· Endowed with the 
norm 

1/rp//!m := IIIPI!oo +sup Var( i.pj), 
jEZ 

rp E oot, 

the space !m is a Banach algebra. Moreover, the Marcinkiewicz multiplier theorem 
implies that !m c;;; M(P), 1 < p < oo, with a continuous inclusion. That is, there is a 
constant ap > 0 such that 

i.p E oot. 

Clearly BV c;;; 9J1 and the containment is proper. Indeed, <p = L:~1 X.6. 2; belongs to 

!m\BV. Note that any bounded function rp E C1 (R) satisfying supjEZ Jfl.lrp1(x)/dx < 
' oo belongs to !m; this is one of the traditional formulations of the Marcinkiewicz 

multiplier theorem. Since the inequality 

llgorpl/!m:::IIIPII!m·( sup lg(x,y)l+ sup ~~9 (x,y)i+ sup ~~9 (x,y)l) 
\ (x,y)EK (x,y)EK X (x,y)EK Y 

is valid for all g E C00 (R2 ), where K = ess range(rp), the map g >--+ S~~~, for g E 
C00 (R2 ), is a spectral distribution for sf:l. So, again {Sf/) : 'P E rot} c;;; V(P), l < 
p < 00. 

Our considerations of the operators s¥'), where rp E BV or more generally rp E !m, 
exhibit a common approach which we now wish to formulate as a general procedure 
for producing generalized scalar multiplier operators; see [[7]; Lemma 2.1] for an anal
ogous result. 

Proposition 3A. Let 1 ::; p < oo and rp : R -+ C be a function such that 
gorp E M(P) for all g E C00 (R2 ). Then <[> : g f--7 S~~~ from C00 (R2 ) into C(LP(R)) 
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is a spectral distribution for sf:l. In particular, S~~~ is a generalized scalar {hence 
decomposable) operator for every g E C00 (R2 ). 

Moreover, <P is a regular spectral distribution for sf:l if and only if sf;l E { sf:l yc. 
In particular, this is the case whenever cp is R-valued. 

Proof. Letting g = ide shows that cp E M(P). Hence, K := ess range(cp) is a 
compact subset of C. Since 

119\K\Ioo =sup lg(cp(x))\ ~ qn,o(g), 
xER 

where n E N satisfies K ~ {z E C : \zl ~ n}, it follows that the restriction map 
g t-+ 9\K is a continuous linear map from the Fn'ichet space C00 (R2 ) into the Banach 
space of all bounded, C-valued functions defined on K, endowed with the sup-norm. 
Since the mapping s};'l t-+ his continuous from Op(M(P)) into L00 (R)-see (2.2)-the 
continuity of <P follows from the dosed graph theorem. It is routine to check that ([> 

is a homomorphism and satisfies 1]?(1) =I and <I>( ide) = sf:l. So, sf:l is generalized 
scalar. Actually, it then follows that S~~~ is generalized scalar for every g E coo (C); 
see [[13]; p.l05]. 

Since every translation operator belongs to the commutant algebra {sf:ly ~ 
.C(LP(R)) it is dear that the bicommutant {sf:l}cc ~ Op(M(P)). The question is to 
decide when~ is a regular spectral distribution, that is, when {~(g) : g E C 00 (R2)} ~ 

{sf: l} cc. For any polynomial q in the two variables z and z it is clear from the 
homomorphism property of 1> that <P(q) = s<P() _) = q(sf:l, s/!l). Since polynomials 

q <p,<p y 

are dense in C00 (R2 ), the map ([> is continuous, and {sf:lyc is closed in .C(£P(R)), 
it follows that~ takes all of its values in {sf:lyc if and only if sJ;l E {sf:lyc. D 

Multiplier operators can have spectral distributions which do not take all of their 
values in Op(M(Pl). For instance, write £P(R) = C 2 EB Y and let A= B EB Oy, where 
Oy E £(Y) is the zero operator and B E .C(C2 ) is a non-zero operator such that 
B 2 = 0. Then A E .C(LP(R)) is also non-zero and satisfies A2 = 0. We have noted 
previously that there are no non-zero quasinilpotent elements in Op(M(P)) and so 
A 9{ Op(M(P)). It is routine to check that 

<P: g t-t g(l)J + ~ (~~ + i~~) (l)A, 

is a spectral distribution for the multiplier operator I. Note that the function idc(x, y) := 
x - iy gets mapped by ([> to the non-multiplier operator I+ ~ (1 - i)A. Since { I}cc = 
{od: a E C} we see that <P(idc) 9{ {lye, that is, <Pis not a regular spectral distri
bution for <P(idc) =I. 

On the other hand, if a multiplier operator sf:l has a spectral distribution <I> such 
that also <I>( ide) E Op(M(P)), then ~ necessarily takes all of its values in Op(M(P)). 
Indeed, for any polynomial q, the homomorphism properties of <I> and the fact that 
M(P) is an algebra, imply that <P(q) = q(sf:l, S~P)) E M(P), where hE M(P) satisfies 

SkP) = <I>(idc). Again the density of polynomials in C00 (R2), the continuity of ~ 
and the dosedness of Op(M(P)) in C(LP(R)) imply that <P(g) E Op(M(Pl), for all 
g E C00 (R2). 
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We should point out a relevant fact that this stage: if sf:> is any generalized scalar 
multiplier operator whose spectrum a( sf/>) has the property that the function ide on 
a(sf/>) is the restriction of some function which is holomorphic in a neighbourhood 
of a(sf/>), then sf:> is necessarily a regular generalized scalar operator, [[13]; p.100]. 
This is the case for instance if ess range(<p) = a(sf/>) is a subset of a line in Cor of 
an arc on a circle in C. 

The above discussion poses some natural questions. 

Qu.4. Does there exist a multiplier <p E M(P) with sf:> a genemlized scalar 
onerator such that S(P) d {S(p)}cc i e {S(P)}c ..J. {S(p) }c n {S(p) }c? 
" Vi I" rp ' · • rp T Re(rp) Im(rp) • 

Qu.5. Does there exist a multiplier <p E M(P) such that sf:> has a spectral 
distribution taking all of its values in Op(M(P)) and siJ> f/_ {Sf/)}cc? 

Qu.6. Does there exist a multiplier <p E M(P) such that sf:> possesses a spectral 
distribution <P (or even a regular spectral distribution) which takes all of its values in 

Op(M(P)), but <P(idc) =f s!;J>? 

If the answer to Qu.4 is negative one can ask the following question. 

Qu.7. Does there exist tn E M(P) such that {S(p)}c :J {S(p) }c n {S(p) }c is a .,- rp - Re(rp) Im(rp) 

proper inclusion? Equivalently, siJ> f/_ {Sf/)}cc. 

In relation to these questions we observe that {sft>y always contains all trans
lation operators and hence, {Sf/)}cc ~ Op(M(P)), 1 ~ p < oo. It is easy to see that 
{sft>y need not be commutative in general (of course, Op(MCP)) ~ {sf/>}c) and that 
{sft>yc =f Op(M(P)) in general. Indeed, let R : LP(R) --1 LP(R) be the reflection 
operator defined by Rf : x t-+ f( -x), in which case R2 =I. Then R E C(LP(R)) but 
R f/_ Op(M(P)). Let <p E M(P) be any symmetric multiplier (i.e. <p( -x) = <p(x) for 
a.e. x E R). Then R E {Sf/)}c and {sf/>}cc =f Op(MCP)). Since R does not commute 
with all translations it is clear that {sft>y is not commutative. 

Let us return to Proposition 3.4 and consider some applications to producing 
further examples of elements in 1)(P). 

Let N' denote the Banach algebra of all bounded functions <p E C 1 (R\{O}) which 
satisfy 

ll<piiN := ll<plloo +sup jx<p'(x)l < oo. 
a:'fO 

The Mihlin multiplier theorem ensures that N' ~ M(P), 1 < p < oo, and that there 
exists a constant /3p > 0 such that 

IISf/>II.C(LP(R)) ~ /3pll<piiN, <pEN'. 

Given <pEN' we observe that K := ess range(<p) = <p(R\{0}) is a compact subset of 
C. Accordingly, 

IIY o <pi IN ~ ~~~ jg(z)l + ~~~ lxl· (I~~ (<p(x)) · <p' (x) I + I~: (<p(x)) · <p'(x)l) 

~sup lg(z)l +sup (laag (z)l + laag (z)l) · suplx<p'(x)l 
zEK zEK X Y a:#O 
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is finite for each g E C00 (R2 ), that is, go cp EN~ M(P). So, Proposition 3.4 applies 

and we deduce, for cp E N and 1 < p < oo, that each operator sf:l is generalized 
scalar. In particular, the Schwartz space S(R) of all rapidly decreasing functions 
belongs toN and so all multiplier operators sf:l for cp E S(R) are generalized scalar. 
Note that the function cp(x) = eilog lxl, for x ::J. 0, belongs toN but not to any of the 
spaces £1, BV, 001 or S(R). 

An important subalgebra of N, which plays an important role in the theory 
of semigroups of linear operators, is the following one. For each w E (0, ~), let 
Sw := {z E C\{0} : I arg(z)l < w} and then define H 00 ( -Sw U Sw) to be the space of 
all bounded holomorphic functions defined on the open double cone -Sw U Sw. Then 
H 00 ( -Sw U Sw) ~ N ~ M(P), 1 < p < oo, in the sense that the restriction <pR of any 
function cp E H 00 (-Sw U Sw) to R \ { 0} belong to N. Indeed, applying the Cauchy 
integral formula to cp it can be verified that l<fJ~ (x)l ::; llcplloo/lxl sin(w), for x ::J. 0, 
and hence 

for some constant ap > 0 depending only on p. So, we see that all multipliers in 1-l := 
Uo<w<~{<pR: cp E H 00 (-Sw U Sw)} ~ N are generalized scalar, for all1 < p < oo. In 
particular, 1-l ~ V(P), 1 < p < oo. We point out that there exist C00-multipliers in 
M(P), 1 < p < oo, which are not elements of 1-l. For instance, if s E R\{0}, then the 
function x t-t eisx, for x E R, which is the multiplier corresponding to the translation 
operator r8 , cannot belong to 1-l since this would imply that z t-t eisz is bounded in 
-Sw U Sw for some wE (0, ~). 

Further examples can be generated via a multiplier theorem of M. Schechter which 
states if kEN and the function cp E c~<(R) satisfies estimates of the form 

I (rl(x)l < _(3_ 
cp - lxlb+ar ' lxl > 1, r E {0,1, ... ,k}, 

for some constants (3 > 0, b > 0 and a ::; 1, then cp E M(P) for all p E (1, oo) satisfying 

(3.4) 

Combining this result with Proposition 3.4 it can be shown, [[7]; Proposition 2.5], 

that sf:l is generalized scalar (for all p satisfying (3.4)) with a spectral distribution 

given by g t-t S~~~, forgE C00 (R2 ). 

So far many of the generalized scalar multiplier operators we have produced arise 
from multipliers which possess some sort of smoothness properties. To produce fur
ther classes of non-smooth examples is straightforward. Given <p E sim(Bp) we can 
write <p = :Ej=1 aiXE(;), where { ai }j=1 ~ C are distinct and { E(j)}j=1 is a finite 
family of non-null multiplier sets from Bp which is pairwise disjoint and satisfies 
Uj=1E(j) = R. Then ess range(<p) = {aJ}j=1 and for each g E C 00 (R2 ) we have 
g o cp = 'E.j=1g(aj )XEul, from which it is immediate that g o cp E M(P). Accord

ingly, Proposition 3.4 applies to show that sfl'l is a generalized scalar operator, for all 
1 < p < oo. Of course, this example is already known to us since sf:l is a scalar-type 
spectral operator. 

We end this section with four further questions. It is known that the sum and 
product of commuting regular generalized scalar operators T1 , T2 (in any Banach 
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space) are at least generalized scalar again, [[13]; p.lOO], but that they may fail to be 
regular, [1]. Without the regularity requirement of T1 and T2 their sum and product 
may even fail to be generalized scalar, [1]. However, such examples are constructed 
in non-reflexive Banach spaces. So, in the reflexive spaces LP(R), 1 < p < oo, and 
for multiplier operators (which have an additional rich structure of their own) we can 
ask the following questions. 

Qu.8. Let 1 < p < oo. Do there exist two regular generalized scalar operators 
from Op(M(P)) whose sum and/or product (necessarily generalized scalar) fail to be 
regular? 

It follows from the comments just prior to Qu.4 that if an example of two such 
regular generalized scalar multiplier operators sfl.,l' sf:j exists (for Qu.8), then not 
both <p1 and <p2 can be R-valued (or, have their values on a line in C). To see 
this, let crr(S[hl, sf}'j) denote the joint Taylor spectrum for the commuting operators 

S~) and sf}'}. By the spectral mapping theorem and analytic functional calculus for 
pairs of commuting operators, [34], applied to qj(z1 ,z2 ) = Zj we see that cr(S¥;)) = 
cr(qj(s[f2,sf:})) = qi(ar(s[hl,sf:})), for j = 1,2. It follows that ar(sfhl,sf:}) ~ 
a(s[hl) x cr(S[/'}). By this observation and the spectral mapping theorem applied to 
the functions (z1, z2) 1---t z1 + z2 and (z1, z2) 1---t z1z2 we have 

a(S(P) + S(P)) = {z1 + Z2 · (z1 z2) E ar(S(P) S(P))} C {z1 + "'2 · z· E al'S(P))l. 'Pl 'P2 - . , 'Pl , 'P2 - ~ • "J 'Pi J 

and 

cr(SfhlS[/'}) = {z1z2: (z1,z2) E ar(Sfhl,Sf}'j)} ~ {z1z2 : Zj E a(S~l)}, 

from which it is clear that a(S(P) + s(p)) c R and cr(S(p) S(P)) c R whenever 'Pl 'P2 - 'Pl 'P2 -

a(S~~)) ~ R, for j = 1, 2. 

Qu.9. Let 1 < p < oo. Do there exist two generalized scalar opemtm·s from 
Op(M(P)) whose sum and/or product fail to be generalized scalar? 

All of our examples of decomposable multiplier operators to date have been gen
eralized scalar, which poses the following question. 

Qu.Hl. Let 1 < p < oo. Does there exist a decomposable p-multiplier operator 
which fails to be generalized scalar (or regular generalized scalar)? 

We point out that for p = 1 it is known that there exist decomposable !-multiplier 
operators which fail to be regular generalized scalar, [[13]; p.205]. 

Qu.ll. Does there exist a decomposable 1-multipliel" operator which fails to be 
generalized scalar? 

4, Well bounded multiplier operators. Let us first return to the semisimple 
Banach algebra sim(Bp), 1 < p < oo. Since Op(sim(Bp)) is a commutative semisimple 
Banach algebra generated by a Boolean algebra of projections its maximal ideal space 
L1 is totally disconnected (as {S~2 : E E Bp} is Boolean algebra isomorphic to the 
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closed-open subsets of A). It follows from [[2]; Corollary 4.7] that sim(Bp) ~ V(P), for 
1 < p < oo. We collect some known results to show that sim(Bp) is quite an extensive 
family of decomposable multipliers. 

A function f E BV has a decomposition of the form h + h + /3 with h E AC, h 
singular and continuous (i.e. its derivative is zero a.e.) and /3 a jump function. If 
f vanishes at some point of R (or at -oo), then there is a unique decomposition of 
this type with all three components h, h and /3 vanishing at that point. If h is 
identically zero, then f is said to have zero continuous singular part. 

For each s E R, the group character e8 : x f-+ eisz, for x E R, is the multiplier 
corresponding to the translation operator T 8 • The closure in L00 (R) of span{es : s E 
R} is the space of almost periodic functions and is denoted by AP. 

The following result shows that sim(Bp) is quite an extensive class of functions. 

Proposition 4.1. 
(i) 1i ~ sim(Bp), for every 1 < p < oo. 
(ii) I} ~ m(P) ~ sim(Bp), for every 1 < p < oo. 
(iii) If r.p E BV has zero continuous singular part and r.p( -oo) = 0, then r.p E sim(Bp) 
for all! < p < oo. 
(iv) Let v > 0. If r.p is a v-periodic function on R which is absolutely continuous in 
an interval of length v, then r.p E sim(Bp), 1 < p < oo. 
(v) AP n BMrA~ sim(Bp), for every 1 < p < oo. 
(vi) Fix p E (1, 2]. Then Ut<q<pM(q) nCo(R) ~ m(P) and so is contained in sim(Bp)· 

Parts (iii) and (iv) can be found in [23] and the remainder in [29]. Some further 
comments are in order. Since m<P) ~ eo(Z) it is clear that m(P) is a proper closed 
subalgebra of sim(Bp)· If 1 < q < p ~ 2, then it is known that M(q) ~ M(P) 
with lllr.piiiP ~ lllr.plllq for all r.p E M(q). Not only is the inclusion M(q) ~ M(P) 
proper when q < p (this is well known), but so is the inclusion sim(Bq) ~ sim(Bp), 
[[29]; Proposition 6]. It was noted in Section 3 that the closure span{e8 : s E R}(P) 
(in the space M(P)) of all trigonometric polynomials is contained in V(P). Actually 
more is true; Proposition 4.1(iv) implies that span{ e8 : s E R }(P) ~ sim(Bp)· Since 
the elements of span{e8 : s E R}(P) ~ AP (see (2.2)) are all bounded continuous 
functions it is clear that the containment span{e8 : s E R}(P) ~ sim(Bp) is proper 
for all p E (1, 2) U (2, oo). Note that Proposition 4J(iii) implies that every bounded 
rational function belongs to sim(Bp), 1 < p < oo. 

In view of Proposition 4.l(iii) and (iv) and the fact that the Cantor function 
belongs to sim(Bp), [[29]; p.399], can we expect a positive answer to the following 
question? 

Qu.12. Is BV ~ sim(Bp), for each 1 < p < oo? 
Qu.13. Is the inclusion sim(Bp) ~ V(P) strict, for each p E (1, 2) U (2, oo )? 

The maximal ideal space of M(P), p E (1, 2) U (2, oo), seems most difficult to 
identify. Perhaps the following question is more realistic. 

Qu.14. Is there a "reasonably concrete description" of the maximal ideal space 
of sim(Bp), 1 < p < oo, p :j;2? 

Qu.15. If 1 < q ~ p ~ 2, then the inclusion M(q) ~ M(P) implies that Bq ~ Bp. 
Is the containment Bq ~ Bp strict when q < p? 
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We point out that there are sufficient idempotent multiplier operators to deter
mine Op(M(P)) within the space £(£P(R)) in the sense that T E £(£P(R)) belongs to 

Op(M(P)) iff T E {S~~ : E E Bpy, for 1 < p < oo. Since {r8 : s E R} ~ {S~~ : E E 

Bp}c, one direction is clear. Conversely, if T E {Sf2 : E E Bp}c, then T commutes 

with sftl for all cp E sim(Bp)· But, it was noted above that {es : s E R} ~ sim(Bp) 
and Si:') = r8 , for s E R. Accordingly, T E {r8 : s E R}c = Op(M(P)). 

The operator algebra Op(sim(Bp)) contains all spectral (= scalar-type spectral) 
multiplier operators, for 1 < p < oo, [[29]; Proposition 7). Because of the underly
ing Banach space being a reflexive £P-space, it turns out that the spectral multiplier 
operators form a subalgebra of Op(sim(Bp)), 1 < p < oo, [[29]; p.401]. Moreover, 
given any compact subset K ~ C and 1 < p < oo there exists a scalar-type spectral 
multiplier operator sf.J'l with cp E sim(Bp) such that a(Sf.J')) = K, [[29]; Proposition 
8]. Not all elements of Op(sim(Bp)) are scalar-type spectral. This follows from the 
inclusion {rs : s E R} ~ Op(sim(Bp)) noted above and a result of T.A. Gillespie 
stating that for p =/: 2 the operator 1"8 is spectral iff s = 0, [[20]; Theorem 2]. In fact, 
"most" of the functions listed in Proposition 4.1 (which all belong to sim(Bp)) yield 
multiplier operators which fail to be scalar-type spectral. This is a consequence of 
the fact (for p =/: 2) that no non-constant function from C2 (R) n M(P) can induce a 
scalar-type spectral multiplier operator, [(4]; Proposition 2.2]. Actually more i.s true. 
Let cp : R -+ R be any p-multiplier for which there exists some point u E R such 
that cp is continuous and strictly monotone in a neighbourhood of u. Then sf.J'l is not 
scalar-type spectral for any p E (1, 2) U (2, oo), [[4]; Proposition 2.4]. In particular, if 
rp belongs to f} or to (BM$dlf, 1 < p < oo, in which case cp is necessarily continuous, 
then sf:> is almost never spectral. 

Qu.16. Does there exist a non-constant cp E sim(Bp), p =/: 2, which is continuous 

in some interval and such that sf:l is scalar-type spectral? 

The following fact (which provides further evidence for hoping for a positive an
swer to Qu.l(a)) does not follow from Proposition 3.2(i) and (ii). 

Proposition 4.2. Let cp E V(P) and'¢ E sim(Bp), 1 :::; p < oo. Then both cp + '¢ 
and cp'¢ belong to V(P). 

Proof There exist functions sn E sim(Bp) such that IISY)- S~~) II -+ 0 as n -+ oo. 
Hence, also the left-hand-side of the inequality 

nEN, 

tends to 0 as n-+ oo. Since S~~l is obviously a scalar-type spectral operator it follows 
that cpsn E D(P), for all n E N, [[8]; Proposition 2.10]. Then Proposition 3.3 implies 
that cp'ljJ E V(P). 

Concerning the sum cp + '¢, let G be an open disc inC containing a( -sy)) and 

let ,\ E p( -s:t)) n G. Then both sf:l -AI and (S~) + >.I)-1 belong to Op(V(Pl), 

[[13); p.36). Actually, (S~) + >.I)-1 E Op(sim(Bp)); this is immediate from the easily 
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verified fact that for any s E sim(Bp) the operator S~P) is invertible in .C(LP(R)) iff 
s(x) ¥- 0 for a.e. x E R (in which case ~ E sim(Bp)), combined with the fact that 
the set of all invertible elements in .C(LP(R)) is an open set for the operator norm 
topology and T 1--+ r-1 is continuous on this set. Accordingly, from the products 
case established above we deduce that I+ (Sf/)- AJ)(syl + >.I)-1 is a decomposable 

multiplier operator. Obviously (syl +AI) E Op(sim(Bv)) and so again the result for 
products, together with the formula 

shows that (<p + '1/J) E 1J(P). 0 

It may be worth recording explicitly the fact (established in the proof of Propo
sition 4.2) that sim(Bp) is an inverse closed subalgebra of M(P), 1 < p < oo, that 
is, if <p E sim(Bv) has an inverse in M(P) (necessarily equal to ~), then actually 

~ E sim(Bp); see also [[23]; Lemma 1]. 
The class of well bounded operators (necessarily of type (B) in the reflexive spaces 

LP(R), 1 < p < oo), which arose out of a need to extend the class of scalar-type spec
tral operators (with real spectrum), has been intensively studied in recent decades. 
For multiplier operators of this kind more detailed results are available. 

Proposition 4.30 Let 1 < p < oo and <p E M(P) be R-valued. 

(i) If sf:l is well bounded of type (B), then sf:l is a regular generalized scalar operator 

and so, in particular, sf:l E 1J(P) and a(sf/l) = ess range(<p). Moreover, the map 

g t-+ S~~~' forgE C00 (R2 ), is a regular spectral distribution for sf:l taking all of its 
values in {sf/l}cc ~ Op(M(P)). 

(ii) If sf:l is well bounded type (B) and J is any interval containing ess range(<p), 
then the AC(J)-functional calculus for sf:l is given by g t-+ S~~~~ forgE AC(J), and 

assumes all of its values in {S~)}cc. 
For each R-valued, piecewise monotone function g E AC(J) the operatorS~~~ is 

again well bounded of type (B), In particular, s1~j is well bounded of type (B), 

(iii) sf/l is well bounded of type (B) iff X<-oo,><J o <p E M(P), for each A E R, and 

sup{IIIX<-oo,><J 0 <fJ!IIP: >. E R} < oo. 

In this case the spectral family E : R -J. £(LP(R)) is given by the multiplier projec-
tions E(>.) = S(P) for), E R and {S(p)}c = {E(>.) · A E R}c 

X(-oo,)<jO'f'l ) '{) • 0 

Proof. Let sf:l be well bounded of type (B). It was noted in the Introduction 
that sf:l is generalized scalar and so a(sf/l) = ess range(<p). The first claim of part 

(ii) is Proposition 3.2.2 of [27], from which the regularity of g t-+ S~~~ in part (i) then 

follows. The claim about well boundedness of S~~~ when g E AC(J) is R-valued 
and piecewise monotone then follows from [[10]; Lemma 6], The characterization of 
well boundedness given in (iii) and the formula for the spectral family E is given in 
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Theorem 3.2.4 of [27]. The statement about the commutants in (iii) is a well known 
general fact; see [[14]; Part 5], for example. D 

Parts (i) and (ii) of Proposition 4.3 are also valid for p = 1; see the appropriate 
results in [27] which were cited above. 

It is known that there exist R-valued multipliers <p E M(P), p # 2, such that 
I <pi f/. M(P). For such a multiplier <p, Proposition 4.3(ii) shows that the operator sf:> 
cannot be well bounded of type (B). 

Which multiplier operators are known to be well bounded of type (B)? The 
condition in Proposition 4.3(iii) can be difficult to check. Let us consider an example. 

Let <p(x) = cosx, for x E R. If A ~ -1 then X(-oo,>.J o <p = 0 and if A ~ 1 then 
X<-=.>.J o <p = l. For I-AI < 1, let 0 ~ fh < fh ~ 271" be the unique points satisfying 
<p(lh) = A = <p(02). If K>. := {ei9 : (} E [01,02]} ~ T, then it follows from [[20]; 
Lemma 6] that there exists ap > 0 (independent of .X) such that x 1-t XK"' (eiz), 

for x E R, belongs to M(P), 1 < p < oo, and sup>.lllxK"' o ei(·)IIIP ~ ap. Since 
X<-=,>.J o <p = XK"' o ei(·), for each A E R, the criterion of Proposition 4.3(iii) is 

satisfied. So, the multiplier operator s£~lz (and S~f2z by a similar argument) is well 
bounded for all 1 < p < oo. Actually, it is not difficult to show that the same is true 
of S~~~.Bz and s;f2f3z' for all (3 E R. It then follows from Proposition 4.3(ii) that S~) 
is well bounded, where tjJ(x) = g(sin(3x) or tjJ(x) = g(cos(3x), for x E R, and (3 E R 
and g: [-1, 1]-t R is piecewise monotone and belongs to AC([-1, 1]). 

Examples of a different kind are also known. A function <p : R -t R is called 
piecewise monotone if there exist finitely many points t 1 < . . . < tn such that <p is 
monotone on ( -oo, ti), on (tn, oo) and on (tj, ti+I) for each 1 ~ j < n. If such a 
function <p is bounded, then it belongs to BV and hence to M(P), 1 < p < oo. The 
following result, [[27]; Corollary 3.2.5), shows that many multiplier operators with real 
spectrum which fail to be scalar-type spectral are nevertheless well bounded of type 
(B). 

Proposition 4.4. Let <p : R -t R be bounded and piecewise monotone. Then the 
multiplier operator sf:> is well bounded of type (B), for every 1 < p < oo. 

Of course, every multiplier operator (with real spectrum) which is scalar-type 
spectral is also well bounded of type (B). Accordingly, every operator which is a finite 
real linear combination of projections from {Sf2 : E E Bp} is well bounded of type 
(B). Typically such operators provide examples which fail to satisfy the assumptions 
of Proposition 4.4, already in the simplest cases such as Sf2 for certain sets E E Bp; 
see the discussion in Section 2 concerning examples of sets belonging to Bp which are 
generated by Hadamard sequences. 

It is also possible to construct new well bounded operators of type (B) from 
known ones. Indeed, suppose that sf:> and S~) are both well bounded of type (B) 
and that there exist disjoint sets E,F E Bp with the property that <p-1 (R\{O}) ~ E 
and '¢-1 (R\{O} ~F. Then the formula 

X(-oo,>.J 0 (<p + '¢) = (X(-oo,>.J 0 <p)XE + (X(-oo,>.J 0 t/J)XF + X(-oo,>.J (O)x(EuF)C, (4.1) 
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valid for each .:\ E R, together with Proposition 4.3(iii) shows that s~J'I/J is also well 

bounded of type (B). For instance, if 1 < p < oo, then the operator S~P), where 

X ER, 

and E(j) = [22j-l, 22i) for j E N, is well bounded of type (B), 1 < p < oo. This 

follows from (4.1) with <p(x) = e-"' 2 X(-oo,oJ(x) and '1/J(x) = Xu~1 EUl' after noting that 

sf:l is well bounded by Proposition 4.4 and syl is a scalar-type spectral multiplier 
operator as U~1 E(j) E !3p. Still further examples can then be exhibited by applying 
the second statement in Proposition 4.3(ii). 

Let T be a well bounded operator of type (B) in an arbitrary Banach space X 
and J be an interval in R containing a(T). Then there exists a unique spectral family 
(concentrated on J) E : R -+ £(X) satisfying T = J: .:\dE(.:\), where the integral 
exists as a limit in the strong operator topology of Riemann-Stieltjes sums. For each 
.:\ E R, it is a consequence of being of type (B) that E(.:\-) :=lima-+><- E(a) exists 
in the strong operator topology. 

Qu.l7. Does T always belong to the uniform operator closed algebra generated 
by {E(.:\): .:\ E R} or generated by {E(.:\): .:\ E R} U {E(.:\-): .:\ E R}? 

It is known that Qu.l7 has a positive answer whenever T E £(X) is well bounded 
of type (B) and a(T) is a countable set with at most one limit point. This follows 
from an examination of the proof of Theorem 3.4 in [12], where the limit point is 
required to be 0, and the fact that T- o:I is also well bounded of type (B) for each 
o:ER. 

For the particular setting of X= £P(R), 1 < p < oo, and T a well bounded multi
plier operator of type (B) it was noted previously that the spectral family E ofT neces
sarily satisfies {E(..\): ,\ E R} ~ Op(M(P)) and so also {E(..\-): >. E R} ~ Op(M(P)). 
In particular, {E(>.), E(>..-): A E R} ~ Op(sim(Bp)) ~ Op(V(P)). So, even if the an
swer in the general setting of Qu.l7 turns out to be negative, it does not necessarily 
negate the following more specialized question. 

Qu.UL Let 1 < p < oo and letT E Op(M(P)) be well bounded of type (B). Is 
T E Op(sim(Bp))? 

There is certainly a case to expect a positive answer to Qu.l8. Indeed, combining 
Propositim1s 4.1, 4.3 & 4.4 we have seen it is possible to exhibit many examples of 
well bounded multiplier operators of type (B) all of which belong to Op(sim(Bp)). 
However, not every operator from Op(sim(Bp)) with real spectrum is necessarily well 
bounded of type (B). 

Proposition 4.5. 
(i) Let 1 < p < oo, p f- 2. Then there exists a R-valued function r.p E sim(Bp) such 

that sf:l is not well bounded of type (B). 
(ii) The set of well bounded operators of type (B) from Op(M(Pl),p r! {1, 2}, is not 
closed for the operator norm topology. 
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Proof. (i) Fix p =1- 2. By Proposition 2.1(ii) there exists an open set V ~ [0, 1] such 
that Xv 9!. M(P). Write v as a union u~=l (an, bn) of disjoint open intervals. Define 
cp : R -t R by cp(x) = 0 if x 9!. V, cp(a,tbn) = ~ and make cp affine in [an, antb,] 
(resp. [~, bn]) by joining up the points (an, 0) E R 2 (resp. (bn, 0) E R 2) with 
the points (a, tb", ~) E R 2 (resp. (an !b", ~) E R 2 ) via a line segment. Then 
cp E BV, [[27]; Theorem 3.3.8], and it is easily checked that cp has zero continuous 
singular part and satisfies cp( -oo) = 0. Accordingly, Proposition 4.1(iii) implies that 
cp E sim(Ep), 1 < p < oo. The fact that Xv 9!. M(P) together with Proposition 4.3(iii) 
imply that Slf) is not well bounded of type (B); see the proof of [[27]; Theorem 3.3.8]. 

(ii) For each n E N, let 'PN = 'PXN where XN is the characteristic function of 
U~=l (an, bn). Then llcp- 'PNIIBv -t 0 as N -t oo (see the proof of [[27]; Theorem 
3.3.8]) and so sf!J -t sf!l in £(£P(R)). Since sf!J is well bounded of type , for 
each N EN (c.f. Proposition 4.4) the conclusion follows from (i). D 

The proof of part (ii) even shows that the operator norm limit of a sequence of well 
bounded operators of type (B) from Op(sim(Bp)) need not be well bounded of type 
(B). This is because each operator 'PN E sim(Bv), for N EN; see Proposition 4.l(iii). 

5. AD-multiplier operators. Let us begin with an important subclass of the 
AC'-operators. An operator T E £(X), with X a Banach space, is called ti·igonomet
rically well bounded if there exists a well bounded operator A E £(X) of type (B) 
such that T = eiA, [11]. This is equivalent to the existence of an operator norm con
tinuous homomorphism iP : AC(T) -t £(X) such that iP(l) =I and <I>(idT) = T, and 
"P(B) ~ .C(X) is relatively compact for the weak operator topology for each bounded 
set B ~ AC'(T), [[11]; Theorem 2.3]. It is known that a(T) ~ T, [[9]; Theorem 3.2.3], 
and that T has a functional calculus of the form 

iP(cp) := {(fJ cp(eie)dE(B), 
}[0,27C] 

cp E AC(T), (5.1) 

where E : R -t .C(X) is a spectral family concentrated on [0, 27r] and the integral 
is defined as a limit of Riemann-Stieltjes sums with respect to the strong operator 
topology. The well bounded operator A of type (B) which satisfies T = eiA is unique 
with respect to the properties a( A) ~ [0, 21r] and 21r is not an eigenvalue of A. The 
spectral family E in (5.1) is the spectral family of this unique operator A. A fur
ther characterization is that T E £(X) is trigonometrically well bounded iff there 
exist commuting well bounded operators A, B of type (B) such that T = A + iB 
and A2 + B 2 =I, [11]. The importance of trigonometrically well bounded operators 
(from the point of view of this article) stems from the following result ofT.A. Gillespie, 
[20]; it is valid for arbitrary LCA groups but we only formulate it for the line group R. 

Proposition 5.1. Let 1 < p < oo. For each s E R, the translation operator 
T 8 E Op(Jvf(P)) is trigonometrically well bounded and the unique well bounded opera
tor As of type (B) such that T8 = eiA, (and o-(As) ~ [0, 21r] with 21T not an eigenvalue 
of As) is a p-multiplier operator. 

It was noted in Section 4 that Ts, s =1- 0 is never a scalar-type spectral operator 
for p =1- 2. The spectral family E which satisfies (5.1) with T = Ts is (essentially) 
identified in [[9]; p.456]. 
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Let us indicate how Proposition 5.1 can be used to generate other trigonometri
cally well bounded operators. Fix 1 < p < oo and, for the case of simplicity, let s = 1. 
By Proposition 5.1 we are guaranteed a functional calculus <1> 1 : AC(T) -+ £(£P(R)) 
for the translation operator r 1 given by 

<!>1 (cp) := {EJ'J cp(ei8 )dE(l) (0), 
}[0,2n:] 

cp E AC(T), (5.2) 

where E(l) is the spectral family for the corresponding unique well bounded (multi
plier) operator A 1 • That is, 

A1 = {EJ'J t dE(t)(t). 
}[0,27r] 

It was noted in Section 4 that all the projections in the spectral family of At belong to 
{Sf2 : E E Bp}· Accordingly, each Riemann-Stieltjes sum approximating the integral 
(5.2) is a p-multiplier operator and hence, also the strong operator limit <P1(cp) of 
these sums is a p-multiplier operator. Putting s = -1 we are also guaranteed by 
Proposition 5.1 a functional calculus <f>_1 : AC(T) -+ £(£P(R)) for the translation 
operator r _1 given by 

<~>-l(cp) = {EJ'J cp(ei0)dE(-l)(B), 
}[0,27r] 

cp E AC(T), (5.3) 

where E(-l) is the spectral family for the corresponding unique well bounded (mul
tiplier) operator A_1 (as given by Proposition 5.1). A similar argument as for s = 1 
shows that {<P_1 (cp): cp E AC(T)} ~ Op(M(P)). In particular, 

cp, '1jJ E AC(T). 

Using this commutativity property it is routine to verify that the map <I> : AC(T) -+ 
£(£P(R)) defined by 

cp E AC(T), 

is a homomorphism satisfying <I>(:Il) = I and <P(idT) = S~P), where g(x) := eilxl, for 
x E R. The inequality 

valid for all cp E AC(T), shows that «Pis also continuous. Accordingly, the p-multiplier 

operator s~p) corresponding to g(x) = eilxl = X(-oo,O) (x)cix + x[O,oo) (x)eix is trigono

metrically well bounded. The same is true of S~~), for each s E R, where g8 (x) = eislxl, 
for x E R. 

A more extensive class of operators is the AC-operators. Since we are only con
cerned with the reflexive spaces LP(R), 1 < p < oo, for an operator T E £(£P(R)) to 
be an AC-operator means that there exist commuting well bounded operators A, B 
of type (B) such that T =A+ iB, ([10]; §4]. Moreover, in this case A, B are unique, 
([10]; p.318], and satisfy 

(5.4) 
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see [[10]; Lemma 4]. Equivalently, there exist compact intervals J and Kin Rand an 
operator norm continuous functional calculus~: AC(JxK)--+ ..C(LP(R)) satisfying 
~(:n) =I and ~(idJxK) = T. H u(x,y) := x and v(x,y) := y, then the unique com
muting well bounded operators A, B of type (B) which satisfy T =A+ iB are given 
by ~(u) =A and ~(v) =B. Moreover, the calculus~ is unique. Since every trigono
metrically well bounded operator T has such a cartesian decomposition T = A + iB 
it is clear that trigonometric well bounded operators are AC-operators. 

Proposition 5.2. Let 1 .< p < oo and sf:> be an AC-operator for some c.p E 
M(P). Let~ : AC(Jx K) --+ ..C(LP(R)) be the unique functional calculus for sf:>. 
(i) The range of~ is contained in Op(M(P)). 
(ii) Both s<P) and s<P) are well bounded of ty'Pe (B) and satisfy s<P) = S(P) + Re(rp) Im(rp) 'I' Re(rp) 

iSi:;;(rp)" Moreover, ~(h)= Sk~"' for each hE AC(JxK). 

(iii) sf:l is a regular generalized scalar operator. In particular, c.p E V(P). 

Proof (i) Let A, B be the (unique) commuting well bounded operators of type 
(B) such that sf:> = A+ iB. Since sf:> commutes with all translation operators 
so do both A and B (c.f. (5.4) with T =sf:>). Hence, both A,B E Op(M(Pl). 
Since A= ~(u) and B = ~(v), it follows that ~(q) = q(A,B) for every polynomial 
q. Accordingly, ~(q) E Op(M(Pl). Then the continuity of ~ and the density of 
polynomials in AC(JxK) implies that ~(g) E Op(M(P)) for each g E AC(JxK). 

(ii) From s<P) = A+ iB and S(P) = S(P) + iS(P) we deduce that 
'I' 'I' Re(rp) Im(rp) 

A s<Pl - ·cs<Pl B) - Re(rp) - Z Im(rp) - · (5.5) 

But, A E Op(M(P)) and so commutes with sif1(rp) from which it follows that a(A

sif1("') ~ R; see the discussion after Qu.8. Similarly, a(Si:;;(rp) -B) ~ R and so 

a(S1<::;(rp) -B) = {0} = a(A- sif1(rp)); see (5.5). As noted before Op(M(P)) contains 

no non-zero quasinilpotent operators and so A= sif1(rp) and B = si:;;(rp)· 

For each polynomial q we have ~(q) = q(A,B) = q(Sif1(rp)'s}:;:(rp)) = S~~~. Let 
hE AC(JxK) and choose polynomials {qn}~=l such that qn--+ h in AC(JxK) as n--+ 
oo. In particular, since sf:> is generalized scalar (see the Introduction), we have that 
ess range(c.p) = a(sfJ'l) ~ JxK and so qn o c.p--+ h o c.p pointwise a.e. on R. Moreover, 

sup{lllqn o c.piiiP: n EN}= sup{ll~(qn)ll.c(LP(R)) : n EN}< oo 

since the continuity of ~ implies that ~(qn) --+ ~(h) in ..C(LP(R)). It follows from 

standard multiplier theorems that h 0 c.p E M(P) and s~~~"' --+ si;}"' in the weak 

operator topology. But also S~~~"' = ~(qn)--+ ~(h) in ..C(LP(R)) and we deduce that 

~(h)= si~~· 
(iii) Let R E ..C(LP(R)) be any operator commuting with sf:l. By (5.4) and part 

(ii) see that RSif1(rp) = sif1(rp)R and RSi:;;(rp) = si:;;(rp)R. Hence, R commutes with 

~(q) = q(Sif1(rp)'sl<::;(rp)) for each polynomial q. By the density of polynomials in 
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AC(JxK) and the continuity of~ we have R~(g) = ~(g)R for each g E AC(JxK), 
i.e. 

{~(g): g E AC(JxK)} ~ {sr>yc. (5.6) 

Since i : h t-t ~(hiJxK), for h E C 00 (R2), is a spectral distribution for s¥'> (see 
the Introduction) it follows from (5.6) that i is a regular spectral distribution for 
s¥'>. o 

It follows immediately that a multiplier operator sr>, 1 < p < oo is an AC

operator if and only if both si:;;(cp) and sg;;(cp) are well bounded of type (B). Since a 
multiplier operator A is well bounded of type (B) iff (-A) is well bounded of type (B)
see Proposition 4.3(ii) - it is clear that a multiplier operator sr> is an AC-operator 

iff siJ> is an AC-operator. In regard to Qu.4, it follows from (5.4) and Proposition 

52 that {S(v)}c = {s<v> }c n {s<v> }c whenever s<v> is an AC-operator · cp Re(cp) Im(cp) cp · 
In Section 4 we recorded some results and constructions for producing well bounded 

multiplier operators of type (B). Given two such operators A, B (in which case 
AB = BA is automatic as Op(M(P)) is commutative) it follows from the definition 
that A+iB is an AC-multiplier operator. The following result produces AC-multiplier 
operators from a single well bounded multiplier operator, [[10]; Theorem 10]. 

Proposition 5.3. Let 1 < p < oo, sr> E Op(M(P)) be well bounded of type 

(B) and ~ : AC(J) -t .C(LP(R)) be the unique functional calculus for s¥'> given by 

~(g) = S~~~' for g E AC(J). If h E AC(J) has the property that both Re(h) and 

Im(h) are piecewise monotone, then s};jcp is an AC-operator. 

We conclude with some comments about polar multiplier operators. Recall from 
the Introduction that S E .C(LP(R)) is a polar operator if there exist commuting well 
bounded operators R, A of type (B) such that S = ReiA. 

Proposition 5.4. Let 1 < p .< oo, cp E M(P) and suppose that sr> is polar. 
Then, 
(i) icpl E M(P) with S1~? well bounded of type (B), 

(ii) there exists g E M(P) with S~p) well bounded of type (B) and S!fJ an AC

multiplier operator such that ess range(g) = [0,21r]n arg(ess range(cp)\{0}), where 
arg: C\{0} -t R is the branch of argument function with 0 ~ arg(z) < 21r, and 
(iii) s<v> = s<v> s<l!> cp I 'PI e'9. 

Proof. By [[9]; Theorem 3.16] there exist (unique) commuting well bounded op
erators R, A of type (B) such that sif> = ReiA, the spectra of R and A satisfy 
a(R) ~ [0, oo) and a(A) ~ [0, 21r] with 211" not an eigenvalue of A, and F(O)eiA = F(O) 
where F: R -t .C(LP(R)) is the spectral family of R. It is known, [[9]; Theorem 3.18], 
that 

{sif>y = {R}c n {A}c 
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from which it follows that both R, A E Op(M(Pl). Let j, g E .M(P) satisfy SJP) = R 

and S~P) = A. Since both A, R are well bounded of type (B), they are generalized 

scalar and so ess range(!) = a-(SjP)) = u(R) ~ [0, oo) and ess range(g) = or(S~P)) = 

or( A) ~ [0, 2n]. The analytic functional calculus operates in the Banach algebra M(P) 

and so eig E with s(p) = eiA. Accordingly s(p) = ReiA = s(p) s(p) = s(p) 
e'B ' 'P f e'9 fe'B 

from which we deduce that so= feig (equality in M(Pl). Taking absolute values and 

recalling that f ~ 0 a.e. gives I ~PI = f E M(P). In particular, sl~i = sjp) = R is well 

bounded of type (B). The operator S~f] = exp(iS~P)) is an AC-multiplier operator 
by Proposition 5.3. The formula for ess range(g) in part (ii) follows from the formula 
(3.20) of [[9]; p.442] and the inclusion ess range(g) ~ [0, 2n]. D 

REMARKS 5.1. (i) It is known that there exist multipliers <p E , p =J 2, such 

that /¥?! rf_ Jvi(P). For such a multiplier ifi, Proposition 5.4(i) shows that s?l is 'not a 
polar operator. 

(ii) Let s?l be a polar operator. Proposition 5.4 implies that - s1~~ 
s1~~eis;p) w"ith S~P) well bounded of type (B). As observed before -S~P) is also well 

bounded of type (B) and so s!Jl = SJ~! e-iS~P) = s~! S~l!..t is polar. Accordingly, 0; 

multiplier operator s~p) is polar iff siJl is polar. 

In the notation of Proposition 5.4, let s?l = s1~~ S~f] be a polar multiplier op

erator. By Proposition 5.2 the real and imaginary parts S~~~(g) and of the 

AC--multiplier operator s~;J = eiS~P) are both well bounded multiplier operators of 

type Then the identity s?l = (S1~~ + i(Sr~~ S~i,;(9 )) raises the following 
points. 

Qu.H!l. Are the sum and product of well bounded multiplier' fll'lirlrn\J:mr.Q type (B) 
in LP(R), 1 < p < oo, well bounded of type (B)? 

Actually, it suffices to know the answer to Qu.19 for sums since the result for 
products would then follow from the identity AB = ~((A+ - B 2 ) together 
with the fact that aT (for any 01 E R), T 2 and -Tare all well bounded oftype (B) 
whenever T has this property. 

It is known that Qu.19 has a negative answer for arbitrary commuting well 
bounded operators of type (B), even in Hibert spaces, [[14]; p.362]. For arbitrary 
Banach spaces (even reflexive ones) there does not seem to be any obvious connection 
between polar operators and AC'-operators. Perhaps in the setting of LP(R) and for 
the special class of multiplier operators there may be some relationship. 

Quo20. Let 1 < p < oo. Is every polar (resp. AC) operator from ) nec-
essarily an AC (resp. polar) operator? Are the sum and product of AC (resp. polar) 
multiplier operators again AC (resp. polar) operators? Is the product of trigonomet
rically well bounded multiplier operators again trigonometrically well bounded? 
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