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ABSTRACT. This review discusses work in progress and related earlier 
studies by many authors. We have attempted to place our results in 
their broadcontext beginning with the L 2 index theorem of Atiyah and 
Singer, subsequent extensions and the motivation for our results and 
conjectures. The geometric setting is the analysis of L 2 invariants of 
non-compact covering spaces, several of which are not present (or are 
trivial) on compact mamfolds. These invariants use the von Neumann 
algebra of the covering transformation group in an essential way. 

1. INTRODUCTION 

The story begins with Atiyah and Singer [At][Si] in the mid-seventies, who 
were investigating a generalization of the Atiyah-Singer index theorem to 
(non-compact) covering spaces of compact Riemannian manifolds and with 
the work of Atiyah, Patodi and Singer on the index theorem for manifolds 
with boundary, spectral flow and the eta invariant [APS]. The optimistic 
viewpoint on our work is that it would lead to a real synthesis of these two 
directions in the sense of giving, for naturally defined geometric operators 
on bundles over these covering spaces, a useful theory of spectral flow and 
its relation to the Breuer-Fredholm index and the 1 2 index theorem. Indeed 
a careful reading of [APS] seems to indicate an intention to pursue this line 
by those authors. However results of this nature did not eventuate. One 
can only surmise that there were technical problems not the least of which is 
the obvious one: the whole idea seems unlikely because the operators which 
arise in examples can have continuous spectrum and so there is no notion 
of spectral flow as an intersection number. Our aim in this paper is to 
explain our solution to this conundrum and to place the general problem in 
its geometric setting. The proofs are lengthy and heavily functional analytic 
in character and we refer the interested reader to [CPl] for the details. 

We shall assume that r -+ M -+ M is the universal cover for a compact 
Riemannian manifold (M, g) of dimension n, with the Riemannian metric 
on M lifting to a Riemannian metric on the cover M. (All manifolds are 
assumed to be oriented.) While the geometric situations we have in mind 
require us to consider bundles over M for the purposes of this introduction, 
which are mainly analytic, it will suffice to consider the situation on L 2 (M). 
We have an isomorphism 

(1.1) 
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Now r acts on M by deck transformations, and these lift to a unitary repre­
sentation on L 2 (M). The isomorphism in (1.1) can be chosen to intertwine 
this representation with 1 @ R where R is the right regular representation 
on £2 (f). The commutant of 1@ R is N = B(L2 (M))@ Ao where Ao is 
the von Neumann algebra generated by the left regular representation of r. 
Both B(L2 (M)) and Ao have canonical traces denoted Tr and T.Ao· These 
combine to give a trace on the type I I von Neumann algebra N defined by 

T = Tr@T.A.o· 

The ideal T.Ar of operators with finite trace has norm closure KN and the 
quotient 

Q =N/ICN 
is the type I I Calkin algebra. A Breuer-Fredholm operator in N is an oper­
ator which is invertible in Q. Such operators have finite dimensional kernel 
and co-kernel in the von Neumann sense and the index of a Breuer-Fredholm 
operator F is given by i(F) = r(PkerF)- r(PcokecF) where PkerF and PcokerF 
denote the orthogonal projections onto the kernel and cokernel. The quan­
tity r(PkerF) is often referred to as von Neumann's 'continuous' dimension: 
it replaces the ordinary notion of dimension in the type I I setting. 

One of the objects of study initiated by the L2 theory of [At][Si] is the anal­
ysis of the spectral properties of operators inN especially Breuer-Fredholm 
operators. Also of interest is the study of the Laplacian on the complex of 
L 2 differential forms. There is now a long history on this and we refer the 
reader to [Do], [AtSc], [G2], [ChGr3], [ChGrl], [ChGr2], [Lu] [DM], [DM2]. 
In the late eighties, Novikov and Shu bin [ES] defined some new invariants 
using the von Neumann spectral density function of the Laplacian on differ­
ential forms. (This measures the von Neumann spectral multiplicity.) They 
reasoned that the germ of the spectral density function near zero should also 
be a homotopy invariant. This important result was established in [GS] and 
[L]; see also [ES], [NS2), [BMW], [F]. There is an outstanding conjecture 
that the Novikov-Shubin invariants are always positive. 

One way of thinking about these invariants is that they constitute an 
analytic obstruction to generalising a number of results which work in the 
compact case because zero is an isola.ted point in the spectrum. In the L 2 

theory zero need not be an isolated point and this leads to the study of 
Novikov-Shubin invariants. We are able to avoid these in the discussion 
of spectral flow for finitely summable Breuer-Fredholm modules however 
they are critical for the so-called B-summable case. We elaborate on this in 
subsequent sections. 

The technical difficulties associated with type I I spectral invariants are 
explored both in the study of the Novikov-Shubin invariants (references 
above) and also in the discussion of the so called L 2 torsion. We refer 
the reader to [RS] for the classical theory of torsion and to [M],[L], [CM], 
[CFM), [LuR], [BFKM] for the extension to the L 2 setting. See also the L 2 

spectral invariants discussed in [CCMP]. 
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After this brief review of the literature we move on to the main issues. 

2. DEFINITIONS AND STATEMENT OF RESULTS 

The main objects of interest in our work are Fredholm modules. We dis­
cuss first the type I situation. An odd unbounded (respectively, p-summable) 
Fredholm module for a unital C*-algebra, A, is a pair (H, D) where A is 
represented on the Hilbert space, H, and D is an unbounded self-adjoint 
operator on H satisfying: 

1. {a E A I [D,a] is bounded} is a dense *-subalgebra of A, and 
2. (1 + D2)-1 is compact (respectively, Tr ((1 + D2)-(P/2l) < oo). 

Here Tr is used to represent the type I trace. 
If u is a unitary in the dense *-subalgebra mentioned in point 1 of the 

defintion then 
uDu* = D + u[ D, u*] = D + B 

where B is a bounded self-adjoint operator. The path 

Df := (1- t) D + tuDu* = D + tB 

(2.1) 

(2.2) 

is a "continuous" path of unbounded self-adjoint "Fredholm" operators. 
More precisely in [CP1] we establish that 

1 

Ft" := v; (1 + (D;)2) - 2 (2.3) 

is a norm-continuous path of (bounded) self-adjoint Fredholm operators. 
The spectral flow of this path { ~u} (or { Df}) in the type I case is roughly 
speaking the net number of eigenvalues that pass through 0 in the positive 
direction as t runs from 0 to 1. This integer, 

(2.4) 

recovers the pairing of the K-homology class [D] with the K-theory class [u]. 
To go further that this we use an idea due to Ezra Getzler [G]. He 

outlined a method of exhibiting spectral flow as the integral of a one-form 
in the context of unbounded 0-summable (Tr(e-tD2 ) < oo for all t > 0) 
Fredholm modules. Following this approach we consider the operator B as 
a parameter in the Banach manifold, Bsa(H), so that spectral flow can be 
exhibited as the integral of a closed 1-form on this manifold. Now, for B 
in our manifold, any X E TB (Bsa(H)) is given by an X in Bsa(H) as the 
derivative at B along the curve t t-+ B + tX in the manifold. Then we show 
[CP1] that for m a sufficiently large half-integer: 

a(X) = ..2:- Tr (X(1 + (D + B)2)-m) (2.5) 
Cm 

is a closed 1-form. For any piecewise smooth path {Dt = D + Bt} with Do 
and D 1 unitarily equivalent we show that 

sf{Dt} = dm l Tr (:t (Dt)(1 + Dz)-m) dt (2.6) 
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the integral of the 1-form a. If Do and D 1 are not unitarily equivalent, we 
must add a pair of correction terms to the right-hand side. We also prove a 
bounded finitely summable version of the form: 

sf{Ft} == ~n f Tr (:t (Ft)(l- Flr) dt (2.7) 

for n ?: ~ an integer. The unbounded case is proved by reducing to the 

bounded case via the map D >--+ F = D(l + D2)-L 
One of the interesting features of our proofs are that they apply similta­

neously to the type I I situation as well. In that case we are dealing with a 
real-valued spectral flow. To be more precise, we need a definition. 

Definition. An odd unbounded (respectively, p-summable) Breuer-Fredholm 
module for a unital C*-algebra, A, is a pair (N, D) where N is a semifinite 
factor with fixed trace, T (on a separable Hilbert space), A is unitally *­
represented in N, and D is an unbounded self-adjoint operator affiliated 
with N satisfying 

1. (l+D2)- 1 is in the "compact" ideal KN (respectively,Tr ((1 + D2 )-~) < 
oo) and 

2. AD := {a E A I [ D, a] is bounded} is a dense *-subalgebra of A. 

If u is a unitary in the subalgebra AD, then 

uDu* = D + u[D, u*] = D + B where B E Nsa· (2.8) 

The path 

D~ := (1- t) D + tuDu* = D + tB E D + Nsa (2.9) 

is a continuous path (in the obvious sense) of unbounded self-adjoint "Breuer­
Fredholm" operators. That is, we show that 

(2.10) 

is a continuous path of self-adjoint Breuer-Fredholm operators inN, [B 1 ;B2]. 
We denote by sf{Dt} = sf{F1} the spectral flow of this path. 

Here, we again borrow Getzler's idea of considering the operator B defined 
above as a parameter in the real Banach manifold, Nsa, so that spectral 
flow can be obtained as the integral of a one-form on this manifold. That 
is, our manifold is 1\I := D + Nsa and the tangent space to ]I;[ at D 1 is 
TD 1 (M) = Nsa· So, X E TD 1 (M) is the derivative at D1 along the curve 
t >--+ D 1 + tX in M. It is easy to see that for any m ?: ~ 

a(X) = 2---- Tr (x(l + Di)-m) 
Cm 

(2.11) 

is a 1-form on M. In fact, we show that form a sufficiently large half-integer, 
this one-form is exact and that for any piecewise-C1 continuous path { D 1} 
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in M with Do and D1 unitarily equivalent ( eg. { Df}), 

sf{Dt} = dm 11 
Tr (:t (Dt)(1 + Dl)-m) dt (2.12) 

which is the integral of the 1-form, o:. 
If Do and D 1 are not unitarily equivalent, we must add a pair of correction 

terms to the right hand side of the equation. These correction terms take 
account of the spectral asymmetry of the end-points. They are related to 
the regularised eta invariant introduced in [G]. We will not discuss this 
refinement here. Note that the normalizing constant is 

_ joo 2 -m f ( m - ~) .jir n! 2n+I 
Cm = -co (1 +X ) dx = f(m) = 1. 3 ... (2n + 1) = Cn 

(2.13) 
where m = n +~and n is an integer. 

If (N, F0 ) is a bounded p-summable Breuer-Fredholm module, u E U(A) 
and 

Ftu = (1- t) Fa+ t uFau*, 

then for any positive integer n 2: ~ we get 

o:(X) = ~n Tr (X(l- F 2t) 
is an exact 1-form on a suitable manifold and 

sj{Fn = ~n 11 
Tr (! (Ft} (1- (Ft) 2r) dt. 

(2.14) 

(2.15) 

Part of this was already done in [P2] where spectral flow for arbitrary contin­
uous paths of Breuer-Fredholm operators in a IIoo factor was first defined. 
In the next section we will explain the connection between [P2] and the 
formulae introduced above. 

There is also the unbounded finitely summable version obtained by re­
ducing to the bounded case via the map 

D 1-t F = D(l + D2 )-~. (2.16) 

Many technical analytic difficulties arise in implementing this simple idea. A 
number of these problems involve the operator-norm continuity and trace­
norm continuity of functions of unbounded self-adjoint operators. In the 
final section we will mention one of these continuity results and develop 
some consequences of it. 

Example 2.1. Let M be a compact spin manifold of dimension n. Let 
lJ be the universal cover and assume the fundamental group of M has a 
type II regular representation which is a factor. Choosing metrics as in the 
introduction we find that the Dirac operator Do on the Hilbert space of 
1 2 sections of the spinor bundle over M satisfies (1 + D6)-P E T.N for any 
p > n/2 [Se]. Thus we have a p-summable Fredholm module to which the 
considerations of this section will apply. 
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3. STRATEGY. 

To our knowledge it was Mathai [MO} who first suggested using the Breuer­
Fredholm index to define spectral flow and provided examples where it is 
not trivial. There is a special case of our overall setting in which this is also 
possible and to which we can (eventually) reduce the theorems mentioned 
in Section 1. This special case was discovered in [P2]. 

Suppose B0 and B1. are self adjoint inN with square one and all eigenspaces 
of infinite von Neumann dimension. Suppose that 

(3.1) 

Then (3.1) implies that PQ is a Breuer-Fredholm operator where P = (Bo+ 
1)/2 and Q = (B1 + 1)/2. The spectral flow along the path 

Bt = (1 - t)Bo + tB1 (3.2) 

can be seen to be equal to the index i(PQ). This Breuer-Fredholm index is 
computed by regarding PQ as a map from the range of Q to the range of 
P. The index here is measuring the amount of spectrum gained minus the 
amount of spectrum lost as we move along the path. 

For more general paths { Bt} in the space of self-adjoint Breuer-Fredholm 
operators in N, one has to break the path into finitely many pieces along 
which x(Bt) (X is the characteristic function of JR+) varies little mod­
ulo "compacts" so that at the endpoints Bt1 and Bt1+1 the projections 
Pj = x(BtJ and Qi = x(Bt1+1 ) are close modulo KJJ forcing PiQi to 
be Breuer-Fredholm. Then by adding the contributions i(PjQj) one obtains 
the spectral flow of the path. 

Theorem 3.1 of [P2] gives the spectral flow along the path (3.2) for any 
integer n 2:: p/2 as 

(3.3) 

l,From this (2.15) follows by connecting Fj,j = 0,1 by a linear path to the 
isometry Bj in its polar decomposition, joining B0 and B1 by a path as in 
(3.2) and showing that the new path which joins Fj via these isometries 
gives the same number as (2.15). 

4. THE 8-SUMMABLE CASE AND ASYMPTOTICS 

It is not difficult to see that p-summable (Breuer-)Fredholm modules are 
8-summable. Thus one might ask about the connection between our formulas 
for spectral flow in the former case and those in [G] in the latter case. The 
connection is provided by the following calculation. 

The formula in [G] for spectral flow in the 8-summable case when the 
endpoints are unitarily equivalent is: 

(4.1) 
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Observe that 

sf( Do, D1) = f(n ~ 1/ 2) 100 t:n-3/ 2e-<sf(D0 , D1)d«:. 

- 1 roo n-3/2 -< [1 (.!!:__( ) (- 2))d d 
- r(n- 1/2)y1f lo f: e lo T du Du exp «:Du u f: 

Now using the formula 

1oo sn exp( -(1 + D2 )s)ds = f(n + 1)(1 + D2)-n-1 

( 4.2) becomes 

r(n) [ 1 d 2 -n 
r( n - 1/2)y1f Jo r( du (Du)(1 +D ... ) )du. 

This gives our finitely summable formula: 

r(n) [ 1 d 2 -n 
sfn(Do, Dl) = f(n _ 1/ 2)y1f Jo r(du (D ... )(1 +D ... ) )du. 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

One might ask why we did not use this strategy to prove our formula. The 
answer is that the formula in [G] depends for its proof on the geoemtric 
definition of spectral flow as an intersection number and on some analytic 
details which fail in the type I I setting. 

We aim eventually to provide a proof of the 8 summable spectral flow 
formula in both the type I and type I I settings which is entirely independent 
of the geometric definition (and uses only index theory). However we do not 
anticipate tltat our proof will avoid some of the technical questions which 
complicate the type I I case. To explain this assertion and to highlight some 
of the analytic results in [CP1] which contribute to a resolution of these 
complications is our next task. 

One problem which we immediately confront in the 8-summable case is 
the convergence of integrals of the form 

100 t8 r(X exp( -tD2 ))dt (4.6) 

and 

["" c 112r(Dexp(-tD2 ))dt. (4.7) 

where X is a bounded self adjoint operator in N. Mathai showed [MO] 
that if D has trivial kernel (4.7) converges without any special assumptions 
on the large time behaviour of r(exp(-tD2)) however the same cannot be 
said for (4.6) which arises in the 8-summable case when we try to show 
that the spectral flow is the integral of a one form. Any assumption which 
guarantees that ( 4.6) converges must be stable under perturbations of the 
form D' = D + A where A is bounded self adjoint with D and D' having 
zero kernel. However it is easy to show by example that this cannot hold. 
Thus in the type I I case a new strategy is required. (Note that the decay 
ofr(exp(-tD2)) for large tis the object of study in [ES] and [GS] and leads 
to the definition of the Novikov-Shubin invariants.) 
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There are many other formidable technical issues as well but a discussion 
would take us too far afield. The interested reader is referred to the forth­
coming preprint [CPl] for the details of proof of the results announced here. 
Work on the 8 summable case is on-going. 
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