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Abstract 

This paper first shows that the Cohen-Daubechies-Feauveau (C-D-F) biorthogonal 
wavelet can be derived from the interpolating wavelet through a lifting process. Its 
high-pass filter measures the interpolation error of the averaged data. Next, we propose 
a new wavelet method, called the difference wavelet method, for efficient representation 
for functions on R. Its analysis part is simply averaging and finite differencing. The 
corresponding synthesis part involves a finite difference equation, which is solved by 
the cyclic reduction method to achieve fast transform. The associated wavelets con­
stitute biorthogonal Riesz bases in L 2 (R). Their decay and regularity properties are 
investigated. A comparison study on the efficiency is'sues with C-D-F wavelet method 
is performed. The comparison includes (i) operation counts. for performing wavelet 
transform, (ii) the approximate power (i.e. the coefficient in the approximation error 
estimate), and (iii) the compression ratio (by numerical experiments). The results show 
that the difference wavelet method is about twice more efficient than the C-D-F wavelet 
method. This efficiency is due to that the difference wavelets are more regular with just 
slightly bigger essential support than those of C-D-F wavelets. 

1 Introduction 

Wavelet expansion is an efficient way to represent functions and operators. In such an ex­
pansion, a function is decomposed into fluctuations at various resolutions plus an averaged 
information at the coarsest resolution. The expansion is done by performing a fast wavelet 
transform through so called analysis filter banks. The original function can be recovered 
from the wavelet coefficients through so called synthesis filter banks. The advantage of 
such an expansion is that only small amount of coefficients are needed to achieve accu­
rate approximation, provided the function is piecewise smooth. This technique is widely 
used for data compression in digital signal processing [14], for designing fast algorithms for 
matrix-vector multiplications [1], for solving integral equations, etc. The efficiency of such 
a representation is due to that the wavelet coefficients indeed measure certain interpolation 
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errors of functions or operators at various scales. They are negligible, provided the given 
functions or operators are piecewise smooth. 

In order to have such expansions in L 2(R), the forementioned interpolation error should 
be taken to be the interpolation error of the averaged data instead of the point-valued 
data. Thus, there are two important parameters in a wavelet expansion method: the order 
of averaging r, and the order of interpolation f. In the orthogonal wavelet of Daubechies [5] 
and the semi-orthogonal wavelet of Chui-Wang [3], these two parameters are taken to be 
identical. In Cohen-Daubechies-Feauveau's (C-D-F) biorthogonal wavelet [4], f is allowed 
to be different from r, but with a constraint that r + f must be an even number in order to 
be bistable in L 2 (R). The C-D-F wavelet method is indeed more flexible to use. Numerical 
experiments also show that one can get better compression ratio for r < f. 

In this article, we first show that the C-D-F wavelet can be derived from the interpolating 
wavelet through a lifting process. Its high-pass filter measures the interpolation error of 
the averaged data. We thus refer the C-D-F wavelets as the interpolating wavelets. Indeed, 
C-D-F wavelet method is the most ideal method in the class of finite (i.e. polynomial) filter 
banks that allows different r and f. 

Next, we look for efficient wavelet expansion method in the class of rational filter banks 
that also allows different r and f. We would like to have such expansion method to be 
bistable in L 2 (R), more efficient, and with the corresponding expansion algorithm to be 
fast. · 

Notice that one way to derive the C-D-F filter banks is to the smallest degree polynomial 
that satisfies the no distortion condition: 

(1 + z)2K (1- z)2K Q(z) - 2- + Q( -z) - 2- = 1, 

where r + f = 2K. After proper shift of power, Q(z) has the following explicit form 

Qr<(z) = :E ( [(- ~ + n ) e- z 4- z-1 r (1.1) 

We notice that QK(-1) is a big number as [{ is big. This has the effect that the filter 
bank QK(z) amplifies the low-frequency modes during the analysis filtering and the high­
frequency modes during synthesis filtering. In this paper, we search for efficient filter banks 
by finding rational functions of the form Q(z)/ P(z2) that has smallest magnitude for lzl ~ 1 
and satisfies . c ~ zrK Q(z)/P(z2) + c; zrK Q(-z)/P(z2) = 1. 

It turns out the optimal choice is Q(z) = 1 and 

PK(z2) =z-KC~zrK +(-z)-KC;zrK. 
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We call this wavelet method the difference wavelet because the corresponding high-pass 
filtering is simply finite differencing. In this case, the magnitude of Jl/PK(z2)J for JzJ::; 1 is 
much smaller than JQK(z) J in the C-D-F filter banks. As a result, the corresponding wavelet 
function is more regular, hence it has better approximate power and better compression 
ability. Although the filter bank 1/ PK(z2) is of infinite length, it can be performed by 
solving a finite difference equation by the cyclic reduction method. The operation count of 
such an algorithm is about the same as performing QK (z) in the C-D-F wavelet method. 
Also, the difference wavelet function is not of compact support, yet it decays exponentially 
fast at infinity. Its essential support is only slightly bigger than the corresponding C-D­
F wavelet. Numerical experiments show that difference wavelets do have good "zoom-in" 
property. 

In this proceeding paper, only the contents of theorems are stated here. Their proofs 
will be provided in a separated journal paper. This paper is organized as the follows. 
Section 2 is the notation and preliminary, where we review the notion of filter banks and 
biorthogonality. In Section 3, we review the C-D-F biorthogonal wavelet and show that 
they can be derived from interpolating filter by a lifting technique. We also explain that 
the corresponding wavelet coefficients measure the interpolation error of the averaged data. 
In Section 4, we illustrate the difference wavelet method, compute its operation counts, and 
show their biorthogonality property. We also investigate the regularity and decay proper­
ties of the corresponding scaling function. Section 5' is a comparison study between the 
difference wavelet method and the C-D-F wavelet method on efficiency issues, including the 
approximation power and compression ratio. We demonstrate that this better efficiency of 
the difference wavelet method is due its better regularity and its support being "essentially" 
finite. 

2 Preliminary Notations 

2.1 Filter banks and fast wavelet transform 

A wavelet transform decomposes data (or functions, or operators) into fluctuations at var­
ious resolutions. It depends on four sets of coefficients: {hk}kEz, {gk}kEz, {hk}kEZ and 
{.ihhEZ. The first two are called the analysis filter banks, the latter two the synthesis filter 
banks. A data sequence ut = { u]} at resolution level £ can be decomposed, through the 
analysis filter banks, into the following two sets of data sequences at level £- 1: 

{ 
the low-pass data: uj-1 = -12"L::k hku~j-k' 
the high-pass data: w]-1 = -12"L::k9kU~j+l-k' 

(2.1) 

Here, v'2 is a normalized scale factor [6]. Roughly speaking, the low-pass data are the 
averaged informations of ut at coarse grid, while the high-pass data the fluctuation in­
formations (or the differencing) of uf away from ut-1. By applying the above trans­
form: uc r-+ ( ue-1 , wt-1) recursively for £ = L, L - 1, .. ·1, one can decompose a given 
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data uL at the finest scale L into (u0 ,w0 ,w1 ,···,wL-1), the averaged information at 
coarsest resolution and the fluctuation informations at various resolutions. The mapping: 
uL I-t ( u0 , w0 , w1, . • · , wL- 1) is called a wavelet transform. 

The data ue can be recovered from ( ul-1, wt-1) through the synthesis filter banks 
{hkhEz and {9khEz: 

u] = -/22::: [hi-2kui-l + Yi-2k-1wi- 1]. 

k 

(2.2) 

By applying this inverse transform recursively for e = 1, · · ·, L- 1, uL can be recovered 
from (u0 , w0 , · · ·, wL-1). 

Notice that the amount of information in ( u0 , w0 , · • • , wL-1) is identical to the original 
uL. The advantage of a wavelet representation is that many wavelet coefficients (i.e. w], 
j E Z, f = 0, · · ·L- 1) become negligible when uL is piecewise smooth. Thus, a data 
sequence can be represented more efficiently through a wavelet expansion. 

Since the above filtering process is in convolution form, it is convinient to introduce the 
z-transform (or the generating function) of these filter banks. Let us define h(z) = L:k hvk, 
etc. By taking the z-transforms of (2.1) and (2.2), we find that the filter banks satisfy 

This leads to 

ue(z) = -/2h(z)ul-1 (z2 ) + -/2g(z)zwe-1(z2) 

= (h(z)h(z) + g(z)g(z)) . ue(z) 

+ (h(z)h( -z)- g(z)g( -z)) · ue( -z). 

h(z)h(z) + g(z)g(z) 
h( -z)h(z)- g( -z)g(z) 

1 (no distortion), 

0 (alias cancellation). 

A sufficient condition for (2.4) is 

g(z) = h( -z)P(z2), 

g(z) h( -z)/ P(z2). 

A general restriction on P(z2 ) is 

P(z2 ) = LP2kz2k with L IP2kl < oo. 
k 

(see Chui [2]). Thus, hand h satisfy 

h(z)h(z) + h( -z)h( -z) = 1. 

We shall also normalize h and h by 

h(1) = h(1) = 1. 
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Thus, we shall design filter banks h(z) and h(z) to satisfy (2.5) (2.6) and choose a proper 
P(z2 ) to obtain the filter banks g(z) and g(z). 

A general design principle of filter banks in applications is to have the corresponding 
wavelet transform to be fast, bistable and efficient in the following sense. The term "fast" 
means that the wavelet transform and its inverse is of linear computational complexity. The 
term "bistable" means that the transform is bistable in £2 , independent of the resolution L. 
The term "efficient" means that a small amount of nonzero wavelet coefficients wJ sufficies 
to approximate the original data accurately. 

2.2 Bistability 

The bistability of the wavelet transform is studied through the helps of the scaling functions 
and wavelets. Such bistability is equivalent to the biorthogonality of a pair of scaling 
function <P and ~in L 2 (R), or equivalent to the biorthogonality of the wavelets 'lj; and ;j; [4]. 

2.2.1 Scaling functions and wavelets 

Associated with the analysis filter banks, one can define the scaling functions ¢ and wavelet 
function 'lj; by 

¢(x) 2 L h_k¢(2x- k), (2.7) 
k 

'lj;(x) 2 Lgl-k¢(2x- k). (2.8) 
k 

The scaling function ¢exists as a distribution if and only if h(l) = 1. Once ¢ is found, 'lj; 
can be obtained from (2.8). The connection between the scaling function, the wavelet and 

the forementioned analysis filtering is as the follows. First, define ¢](-) := 2~¢(2e · -j), 
7J;](-) := 2~7f;(2e · -j). Here, the factor 2f/2 is for normalization in L 2 (R). Next, given a 

function u E L 2 (R), define u] := (u,¢]) and w] := (u,7J;]). Then it is easy to see that the 

mapping ( u])jEZ >--+ ( u]-1, wJ- 1 )jEZ is the analysis filtering (2.1) if and only if ¢ and 'lj; 
satisfy (2. 7) and (2.8). 

The synthesis filter banks correspond to a dual pair of functions ~ and ;j; defined by 

~(x) (2.9) 
k 

;j;(x) 2 Lfik-1~(2x- k). (2.10) 
k 

Let us also define~}(-):= 2~~(2f · -j) and ,(j;](-) := 2~;j;(2e · -j). Then the condition (2.2) 
in the synthesis filtering is equivalent to 

2)u, <P]) ~] = L(u, <P;-1) ~;-1 + L(u, 7J;]-1) ;j;J-1. (2.11) 
j j j 
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Let lfe denote for the space span { ¢£ I k E Z}. Given a function u E L2 ( R), the data 
{ 1tf '= ( u, <;i>f)}jEZ is equivalent to the projection of u in VL: 

The wavelet expansion (u0 , w0 , · • ·, wL-l) of {uf}jEZ is equivalent to the expansion ofuL(x) 
'th h b . {10 .7.0 .7.£-1}. . 

WI t e aS!S 'Pj1 'Pj>" ', 'Pj JEZ· 

(2.12) 
j 

(2.13) 
j f=O j 

Thus, the bistability of the discrete wavelet transform is equivalent to that the formula 
(2.13) is valid in L 2 (R) sense. It turns out that this is equivalent to that 

u(x) = (2.14) 

00 

(2.15) 
f=-oo j 

is valid in L 2 (R) sense (4]. 

2.2.2 Biorthogonality 

In order to have the expansion (2.12) valid in L2(R), we need the following definition. 

Definition 1 We say that a function 4> E L 2 (R) has the Riesz basis property if { 4>(·-k)}kEZ 
constitute a Riesz basis in the space V 0 := span{<;/>(· - k) I k E Z}, i.e. there exist constants 
C1 > 0, C2 < oo, such that for all these finite sums, 

(2.16) 

In order to have the limit (2.14) valid in L 2 (R), Mallat [10] introduced the concept of 
multiresolution analysis. 

Definition 2 A sequence of function spaces {Ve}REZ is said to constitute a multiresolution 
analysis in L 2 (R) if 

1. y£-l c v', UeEZ ve = L 2 (R), and neEZ ve = {0}, 

2. translation invariance: if u E V 0 , then u(·- j) E V 0 for all j E Z, 
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3. dilation invariance: u E V 0 if and only ifu(2i·) E Vi, 

4. Riesz basis property: there exists a function </> E L 2 such that </> has the Riesz basis 
property and V 0 = Span { </>( · - j)} jEZ. 

That the expansion (2.14) in L 2 (R) sense leads to the following definition of biorthogonality. 

Definition 3 Two scaling functions</> and J> are called biorthogonal in L 2 (R) if 

1. </> and J> have the Riesz basis property, 

2. let ve = Span{ </>]}iEZ and ve = Span{ J>]}iEZ, then both {Vt}tEZ and {Vl}lEZ 
constitute multiresolution analysis in L 2 (R), 

t -l t -e 3. for each f, {</>jhEZ and {</>khEZ are dual to each other, i.e. (</>j, cf>k) = 8jk· 

Definition 4 Two wavelets '1/J and?/; are said to be biorthogonal in L 2 (R) if 

1. both N]h.eEZ and N]}i,tEZ constitute Riesz bf!ses in L 2 (R), 

2. N]h.tEZ and { 1/;]Ji.eEZ are dual to each other: 

(2.17) 

The main theorems that characterize the biorthogonality are the following. 

Theorem 2.1 (Cohen-Daubechies-Feauveau) The following two statements are equiv­
alent. 

1. The scaling functions </> and J> have the Riesz basis property and the corresponding 
filter banks h and h satisfy (2.5},(2.6). 

2. </>and J> are biorthogonal in L 2 (R). 

When g(z) = h( -z) and g(z) = h( -z), Cohen-Daubechies-Feauveau also showed that the 
biorthogonality of </> and J> in L 2 (R) is equivalent to the biorthogonality of '1/J and ?/; in 
L2 (R). A more general theorem due to Chui [2] is stated below. 

Theorem 2.2 (Chui) If</> and J> are biorthogonal in L2 (R), then 'lj; and?/; are biorthogonal 
in L 2 (R) if and only if g(z) = h( -z)P(z2 ) and g(z) = h( -z)/ P(z2) with P(z) = Lk PkZk 
satisfying Lk iPki < oo. 
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3 The Interpolating Wavelet Method 

3.1 The pointwise interpolating wavelet 

The interpolating filter has been introduced by many researchers [9, 7, 8]. It depends on a 
parameter I< > 0. The analysis filtering is defined by 

(3.1) 

where RK( x, tte-1) is the interpolating polynomial that interpolates uJ:::i at xJ:::i for k = 
-K + 1, ···,I<, and x} = j2-e: In other words, wJ-1 measures the interpolation error at 

x~j+I· The synthesis filter is given by 

e 
'll2j 

e 
tl2j+l 

£-1 
tl· 

.1 

e-1 + R ( e e-1) Wj K XzjH> tl . 

Thus, the corresponding filter banks are 

h(z) = g( -z) = 1 (3.2) 

h(z) = g( -z) 1 + t ( IT 1 = :) ( 2 2k-1 + 2 -2k+l) . (3.3) 
k=l m # k 

m= -K+ 1 

Since h(z) = 1, the corresponding scaling function is a delta function. The feature of 
the interpolating filter is that smooth functions can be approximated by ¢ in some proper 
function space through interpolation [8]: 

1t(x) = lim :L u(x}) ¢}(x). 
L--+oo . 

J 

3.2 The Cohen-Daubechies-Feauveau biorthogonal wavelets 

Notice that the forementioned pointwise version of interpolating wavelet is not biorthogonal 
in L 2 (R) because the corresponding ¢ is a delta function. Cohen-Daubechies-Feauveau 
introduced biorthogonal wavelets. It turns out that their biorthogonal wavelet can be· 
derived from the interpolating wavelets through a lifting process. Let us first give a brief 
review of the C-D-F wavelet method [4]. Their filter banks are defined by 

h(z) g(-z) = z-[r/2] c ~ zr (3.4) 

h(z) g(-z) = z-[r/2]-1 c ~ zr Q(z). (3.5) 
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Here, r+f is required to be an even number 2/(, and Q(z) is the minimal degree polynomial 
satisfying 

z-K c ~ ZrK Q(z) + (-z)-K c; zrK Q(-z) = 1. (3.6) 

It has the following explicit expression 

(3.7) 

The C-D-F wavelets have the following advantages. 

1. The expansion algorithm is fast. 

2. The corresponding wavelets 1jJ and ij; are biothogonal. 

3. The scaling functions and wavelets are of compact support and symmetric, thus have 
good zoom-in property and non-bias approximation ability. 

4. They are flexible, namely, allowing different orders of averaging and interpolation. 

5. It has the shortest length of filter banks that h;;~.ve the above properties. 

3.3 The C-D-F wavelet as a lifted interpolating wavelet 

The C-D-F filter can be viewed as a lifted interpolating filter. The lifting process is a process 
to derive the filter banks of ( r + 1, f- 1) from the filter banks of ( r, f). Let <V and ¢/ ( resp. 
hr(z) and hf(z)) be the scaling functions (resp. the filter banks) associated with the C-D-F 
filter banks with averaging order r and interpolation order f. 

Theorem 3.1 The C-D-F filter banks with r = 0, f = 2K is identical to the order 2K 
interpolating filter banks (3.2) (3.3) 

Theorem 3.2 The C-D-F filter bank with (r + 1, f- 1) can be derived from the case (r, f) 
as the follows. 

hr+l(z) = C ~ z)hr(z) 

l/(z) = C; z)il-1 (z) 

¢r+1 = 1[0,1) * t/>r 

Ji = -- 1 
1[o,t) * t/>r-

Remarks. 
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1. The lifting process on filter banks corresponds to an averaging process on the data 

(i.e. h(z) = ( ~) \ Thus, the C-D-F high-pass filtering can be viewed as an 
"interpolation error" of the "averaged data." 

2. Harten's cell average version of interpolating wavelet [9] is exactly identical to the 
C-D-F wavelet with r = 1 and r = 2!{- 1. 

3. The price to pay for the filtering QK(z) is the following. Since 

QK(-1) =}; ( [{ +:- 1 ). 

Hence, low frequency modes are amplified by QK during high-pass filtering, and high 
frequency modes are also amplified during low-pass synthesis filtering. In the next 
section, we replace QK(z) by 1/ PK(z2 ). Figure 1 demonstrates that the magnitude of 
ll/P(z2 )1 is much smaller than that of IQ(z)l. As a result, the corresponding scaling 
function is more regular, hence has better approximation ability. 

4 Difference Wavelets 

4.1 The filter banks of the difference wavelet method 

In order to have better approximation ability, we search for filter banks in the class of 
rational functions. Given I< > 0, we find rational function of the form Q(z)/P(z2 ) that 
satisfies 

( 1 + z) 2K ( 1 z) 2K 
- 2- Q(z)/P(z2 )+ T Q(-z)/P(z2 ) = 1, 

and has minimal magnitude in absolute value for lzl < 1. It turns out that the optimal 
choice is, after proper shift of power, that 

Q(z) 1 

. ( 1 + z) 2K . ( 1 - z) 2K z-I\ -- + ( -z)-I'. --
2 2 

We then define the filter banks to be 
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Thus, the only difference from C-D-F filter is to replace the Q(z) filter by 1/PK(z2 ). We 
call this method the difference wavelet method because its high-pass filtering is simply a 
finite difference operator. To justify this method is valuable we need to show that 

1. the operation count to perform 1/ PK(z2) is almost the same as that of Q(z), 

2. it is bistable, 

3. it is more efficient in the sense that it has better approximation ability and better 
compression raio. 

We shall devote to these issues below. 

4.2 Fast algorithm for difference wavelet transform 

The filtering 1/ PK ( z2 ) is performed by the following two steps. 
Step 1. Factorize PK(z2 ) into 

[K/2] 1 [K/2] 

PK(z2 ) = II ( akz-2 + 1 + akz2 ) = II pk(z2 ), 

k=I 1 + 2ak k=I 

where 

ak 1/ (tan2 fh + 1/ tan2 8k) < 1/2, 

{ 
(2k-I),. if K is even 

8k = k1r4K 
2K if K is odd . 

Step 2. For each k = 1, · · ·, [K/2], solve 1/Pk(z2 ) by the cyclic reduction method. 

The operation count for performing 1/PK(z2 ) is less than (4A + 3M)[K/2] per each 
datum, whereas the operation count for performing QK(z) is (2A t 1M)K per each datum. 
Here A is the addition operation and M is the multiplication. Thus, the operation counts 
for these two methods are about the same. 

4.3 Properties of difference wavelets 

Consider the difference filter banks with averaging order r and differencing order r, and 
r + r = 2K > 0. Then the scaling function </>.is the spline: </> = 1[~,I)' The dual scaling 

function ;p has the following properties. 

Theorem 4.1 1. ;p is symmetric about 0 and decays at oo exponentially fast: 

;J>(x) O(e-uixi), 

u = 2 In tan ( K4~ 1) 1r > 0. 
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2. The Fourier transform of¢ satisfies 

(4.3) 

Theorem 4.2 The difference wavelets with f :::0: r :::>: 1 are biorthogonal in L 2 (R). 

We compare the regularity of the scaling functions corresponding ~he difference wavelet 

method and the C-D-F wavelet method. The Fourier transform of¢ of both method are 
given by 

¢(~) (si~2l ~);.. TI QJ<(e-iUze) (C-D-F) 
C=l 

¢(~) ( si~ ~) r. g PI<(e~Zie/2e) (difference). 

Table 1 is the growth power of il~ 1 QI<(e-iefze) and ll~ 1 1/PK(c2ie/Ze). It shows that 
. the scaling function ¢ of the difference wavelet is smoother than that of the C-D-F wavelet. 

K 2 3 4 5 6 7 8 9 10 20 
()' 2 3.17 4.45 5.81 7.22 8.68 10.17 11.68 13.20 28.61 

O'o 1 2 3 4 5 6 7 8 9 19 

5 Efficiency Issues 

In this section, we will compare the C-D-F wavelet expansion and difference wavelet expan­
sion on the follwoing efficiency issues: approximation power and compression ratio. 

5.1 Approximation power 

We approximate u E L 2 (R) by the projection 

L "" L -L u (x)=~(u,¢>j)1>j(x). 
j 

The approximation power of this expansion was known as the Strang-Fix theorem. A refine 
result on the estimate of the constant was found first by Sweldens and Piessen [12], then 
by Unser [13) with sharpest estimation. Unser's theorem is stated as the follows. 
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Theorem 5.3 (Unser) If¢ has Riesz basis property and the corresponding h(z) has r 
multiply zeros at z = -1, then 

where 

VVe demonstrate by Table 2 to show that the difference wavelet has better approximation 
ability than the C-D-F wavelet. 

II r I r I A (C-D-F) I .4 (Difference) II r I f I A (C-D-F) I A (Difference) II 
1 1 0.35 0.35 3 3 2.93 0.21 
1 3 .0.24 0.08 3 5 8.57 0.23 
1 5 0.93 0.09 3 7 76.07 0.60 
1 7 8.43 0.24 3 9 1241.3.5 2.69 
1 9 136.57 1.09 4 4 27.84 0.30 
2 2 0.68 0.21 4 8 888.39 1.88 
2 4 1.23 0.12 5 5 612.81 0.58 
2 6 7.66 0.22 5 7 1220.81 1.48 
2 8 95.61 0.76 5 9 12302.14 6.63 

Table 2: Comparison of the approximation power between C-D-F wavelet and difference 
wavelet. A = C ;;,r! denotes for the coefficient appeared in the approximation error estimate. 

5.2 Compression ratio 

The compression ration is measured by the following quantity. Given a sequence of data ufj, 
we first transform expansion uL to ( u0, w0, · · ·, wL-l). Next, we truncate ( u0, w0, · · ·, wL-l) 

by a threshold 8 to yield ( ii,O, w0, · · ·, wL-l). 8 is chosen so that the backward transform, 
say uL, of the trancated wavelet expansion is with E neighborhood of uL in £2 , i.e. 

Let N2(E,L) be the number of nonzero elements in (u0,w0,···,wL-l). We perform four 
tests to compare the compression ratio of the difference wavelet method and the C-DcF 
method. The.four test functions are 

u(x) sin x 

u(x) X[O,l) 
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2S 

'" 

u(x) 

u(x) 

)(: Diflerl'if1C0 o; C-0-F 

for !xi < 1/2 
otherwise. 

Jc Dil1erence o: C-0-F 

~t: Difference o: C-D-F 

40 

20 

In Figure 1, (a)-(d), each marked point specifies an N2(E,L) for a run of a given (r,r). 
The tolerant error E is chosen to be w-14 ' and L = 10. The circle "o" is for the C-D-F 
method, and the cross "x" is for the difference wavelet method. Marked points of the same 
method with the same K = (r + i')/2 are connected. In all tests, we observe that the 
difference wavelet method is about twice more efficient than the C-D-F method. The test 
4 case (the truncated parabola) shows that the difference wavelet does have good zoom-in 
property, even its support is infinite. 

The efficiency of the difference wavelet method is due to its better regularity and with 
only slightly bigger "essential support," as compared with the C-D-F method. 
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