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1. Introduction 

In this paper we consider two models for the approximate description of thermome­
chanical behaviour of viscoelastic materials. Accounting for thermal fields in such a de­
scription is important for all viscoelastic materials ranging from viscous fluids to elastic 
solids. The viscoelastic behaviour typically combines viscous and elastic properties and 
the relative proportion of this combination strongly depends on thermal characteristics 
of the material. Moreover, with changing thermal conditions, it is sometimes difficult to 
decide whether a particular material is a solid or a fluid. The key points in such decisions 
belong to the time of observation and to the choice of constitutive relations which couple 
stresses, deformation gradients, thermal fluxes and temperature. 

Our analysis is based on the nonlocal theory of continuum mechanics which considers 
constitutive variables defined at a point as a function of their values over the whole spatial 
domain of interest rather than as a function at that point only [2]. This approach of 
rational mechanics allows us to derive a general model that is suitable for the description 
of thermomechanical behaviour of materials under a wide range of temperature and 
loading patterns. In our models we allow for the dependency of stresses not only on 
the deformation gradient and temperature but also on the rates of their changes. Such 
considerations put us closer to real situations where the time-dependent coupling between 
temperature and stresses have to include the velocity of the deformation gradient and 
the speed of thermal propagation. Another novelty of our paper is the accounting for 
finite speeds of thermal disturbances. We define the constitutive relationship for thermal 
fluxes using the Cattaneo-Vernotte equation which includes the classical Fourier law as 
a special limiting case (in the limit of zero relaxation time for heat fluxes). In particular 
this approach is critical in modelling short transient states in low temperature regimes. 

During recent years a number of papers were devoted to the development of mathemat­
ical theory of thermomechanical phase transitions (see [19, 27, 12, 13, 1] and references 
therein). The majority of those papers dealt with important theoretical issues of models 
such as well-posedness and the global asymptotic behaviour of solutions. However, only 
a few papers have been devoted to the description of computational results using those 
models (see, for example, [20, 15] and references therein). Almost all developed models 
take into account neither the rate of thermal disturbances nor the relaxation time of 
thermal fluxes. However, the importance of these issues are well known in dynamic hy­
perbolic thermoelasticity where mathematical procedures and computational techniques 
have a longer history compared to that in thermoviscoelasticity [16, 23]. 

In dealing with the three main physical quantities of continuum mechanics (stresses, 
deformation gradients and displacements) it is important to take into account their cou­
pling to the thermal field. This allows us to construct efficient mathematical models 
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for the description of complicated phenomena, such as hysteresis, which are becoming 
increasingly important in a wide range of applications. In this paper we apply the de­
veloped models to the description of shape memory alloy effects in a large bar. It is 
well-known that for many types of shape memory materials the dependency of stresses 
on the deformation gradient upon loading and unloading is significantly different. Ap­
plying a large load at a low temperature, we may get a residual deformation gradient, 
which typically vanishes upon heating. The restoring of the original shape is referred to 
as the shape memory effect. This effect is discussed with two numerical examples. 

The rest of the paper is organized as follows. 

• Section 2 provides the reader with basic preliminaries and notation. 
• The general formulation of the model is given in Section 3. In this section we specify 

the model for internal energy and derive restrictions on the model imposed by the 
second law of thermodynamics. 

• In Section 4 we incorporate the Cattaneo-Vernotte equation for heat conduction 
into our model. 

• Section 5 deals with the Landau-Devonshire model for the free energy function. 
The constitutive relation connecting stresses and the deformation gradient is also 
discussed in this section. 

• In Section 6 we consider a one-dimensional model of thermoviscoelasticity and dis­
cuss the consequences of non-convexity of free energy function. 

• Some numerical results are presented and discussed in Section 7. 
• In Section 8 we use centre manifold theory to derive an approximate mathematical 

model for the description of thermomechanical behaviour of viscoelastic materials. 

2. Preliminaries and Notation 

Assume that an object of interest (a solid, fluid, gas or plasma) occupies the volume 
V in a fixed reference spatial configuration 0 at a certain time t 0 . This object in its 
spatio-temporal configuration will be referred to by the generic name "system". We 
aim to develop an efficient mathematical description of the dynamic thermomechanical 
behaviour of the system. 

Let x = (x1, x2 , x3 ) be material (Lagrangian) coordinates of a material point of the 
system in the configuration D at time t 0 . Then the dynamics of the system is determined 
by the spatial displacements u = ( u 1 , u 2, u3 ) of such material points as a function of the 
reference position, x, and the time of interest, t. The partial derivative of displacement 
with respect to x is identified with the symmetric strain tensor 

[ou(x, t)J 
E=sym ox or . ·( ) _ ! [aui(x, t) ouj(x, t)J 

E,J x, t - 2 a + a , 
Xj Xi 

i,j = 1, 2, 3' (2.1) 

and the time derivative of the function u is identified with the velocity of the system 

au 
V=-

Ot 
( ) aui(x, t) 

or vi x, t = at , i = 1, 2, 3. (2.2) 

In (2.1) we require that det(I +E) > 0 which precludes a possibility of compression of the 
matter to zero and guarantees the local invertibility of x + u(x, t) [22]. Since the time 
derivatives are understood in the Lagrangian sense, x is kept fixed in (2.2). 
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3. Nonlocal Models of The:nnoviscoelastidty 

The equation of motion requires information on forces acting per unit area of the 
matter and, hence, in a natural way, involves the of stresses. The stress is not a 
mere function of of the deformation gradient, as it is often assumed. It also depends on 
temperature of the matter, its rate of change in time and the rate of change of deformation 
gradient E. Let p0 (x, t 0 ) > 0 be the density of the matter (the mass per unit volume) in 
the reference configuration D at time t 0 and p(x, t) be the density of the matter at time 
t vrhere t - t 0 is sufficiently small. Then, in the Lagrangian system of coordinates ( x, t), 
the equation for balance of mass is written in the form [22] 

p(x, t)det(I + E(x, t)) = Po(x, to). (3.1) 

The equation of motion has the following form 

82u 
P at2 = V x · s + F with F = p( f + f) - fjv , (3.2) 

where f is a given body force per unit mass, p and f are nonlocal mass and force residuals 
respectively, and s is the stress tensoL 

In Lagrangian coordinates the equation for energy balance has the form 

(3.3) 

where e is the specific internal energy of the system, v 2 = v · v, h is the heat source 
.h is the nonlocal energy residual (see [2] for conditions on localised residuals) 

and q is the heat flux. The scalar multiplication of v gives 

8v2 /2 • -' - A • A 2 p-8-- v · (v · s) = (F, v) = p(f +f). v- pv . 
t 

Taking into account normalisation, from (3.3) and (3.4) we get 

8e T 
pat-s :(vv)+V·q=g, 

3 

(3.4) 

(3.5) 

where aT : b = ::[ aijbij is the standard notation for the rank 2 tensors a and b and 
i,j=l 

(3.6) 

The right-hand sides of equations (3.2) and (3.5) incorporate into the model nonlocal 
and dissipative effects of thermomechanical waves. As we shall see in the next section, 
under appropriate constitutive relations it is also possible to allow for a relaxation time 
for acceleration of the motion in response to applied gradients such as the deformation 
gradient and the temperature gradient. 
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We assume that there exists a one-to-one entropy function of the system state. We 
denote the density of such a function by rJ, and then the second law of thermodynamics 
is 

Or) A p 
--V·r>c+c __ 
at -"' "' P' 

(3.7) 

where t; is the entropy source density, r is the entropy flux density and t is the nonlocal 
entropy residual. 

The system of equations (3.2), (3.5) combined with inequality (3.7) provides the gen­
eral mathematical model for the description of thermomechanical behaviour of dynamic 
systems. The macroscopic modelling of such systems starts from the choice of constitu­
tive relationships. We assume the existence of a functional \If invariant under a time shift 
and chose this functional in the form of the Helmholtz free energy 

\If= e- 8ry, (3.8) 

where() is the temperature of the system (B > 0, inf(x,tJ 8 = 0). We also assume specific 
forms for the entropy flux and the entropy source density as 

r=q/8, t;=h/8. (3.9) 

Using (3.8) in (3.5) and taking into account that 

v. q = rrv. (q/B) + (q. ve);e, (3. 

from (3.7) and (3.9) we get the nonlocal formulation of the Clausius-Duhem inequality 

( aw ae ) r A q . v e A A 

- -+TJ- +s· :V'v-f·v----(8~-h)>O. at at e - (3.11) 

The latter inequality together with requirements on localisation residuals (see [2] for 
details) impose restrictions on the choice of nonlocal residuals and the functions ry, sand 
q. We assume that the entropy density is given in the form 

(3.12) 

Finally, we have to specify the constitutive relationships that couple stresses, deformation 
gradients, temperature and heat fluxes 

<h(s,E)=O, <P2(q,B)=O, (3.13) 

where it is implicitly assumed that these relations may involve spatial and temporal 
derivatives of the functions. In Section 4 and 5 we specify particular forms for <P 1 and 
<1>2. 
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4. The Cattaneo-Vernotte l\1odel for Heat Conduction 

The choice of the function (!)2 in (3.13) is made using the Cattaneo-Vernotte model 

aq . 
q +To at = -k(e, E)v~, (4.1) 

where To is the dimensionless thermal relaxation time and E) is the thermal conductiv­
ity of the material (typically k = 1 + j3e with the given dimensionless coefficient 13). Such 
a choice is made in order to account for the finite speeds of thermal wave propagation and 
thermally induced stress wave propagation coupled to the deformation gradient [11, 18]. 
In order to incorporate equation ( 4.1) into the general model of thermoviscoelasticity we 
use a consequence of (3.5) 

PTo-- To-[sT: (vv)] + ToV · -I= To-. 
a2e a (aq\ ag 
at2 at at; at 

On the other hand, from ( 4.1) we get 

v · q + To\7 · (aq) = -\7 · (k\78). 
at 

Then from (3.5), (4.2), (4.3) we obtain the energy balance equation in the form 

where 

Be 82 e T a T 
pat +PTa atz - s : (vv)- To at [s : (vv)]- v. (k\78) = G' 

8g 
G = g +To Bt. 

(4.2) 

(4.3) 

( 4.4) 

(4.5) 

During recent years, the interest in such a hyperbolic approach in the analysis of materials 
with memory has increased [6]. 

5. The Landau-Devonshire Model fo:r the Helmholtz Free Energy and the 
Stress-Strain Relation 

Vve start from the consideration of the one-dimensional case assuming the following 
approximation for the free energy of the system 

(5.1) 

where 1/;0 (B) models thermal field contributions, 1/;1 ( 8)1/;2 (f.) models shape-memory con­
tributions and 1/;3 (f.) models mechanical field contributions. These models are chosen in 
the following forms 

[ 
1/Jo(B) = ao- a1Bln8, 1/J1(B) = ~a2e, 

1 2 1 4 1 6 
1/;3 (c) = - 2a281E - 4a4E + 6aGE , 

(5.2) 
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where all ai and 81 are positive constants. The model (5.1)-(5.2), known as the Landau­
Devonshire model for the Helmholtz free energy, covers a number of important practical 
cases. However, it belongs to the class of models which is difficult to investigate compared 
to the Landau-Devonshire-Ginzburg model. In the latter case an additional "smoothing" 
term in (5.1), known as the Ginsburg term "'fUxxxx• allows us to obtain a bound of the 
deformation gradient (strain) using a well established technique [5]. 

Remark 5 .. 1 A number of important characteristics of phase transformations (such as 
the size of hysteresis) may depend on the contributions of the interfacial energies. These 
contributions are often modeled with the Ginsburg correction term. However, the Ginsburg 
coefficient can only be determined in approximate order {28} and in the general case 
this coefficient may not be temperature-independent. Another way to account for the 
contributions of interfacial energies is to to take the free energy in the form [4, 11} 

(5.3) 

where z is the volume fraction of martensite {i.e. the product phase), (1- z) is the volume 
fraction of austenite {i.e. the parent phase), '¢1, '¢2 are the free energies of austenite and 
martensite respectively and '¢3 is the contribution from the interaction effect between 
austenite and martensite. We will not pursue these ideas in this paper. 

Remark 5 .. 2 Some authors include a linear term a 0B into 'l/;0 (8). This term has no 
bearing on the final model and changes only the value of the coefficient of e in the internal 
energy representation (see formula {6.2)), and thus is omitted. 

In the general case for the choice of the function <P1 in (3.13) we allow the dependency 
of the stress on the rate of temperature and the deformation gradient 

where 

aw 
p(B,E)=--a;, 

It is straightforward to deduce 

(5.4) 

, (ae BE) = -(e)aE _( )ae 
/\ 8t'8t J..l 8t+VE at' (5.5) 

(5.6) 

6. One-Dimensional Hyperbolic Approximation of Shape-Memory-Alloy 
Dynamics 

Using the model (5.1) and (5.2), from (3.12) we get 

(6.1) 
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This enables us to find the internal energy of the system as a sum of thermal and me­
chanical fields contributions 

(6.2) 

The substitution of (6.2) into (4.4) leads to the final form of the energy balance equation. 
In particular, assuming symm.etry of the deformation gradient tensor, we get 

e) - v. (kve) = c, (6.3) 

where the meaning of A is 

A(c: fJ) = -po:2 {e/!.!.. +To 3 [ec: oE_J}-
' 3t 3t8t 

( (3E) 2 

\ 3t + 

(6.4) 

Equation (6 .. 3) is solved together with the equation of motion (3.2) with respect to B): 

(6.5) 

where Cv = po:1, k1 = po:2, k2 = po:4, k3 = po:6, f.L = p,u, v =pi/. 
The initial conditions for the model ( 6.5) are chosen in the form 

u(x, 0) = u0 (x), (x); B(x, 0) = B0 (x), 
ae 1 ot (x, 0) =(;I (x), (6.6) 

for given functions u0 , u 1 , (}0 , 191 . There are several distinct choices for boundary condi­
tions to be used in our computational experiments. Mechanical boundary conditions are 
taken in one of the following forms ( L is the length of the structure): 

<~~ "stress-free" boundary conditions: s(O, t) = s(L, t) = 0; 
® "pinned end" boundary conditions: u(O, t) = u(L, t) = 0; 
!® or mixed mechanical boundary condition: t) = 0, u(L, t) = 0. 

When displacements are given on boundaries, a priori bounds on strains are generally 
unknown which complicates the mathematical analysis of the problem. Computational 
results presented in Section 7 deal with this case. Thermal boundary conditions are 
chosen in one of the following form 
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0 "thermal insulation" boundary conditions: q(O, t) = q(L, t) = 0, which reduce to 
ae ae . -a (0, t) =-a (L, t) = 0 for the Fonner law (see (8.2)); 

x x ae ae 
@ "controlled flux" boundary conditions: ax (0, t) = 0, -k ox (L, t) = ,G[B- B0 (t)]; 
<!II or fixed temperature ("uncontrolled energy flow") boundary conditions: e(o, t) = 

B(L, t) = 0. 

In the last case additional assumptions are needed. By using the Leray-Schauder principle 
we have analysed the Cauchy problem for nonlinear hyperbolic model of thermoviscoelas­
'Gicity (6.5). Our procedure makes use of the Lumer-Phillips theorem and the technique 
developed in [5]. We shall address details of this technique elsewhere. 

Our final remark in this section goes to the choice of the function Win the form (5.1) 
and (5.2) that brings major difficulties in the investigation of the model (6.5). Strictly 
speaking, the free energy function strongly depends upon the statistics of the phenomenon 
and has to be derived from a statistical modeL Since van der Waals work on statistical 
mechanics it is a common practice to choose this function as a non-convex function of 
E [14]. When dealing with shape memory alloys, minima of this function are known to 
correspond different phases of the materiaL For example, in the case of three minima, 
we expect one austenitic and two martensitic phase (see, for example, [8, 28, 12]). 
Temperature plays a crucial role in the phase transition. Depending on the value of 
temperature, the material may alternate between a single thermodynamically unstable 
nonmonotone branch and multiple unstable branches. The character of this instability 
depends not only on the deformation gradient and temperature, but also on the rates of 
their changes. 

7. Computational Experiments 

In this section we present some numerical results on the thermal and mechanical control 
of a rod (L = lcm) with a shape-memory-alloy core. The parameters of the Cu-based 
core are taken as follows 

k = 1.9 X 10-2cmgj(ms3 K), p = ll.lgjcm3 , Cv = 29g/(ms2cmK), el = 208K' 

k1 = 480g/(ms2cmK), k2 = 6 x 106g/(ms2cmK), k3 = 4.5 x 108g/(ms2cmK). 

We use model (6.5) with To = 0 = J-L = v = 0, initial conditions (6.6) and "pinned end 
& controlled flux" boundary conditions. This model was straightforwardly reduced to a 
differential-algebraic system in 1r = ( u, v, ef and stress s using second-order accurate 
spatial differences on staggered grids: 

(7.1) 

where D is the diagonal matrix with diag(D) = (1, p, Cv ), f = (!1, h, hf and 

!I= v, (7.2) 

The developed code is robust and much simpler compared to computational procedures 
previously reported in the literature for shape-memory alloys [20, 15, 13]. 
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Experiment 1 (thermal control of phase transformations). In this experiment 
vve set uniform forcing F = 500g/(ms2cm2 ) and vary heating conditions given G = 
3757r (t7r/6)g/(ms3cm). YNe assume that the initial displacements are given in the 
form 

( -O.ll809x, 
o(·· ) _ I 0.11809(x- 1/3), 

u J; -l 0.11809(2/3- ' 
. O.ll809(x- 1), 

o::;xs 
1/6 :::; X :::; 1/2, 
1/2:::; X:::; 5/6 
5/6:::; X:::; 1 

(7.3) 

and take the initial as 200K. Figure 1 (obtained with time step 
7 X l0~4ms and space step 1/24cm) demonstrates the transformation of 2JI!J+ +2M~ 
martensites into an austenite (visible in the region of zero strain and displacements vv-ith 
superposed elastic vibrations as seen most clearly in the field) after sufficient tem­

has reached. Then upon cooling we observe a first order (martensitic) transition 
from the high temperature phase (austenite) to the low temperature phase (martensite). 
Upon the return to the low temperature regime the stable attractor with this applied 
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FIGURE 1. Thermally induced phase transformations. 

X 

X 

thermomechanical forcing is not the original configuration but only two distinct marten­
site phases. The transformation [2M+ + 2M~] ---+ A is accompanied by a decrease in 
temperature whereas the transformation A---+ [M+ + .M~] is accompanied by an increase 
in temperature. 
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Experiment 2 (mechanical control of phase transformations). In this experi­
ment we set G = 0, but vary the mechanical loading according to F = 7000sin3 (nt/2) 
g/ ( cm2ms2). Starting from the austenite configuration ( u0 = 0) at intermediate temper­
ature (}0 = 255K we observe (see Figure 2 where the time step was 8 x 10-4ms and the 
space step was 1/16cm) the transformation A---t [M+ + M-] ---tA---t [M- + M+] ---t A. 
In this experiment we observe the almost immediate transformations of austenite phases 
into two martensites upon the increase/decrease in loading. Note the relatively large 
heating/ cooling associated with the transition into/ out of martensite phase. A similar 
behaviour under different thermomechanical conditions was also observed in [20, 15]. In 
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FIGURE 2. Mechanically induced phase transitions. 
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our code we have also incorporated the Ginsburg term by adding "fUxxxx to h in (7.2). 
With reported values of the Ginsburg coefficient ( 'Y"' 10-10 - 10-12 ) the Ginsburg term 
has a negligible effect on the thermomechanical behaviour of shape-memory alloys in the 
group of experiments described here. Accounting for interfacial energy contributions and 
the influence of mechanical and thermal dissipations on the dynamics of memory material 
require further investigation. 

8. Construction of Approximate Models for Dynamic 
Thermoviscoelasticity Using Centre Manifold Theory 

The model described in Section 6 will provide a good approximation of thermomechan­
ical behaviour of a large shape memory alloy bar (see applications in [3]) only in the case 
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the bar can be modelled a thin rod with a memory alloy core. As an alternative 
to that model, in this section we construct a ne\v model which is derived directly from 
the 3D model for shape memory alloy evolution (see , (6.3)) using centre manifold "' 
techniques (see, for example, [24]). 

We assume that the shear stress in equation (.3.2) is determined by its three compo­
nents, the quasi-conservative component, t.he stress component due to mechanical 
dissipation, sm, and the stress component due to thermal dissipations, st, (the latter is 
assumed to be negligible at this stage) 

with (8.1) 

In the general case the heat flux is determined as the solution of equation ( 4.1). An 
approximation to this solution is provided):ly the following generalised form (see [19] and 
references therein) 

(8.2) 

which we will use with a = 0 when (8.2) turns into the classical Fourier law. 
The internal energy function e is defined from (3.8) by 

(8.3) 

In order to complete the forn:mlation of the problem we specify a model for the free 
energy function \!!. However, in the general 3D case one cannot use the shear strain as 
the order parameter as we usually do for the lD case. One of the first approaches to deal 
with the 3D challenge was the Fremond model. This model uses different expressions for 
free energy functions for different phases (see, for example, [10]). All these expressions 
are essentially of the Landau-Ginsburg-type and contain the term 1 /2Vtr( E) with 1 > 0 
introduced in order to smooth possibly very sharp spatial phase separation. In this 
paper we use a different a,pproach proposed in [9]. This approach generalises the classical 
Landau-Devonshire-Falk theory for shape memory alloys to the 3D case. The free energy 
function, based on the expansion up to sixth order in a single shear strain component [8], 
was extended to the three-dimensional case using the group theoretical approach proposed 
in [21]. In contrast to son'le other models (see, for example, [10]) strain-gradient terms 
are not involved in his expansion. We make use of this expansion and apply the following 
general representation of the free energy function 

00 

\!i(e,B) =?/i(B)+ 2_'1jJ71 (E,e), (8.4) 
n=l 

where independent material parameters of the n-th order for n = 1, 2, ... are determined 
through strain invariants, Tj , as follows 

jn 

1/Jn = L 1/Jjij and ?jJ0 (B) = 1/Jo(B). (8.5) 
j=l 
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The upper limit of the sum in (8.5), jn, is the number of all invariant directions associated 
with a representation of the 48th order cubic symmetry group of the parent phase (see 
details in [9]). In order to adequately describe thermomechanical behaviour of shape­
memory alloys we need to account for 6 terms in the sum of the expansion (8.4). In this 
case we have to determine 32 material parameters that make the application of formulae 
(8.4)-(8.5) fairly complicated. Using physically justified assumptions it is possible tore­
duce the number of required parameters. To achieve this, we make the same assumptions 
as in [9]. They conclude that odd degree invariants can be neglected in the expansion. 
Taking invariants up to the sixth order results in a representation with only 10 material 
constants which may depend on temperature 

3 5 2 

\]! = 1jJ0 ( 8) + L 1/J]IJ + L 1/Jjij + L 1/JJIJ (8.6) 
j=l j=l j=l 

(we do not neglect the contribution of 1jJ0 (8) as was done in [9]). The strain invariants If 
of second, forth and sixth orders of the 48th order cubic symmetry group of the parent 
phase are 

2 1 ( ( ))2 2 1 ( )2 1 ( )2 I 1 = 9 tr f.;j , I 2 = 12 2f.33 - f.n - f22 + 4 En - c:22 , 

T2 - ,2 2 2 I4 - (T2)2 --r4 - 4 4 4 T6 - ('72)3 
L3 - t:23 + E13 + f121 1 - L2 ' .L2 - E23 + E13 + E12' Ll - L2 

(8.7) 

--rn 1 ( )2 ( 1 )2 1 2) 2 Li = 36 2E33 - En - E22 36 (2E33 - en - E22 - 4 (En - E22) 

The ten material constants 1/Jn in (8.6) differ from alloy to alloy and we use coefficients 
derived for Cu-based alloys [9J (units used here are consistent with those used in Section 
7 for our numerical results on the dynamics of shape-memory alloys): 

1/J~ = 5.92 x 106 g/(ms2cm), 1/J~ = (1.41 x 105 + 46(8- 300)) g/(ms2cm), 

= (1.48 x 106 - 940(8- 300)) g/(ms2cm), 1/J0 = -a18ln[(B- 80 )/80] g/(ms2cm), 

1/J{ = ( -1.182 X 108 + 3.55 x 105 (8- 300)) g/(ms2cm), 

1/Ji = 3.13 x 109 g/(ms2cm), 1/Jj = 1.64 x 109 g/(ms2cm), (8.8) 

1/J~ = -5.53 x 108 g/(ms2cm), 1/Jt = -4.27 >< 108 g/(ms2cm), 

1/J~ = 3.35 x 1010 g/(ms2cm), 1/Jg = 3.71 x lOll g/(ms2cm). 

Other material parameters are taken to be the same as those given in Section 7. We 
are interested in the construction of an adequate model for the description of thermo­
mechanical behaviour of thin slabs in shape memory alloy materials. Starting from the 
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3D Falk-Konopka model and using centre manifold techniques (see, for example, [24]) we 
derive systematically an accurate low-dimensional model for the dynamics of the slab. 
The shape memory alloy is assumed to be of very large extent in the x = x1 direction 
compared to its thickness of 2b in they= x2 direction (-b < y <b). For the sake of 
convenience we use a new temperature variable B' = B - 00 where here 00 = 300. For 
simplicity of the analysis we assume zero dissipation, a = J-l = 0, and that there is no 
motion nor dependence in the x3 direction. 

A model for the dynamics of modes which vary slowly along the slab is derived for 
the unforced dynamics, F = 0, G = 0, and when "zero-stress & thermal-insulation" 
boundary conditions are specified on y = ±b. The derivation of boundary conditions in 
the "long" direction x requires a quite delicate analysis [25] and these issues will not be 
address here. We only note that "pinned & insulating ends" boundary conditions may 
be used as a leading approximation. Modelling the long-wavelength, small-wavenumber 
modes along the slab, we neglect all longitudinal variations and look for eigenvalues 
of the cross-slab modes. It can be shown that generally there is a zero eigenvalue of 
multiplicity five and all the rest are pure imaginary (as dissipation has been omitted). 
Thus there exists a sub-centre manifold based upon these five modes (see [26] for an 
existence theorem), called a slow manifold as these five modes evolve slowly. Note that 
being on a sub-centre manifold the models we construct only have a weak assurance of 
asymptotic completeness, see the discussion in [7]. The zero eigenvalue of multiplicity five 
corresponds to longitudinal waves, large-scale bending, and one heat mode. The leading 
order structure of the critical eigenmodes are constant across the slab. Thus letting an 
over bar denote they average, the amplitudes of the critical modes are chosen in the form 

Ui(x, t) = Ui, Vi(x, t) =vi, 8'(x, t) = B'. (8.9) 

The low-dimensional model below is written in terms of these parameters. 
The construction of the low-dimensional model is based upon the ansatz that there 

exists a low-dimensional invariant manifold upon which the amplitudes evolve slowly: 

ui = ui(u, v, 8'), vi = vi(u, v, 8'), e = T(U, v, 8'), 
where 8Ui 8"\li ( ') 88' 

at =Vi, 8t = 9i u, v, 8 , at = ge(U, v, 8'). 

(8.10) 

(8.11) 

This ansatz is substituted into the differential-algebraic equations of 3D thermo-visco­
elasticity (3.2), (3.5) and is solved to some order in the small parameters Ox, E = IIU xll + 
IIVxll and cO= 118'11 with the computer algebra package Reduce. Thus, here we treat the 
strains as small, as measured byE, while permitting asymptotically large displacements 
and velocities. The displacement and temperature fields of the slow manifold, in terms 
of the amplitudes and the scaled transverse coordinate Y = yjb, are approximately 

u1 ~ U1- YbUzx + 0.15(3 Y2 - 1)b2Ulxx, (8.12) 

Uz ~ Uz - (0.9- 3.05e-5 8')YbUlx + 0.15(3 Y2 - 1)b2Uzxx 

- 141 YbU1x 3 + l.OOe-4 (3Y- Y 3 )b3V1x 2 U1x, (8.13) 

e ~ 300 + 8'- 2.43e6 (3Y- Y3)b3 (VlxU2xx + Ulx Vzxx) 
- 25.1(7- 30Y2 + 15 Y 4 )V1x3U1x. (8.14) 
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These expressions have errors 0 ( E 5 + ()~12 + {)512 ) where the notation 0 (EP + o'f: + {)r) 

is used to denote terms involving o~Ea{)c such that ajp + bjq + cjr 2': 1. The mechanical 
and thermal field approximations represented by (8.12)-(8.14) have cross-slab structure. 
In particular, the sideways deformation u2 (which is a nonlinear function of the longitu­
dinal strains) of the shape memory alloy feed back at higher order to contribute to and 
complicate the longitudinal and thermal dynamics. 

The model for the longitudinal dynamics on this slow manifold is 

2.97e6 Ulxx + 8.03e5 b2U1xxxx 

+Ox [(9228'- 0.01458'2)Ulx- (4.28e9 -1.31e78')Ulx 3 + 7.12ell U1x 5 

+ (2820- 8.80 8')b2Vlx 2 U1x + 1.24 b4V1x 4 U1x - 5.42e4 b2V1x 2U1x 3] 

+0(E8 +o~+734). (8.15) 

The first line in the right-hand side of ( 8.15) describes linear dispersive elastic waves along 
the slab, whereas the second line gives the temperature dependent quintic stress-strain 
relation of the shape memory alloy. Since V1x = U1xt, the remaining lines show effects 
upon this stress-strain relation due to rates of change of the strain. 

Note that to this order of truncation there is no coupling to the bending modes of the 
slab which to the same error is simply the beam equation 

av2 2 ( s 4 4) P at = -9.9le5 b U2xxxx + 0 E +ox + {) 

There exists nonlinear coupling between the modes at higher order. 
The corresponding energy equation for the temperature is 

a8' 
at ii8~x + (2.77e5 + 9148'- 9.258'2)UlxVlx 

+ (3.94e9 + 1.26e7 8')VlxUlx 3 - (57.3 + 0.01178')b2Vlx 3 Ulx 

+ l.68e12V1xU1x5 -1.58e6b2Vlx 3 Ulx 3 - 0.0203b4Vlx 5 Ulx 

+ 1.63e4 b2 U1xx V1xx + 9.22e4 b2 U2xx V2xx +a~ [ -8151 b2 U1x V1x J 

(8.16) 

+0(E8 +8~+194). (8.17) 

The first line in (8.17) describes the diffusion of heat generated or absorbed by mechanical 
strains, 8U1x V1x. However, in the thin slab the internal pattern of strains causes a much 
more complicated distribution of heating and cooling as summarised by the remaining 
lines. It is expected that virtually all of these should be retained in order to be con­
sistent with the quintic stress-strain of the longitudinal wave equation. Computational 
experiments with the model derived in this section will be presented elsewhere. 
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