
New Methods in Applied and Computational Mathematics (NEMACOM'98)
Proceedings of the Centre for Mathematics and its Applications

Using Graph Theory to Improve Some Algorithms in
Scientific Computing

Suely Oliveira

Department of Computer Science, The University of Iowa, Iowa City, Iowa 52242, USA

1. Introduction

33

Lately graph theory along with data structures have played a special role in the devel­
opment of algorithms for various problems in computational science. In this short paper
I describe briefly two applications in which the representation of the problem in graphical
language was insightful for the development of numerical method. The first problem (Sec­
tions 1 through 3) is about the tridigonalization of arrowhead matrices. The operations
for transforming a matrix from one form to another are commonly referred to as chasing
steps. In a previous paper [11) we represented the chasing steps as graphical operations,
which allowed us to design a more parallelized algorithm for achieving our tridiagonal
form matrix. The second problem (Sections 4 and 5) involves the use of graphical in­
formation for developing a preconditioner for a subspace eigensolver. The eigensolver is
used here for finding a heuristic for the graph partitioning problem. We use the nature
of the problem solved to design an efficient preconditioner for our eigensolver method.
This work was published in [7).

2. A New Parallel Method for A Chasing Transformation Algorithm

The problem of finding eigenvalues of arrowhead matrices arise in molecular physics
[9) and other applications. One approach for solving these problems is to reduce the
arrowhead matrices to tridiagonal form while still preserving the eigenvalues and symme­
try of the matrix. Then, one can apply the well-known symmetric QR algorithm to the
resulting tridiagonal matrices. Gragg and Harrod [5) developed a chasing algorithm with
complexity 6n2 . Zha [13) proposed a two-way algorithm to reduce the complexity further
to 3n2 . In [11) the author presented a new algorithm, which has the same complexity
as Gragg and Harrod's algorithm, but can be more efficiently implemented on parallel
architectures. This algorithm was developed by using a graphical representation of the
chasing method for matrix transformation. In Sections 2 and 3 of this paper we describe
the old and new methods for transforming arrowhead matrices into tridiagonal form and
show how we were able to design the faster new pipelined algorithm by looking at the
problem graphically.

3. Algorithm

Chasing algorithms are standard ways of implementing the QR algorithm for eigenvalue
computations. These are done by using Givens rotations, which are matrices that equal

34 S. Oliveira

to the identity matrix except for 2 x 2 submartix. Givens rotation have the form:

1

1
c . . . s

-s · · · c
1

1

where c2 + s2 = 1. Givens matrices G are orthogonal (GTG = I), and so algorithms
based on Givens matrices usually have good numerical stability properties. A Givens
operation on a matrix A is the operation of computing A' = GT AG for a suitable Givens
matrix G. Since cr = c-1 AG is a similarity transformation and consequently preserves
the symmetry and the eigenvalues of A.

To compute the eigenvalues of a symmetric matrix, the matrix is first transformed
to tridiagonal form. Then using appropriate Givens operations, a new-zero entry is
introduced into the matrix, outside the tridiagonal band. This additional entry is then
chasing along, and parallel to, the tridiagonal band by applying a sequence of Givens
rotation to the matrix. Chasing algorithms have also been used for transforming matrices,
such as banded and arrowhead matrices, into tridiagonal matrices. However, all these
algorithms so far had used the standard chasing step. In our work we concentrated on
the implementation and performance issues for a new chasing algorithm for transforming
arrowhead matrices to tridiagonal matrices. The existence of our new chasing algorithm
was discovered by analyzing the graph structure of the standard chasing step.

The numerical computations performed in the standard chasing step are,

[t f ~: ~:] = [
1

:'., :] [H H] [1 ~ 7]· (3.1)
Ov'r/'Y' 1 OOry"f 1

The standard chasing step and the new chasing algorithm are illustrated graphically
in Figure 1. The Greek letters at the nodes of the graph indicates the values of the
diagonal entries in matrix while the Greek letters at the edges of the graph correspond
to the off-diagonal entries. The value at node i represents aii, and the value associated
with edge i j is aij = aji· A dark edge between nodes i and j indicates that the Givens
operation is applied to rows and columns i and j. A dashed line between node i and j
indicated that before the Givens rotation, aij # 0, but after the operation. If the edge
between nodes i and j is marked with a cross (x) then it indicates that aii # 0 before the
Given operation, but after a~i = 0 the Givens operation.

If the chasing steps are presented in matrix form, applying new chasing algorithm to
a 6 x 6 matrix will correspond to the following steps shown in Figure 2. In this figure,
"*" indicates a non-zero entry, "+" indicates a newly created non-zero entry, and "0"
indicates an entry that has just been made zero.

Graph Theory to Improve Algorithms in Scientific Computing

(a)

p
(b)

q direction of chase

y

FIGURE 1. Chasing algorithms: (a) standard (b) new

r * * * * * * * * 0
* * +
0 + *

* * * * * 0
* * * +

* * +
0 + + *

* * l
* *

I :
l *

*
*

* *
* * * 0

*
*

* * *
0 * *

*
*

* * l
j ->

*
*

*
*
*
* *
* * *

* *
*

0 + +
*
* *
* * *

*
*

*
0 *
+

* +
*

*
*
*

* * * 0

*

* * *
0 * *

*

*
*
* *
* * *

*

* * *
* *

0 * +

FIGURE 2. Description of new chasing algorithm for a 6 x 6 matrix

35

(3.2)

Similarly to the standard chasing step operations in the new chasing step requires 29
flops plus a square root [11]. From Figure 1 we can also see that the new algorithm can
be thought of as chasing a node along the path, while the standard algorithm chases
an edge along the path. The main feature of the new chasing step is that it allows the
chasings to have less interaction with the main path thus the density of bulges (triangles
on Figure 1)) on the main path is higher. This benefits pipelined parallel algorithms.

36 S. Oliveira

c::::::> direction of chase

FIGURE 3. Simultaneous steps for the new chasing algorithm

direction of chase

c::;l

Processorp

Processor p-1 Processor p+l
~~---------v~--------_J~

overlap non-overlap overlap
region region region

FIGURE 4. Partitioning of data between processors

We use the pipelined parallel algorithm presented in [11], for this new chasing scheme
on O(n) processors with O(n) time complexity for tridiagonalizing an arrowhead matrix.
The basis for the pipeline technique is the ability to chase multiple bulges along a path
simultaneously, as illustrated in Figure 3.

The new chasing step can be performed simultaneously since the only matrix entries
that might be affected by more than one of the parallel chasing steps are those on the
main path and they are not changed by a chasing step (as o/ = a and 'Y' = 'Y), the chasing
steps shown can be done simultaneously.

Parallel algorithms implementations demands attention to problems of overhead in
message passing. This is particularly true for this pipeline algorithm since the natural
message size (six entries per bulge) is quite small. Thus the block version implementation
of the algorithm is used and implemented with a message passing library software (MPI).
The block region version idea for this algorithm is represented in Figure 4.

The sequence of operations on processor Pi is as follows:

Repeat steps 2-5 until there are no bulges to chase:
1. Chase Jl/21 bulges from the left-hand overlap region into the non-overlap region,

and from the non-overlapping region into the right-hand overlap region, in processor

Pi·
2. Send Jl/21 bulges from the right-hand overlap region in the processor Pi to the

left-hand overlap region in processor Pi+l·
3. Chase off Jl/21 bulges from the right hand overlap region passing the right-most

edge of this region, treating the end of this overlap region as the end of the matrix.
The node in the bulges can be ignored once they are chased past the end of the
right-most overlap region, since down stream entries do not affect upstream entries.

Graph Theory to Improve Algorithms in Scientific Computing 37

4. Receive ll/2l bulges from the right-hand overlap region in processor Pi-l into the
left -hand overlap region in processor Pi·

4. Implementation

Three one-dimensional arrays are used to represent an arrowhead matrix. One for row
one (or column one) and two for the tridiagonal entries since the matrix is symmetric.

Processors are connected like an assembly line as shown in Figure 4. The load is
partitioned across the processors as indicated in Figure 5.

j-1

p
0

p
I

k+l

p
0

k-1
k-2 k

FIGURE 5. Parallel Data Distribution in Graph Notation

Each processor will start passing bulges to next the processor when it starts processing
the maximum number of bulges (lk/2l) allowed per processor. The processor will receive
new bulges from the left processor as it passes bulges to the next processor on the right.

There are (I m/2l) overlap bulges (chasing step) between two processors. To keep
data consistency in the overlap region (in circles), the processor Pi+l should pass his
overlap information back to processor Pi· Nevertheless in practice this backward passing
of information can be avoided by making processor Pi chase the bulges to the end of its
own path even though it has sent it to next processor in the beginning of the overlap
area. This extra chasing to the edge of the processor main path ensures consistency of
the information in the overlap region.

We can partition load such that we maximize processor utilization and minimize pro­
cessor communication. To achieve these goals we implemented three versions of the
algorithm to analyze the effectiveness of techniques such as wrap around and message
group passing.

Implementation 1: The matrix is evenly divided by the number of processors be­
ing used. Each processor is responsible for a particular portion of matrix during the
calculation.

Implementation 2: To maximize the processor utilization and to minimize processor
idle time, a wrap around of paths (cyclic filling of the pipe) is used. This way processors
waiting to receive their first bulge will become active earlier.

Implementation 3: To reduce communication time between processors, the informa­
tion from several bulges is combined for passing them to other processors.

Chasing cycle: In a chasing cycle two entries will be chased off to the tridiagonal,
one along the row and the other along the column. This is repeated n - 2 times for a·
matrix of size n x n. Each chasing cycle with have a different number of chasing steps.
The whole process starts with one chasing step for the first chasing cycle and ends with
n- 2 chasing steps for the last one. A global view of the chasing cycle is shown in in Fig.
7. Each processor is responsible for certain columns of matrix. Initially there is only one
processor which is active since there is only one chasing step in the first chasing cycle. In

38 8. Oliveira

the following subsequent chasing cycles the number of chasing steps for each new chasing
cycle considered increases one by one. The processor will become active whenever the
chasing cycle length reaches that processor.

5. Spectral Partitioning and Eigensolvers

Many algorithms have been developed to partition a graph into k parts such that the
number of edges cut is small. This problem arises in many areas including finding fill-in
reducing permutations of sparse matrices and mapping irregular data structures to nodes
of a parallel computer.

The graph Laplacian of graph G is L = D- A, where A is G's adjacency matrix and D
is a diagonal matrix where di,i equals to the degree of vertex Vi of the graph. One property
of Lis that its smallest eigenvalue is 0 and the corresponding eigenvector is (1, 1, ... , 1).
If G is connected, all other eigenvalues are greater than 0. Fiedler [3, 4] explored the
properties of the eigenvector associated with the second smallest eigenvalue. (These are
now known as the "Fiedler vector" and "Fiedler value," respectively.) Spectral methods
partition G based on the Fiedler vector of L. It is well known that for any vector x

xT Lx = "2: (xi- xj) 2 ,

(i,j)EE

holds (see for example Pothen et al. [12]).
Note that there is one term in the sum for each edge in the graph. Consider a vector
x whose construction is based upon a partition of the graph into subgraphs P1 and P2 .

Assign + 1 to xi if vertex vi is in partition P1 and -1 if vi is in partition P2 . Using
this assignment of values to Xi and Xj, if an edge connects two vertices in the same
partition then xi = Xj and the corresponding term in the Dirichlet sum will be 0. The
only non-zero terms in the Dirichlet sum are those corresponding to edges with end
points in separate partitions. Since the Dirichlet sum has one term for each edge and the
only non-zero terms are those corresponding to edges between P1 and P2 , it follows that
xT Lx = 4 *(number of edges between P1 and P2).

An x which minimizes the above expression corresponds to a partition which minimizes
the number of edges between the partitions. The graph partitioning problem has been
transformed into a discrete optimization problem with the goal of

• minimizing ~xT Lx
• such that

1. eTx = Owheree=(1,1, ... ,1f

2. XTX = n.

3. Xi= ±1

Condition (1) stipulates that the number of vertices in each partition be equal, and
condition (2) stipulates that every vertex be assigned to one of the partitions. If we
remove condition (3) the above problem can be solved using Lagrange multipliers.

We seek to minimize f(x) subject to g1(x) = 0 and g2(x) = 0. This involves finding
Lagrange multipliers >.1 and >.2 such that

Graph Theory to Improve Algorithms in Scientific Computing 39

For this discrete optimization problem, f (x) = ~ xT Lx, g1 (x) = eT x, and g2 (x) = ~ (xT x­
n). The solution must satisfy

Lx- = 0.

That is, (L- Premultiplying by eT gives

But eT L = 0, eT x = 0 so J\ 1 = 0. Thus

and x is an eigenvector of L.
The above development has shown how finding a partition of a graph which minimizes

the number of edges cut can be transformed into an eigenvalue problem involving the
graph Laplacian. This is the foundation of spectral methods.

6. Our Graph Based Eigensolver

We used the Davidson algorithm [2, 1, 10] as our eigensolver. The Davidson algorithm is
a subspace algorithm which iteratively builds a sequence of nested subspaces. A Rayleigh­
Ritz process finds a vector in each subspace which approximates the desired eigenvector.
If the Ritz vector is not sufficiently close to an eigenvector then the subspace is augmented

adding a new dimension and the process repeats. The Davidson algorithm allows the
of a preconditioner. V.fe used the structure of the graph in the development

of our Davidson preconditioner. More details about this algorithm is given in [7, 6]. Here
we outline the parts of the algorithm which used graph theory.

6.1. Graphical Preconditioner \Ale developed a new preconditioner to improve
the rate at which the Davidson algorithm converges to the Fiedler vector for that graph.
1Ne will refer to our new preconditioned Davidson Algorithm as PDA. It operates in
a manner similar to mul.tigrid methods for solving discretizations of PDE's [8]. How­
ever, our preconditioner differs from these methods in that we do not rely on obtaining
coarser problems decimating a regular discretization. Our method works with irreg­
ular or unknown d.iscretizations because it uses coarser graphs for the multilevel frame­
work. The rnultilevel representation of the input graph G0 consists of a series of graphs
{ G0 , , ... , Gn} obtained by successive coarsening. Coarsening G,i is accomplished by
finding a maximum matching of its vertices and then combining each pair of matched
vertices to form a new vertex for G;+1 ; unmatched vertices are replicated in Gi+l without
modification. Connectivity of is maintained by connecting two vertices in Gi+1 with
an edge if, and only if, their constituent vertices in G; were connected by an edge. The
coarsening process concludes when a graph Gn is obtained with sufficiently few vertices.
The next subsection describes another aspect of our preconditioned Davidson algorithm
which resourced to graphical ideas [7].

6.2, Locality of Memory References In our method, no assumption was made
about the regularity of the input graphs. Consequently, the manner in which the coarse
graphs are constructed results in data structures with irregular storage in memory. The
irregular storage of data structures has the potential of reducing locality of memory
accesses and thereby reducing the effectiveness of cache memories.

40 S. Oliveira

-·---·····-·····-················
: Lsvel3:

: L~M~I2:

;teve\1:

FIGURE 6. Storage of data structures before reordering

· Level3:

: Level2:

;Level1:

' ;.;::···-···-

' ' --····---~ , ___ _

' ~Level 0: G H :

FIGURE 7. Storage of data structures after reordering

We developed a method called Multilevel Graph Reordering (MGR) which uses the
multilevel representation of G0 to reorder the data structures in memory to improve
locality of reference. Intuitively, we permute the graph Laplacian matrices to increase
the concentration of non-zero elements along the diagonal. This improved locality of
reference during relaxation operations which represented a major portion of the time
required to compute the Fiedler vector.

The relabeling of the graph is accomplished by imposing a tree on the vertices of the
graphs { G0 , G1 , ... , Gn}· This tree was traversed in a depth-first manner. The vertices
were relabeled in the order in which they were visited. After the relabelling was complete
the data structures were rearranged in memory such that the data structures for the
ith vertex are stored at lower memory addresses than the data structures for the i + 1st

vertex.
An example of reordering by MGR is shown in Figures 6 and 7. The vertices are shown

as well as the tree overlain on the vertices. (The edges of the graphs are not shown.) If
a vertex lies to the right of another in the figure, then its data structures occupy higher
memory addresses. Notice that after reordering, the vertices with a common parent are
placed next to each other in memory. This indicates that they are connected by an
edge and will be referenced together during relaxation operations. Relaxation operations
represented a large fraction of the total work done by our algorithms. This reordering
has a positive effect of locality of reference during such operations.

Graph Theory to Improve Algorithms in Scientific Computing 41

The numerical results of [7] showed that our strategies were successful m improving
purely spectral partitioning algorithms.

References

[1] L. BoRGES AND S. OLIVEIRA, A parallel Davidson-type algorithm for several eigenvalues, Journal
of Computational Physics, 144 (1998), pp. 727-748.

[2] E. DAVIDSON, The iterative calculation of a few of the lowest eigenvalues and corresponding eigen­
vectors of large real-symmeh"ic matrices, Journal of Computational Physics, 17 (1975), pp. 87-94.

[3] M. FIEDLER, Algebraic connectivity of graphs, Czechoslovak Mathematical Journal, 23 (1973),
pp. 298-305.

[4] --, A property of eigenvectors of non-negative symmetric matrices and its appl·ication to gmph
theory, Czechoslovak Mathematical Journal, 25 (1975), pp. 619-632.

[5] IN. GRAGG AND V.I. HARRROD, The numerically stable reconstruction of jacobi matrices from
Numer. Math., 44 (1984), pp. 317-335.

[6] M. HOLZRICHTER AND S. OLIVEIRA, New graph partitioning algorithms, (1998). The University
of Iowa TR-120.

[7] M. HOLZR!CHTER AND S. OLIVEIRA, A graph based Davidson algorithm for the graph partitioning
pToblem, International Journal of Foundations of Computer Science, 10 (1999), pp. 225-246.

[8] S. McCORMICK, Multilevel Adaptive Methods for Partial Differential Eq·uations, Society for Indus­
trial and Applied Mathematics, Philadelphia, Pennsylvania, 1989.

[9] D. O'LEARY AND G. STEWART, Computing the eigenvalues and eigenvectors of symmetric arr"Ow­
head matrices, J. Comp. Phys., 90 (1990), pp. 497-505.

[10] S. OLIVEIRA, A convergence proof of an iterative subspace method for eigenvalues problem, in
Foundations of Computational Mathematics Selected Papers, F. Cucker and M. Shub, eds., Springer,
January 1997, pp. 316-325.

[11 J --, A new parallel chasing algorithm for transforming arrowhead matrices to tridiagonal form,
l\l[athematics of Computation, 67 (1998), pp. 221-235.

[12] A. POTHEN, H. D. SIMON, AND K. LIOU, Partitioning sparse matrices with eigenvectors of graphs,
SIAM .J. Matrix Ana.!. Appl., 11 (1990), pp. 430-452. Sparse matrices (Gleneden Beach, OR, 1989).
H. ZHA, A two-way chasing schente fm' reducing an arrowhead matrix to tridiagonal form, J. Numer.
Lin. Alg. Appl., l (1992), pp. 49-57.

42

