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Lately graph theory along with data structures have played a special role in the devel­
opment of algorithms for various problems in computational science. In this short paper 
I describe briefly two applications in which the representation of the problem in graphical 
language was insightful for the development of numerical method. The first problem (Sec­
tions 1 through 3) is about the tridigonalization of arrowhead matrices. The operations 
for transforming a matrix from one form to another are commonly referred to as chasing 
steps. In a previous paper [11) we represented the chasing steps as graphical operations, 
which allowed us to design a more parallelized algorithm for achieving our tridiagonal 
form matrix. The second problem (Sections 4 and 5) involves the use of graphical in­
formation for developing a preconditioner for a subspace eigensolver. The eigensolver is 
used here for finding a heuristic for the graph partitioning problem. We use the nature 
of the problem solved to design an efficient preconditioner for our eigensolver method. 
This work was published in [7). 

2. A New Parallel Method for A Chasing Transformation Algorithm 

The problem of finding eigenvalues of arrowhead matrices arise in molecular physics 
[9) and other applications. One approach for solving these problems is to reduce the 
arrowhead matrices to tridiagonal form while still preserving the eigenvalues and symme­
try of the matrix. Then, one can apply the well-known symmetric QR algorithm to the 
resulting tridiagonal matrices. Gragg and Harrod [5) developed a chasing algorithm with 
complexity 6n2 . Zha [13) proposed a two-way algorithm to reduce the complexity further 
to 3n2 . In [11) the author presented a new algorithm, which has the same complexity 
as Gragg and Harrod's algorithm, but can be more efficiently implemented on parallel 
architectures. This algorithm was developed by using a graphical representation of the 
chasing method for matrix transformation. In Sections 2 and 3 of this paper we describe 
the old and new methods for transforming arrowhead matrices into tridiagonal form and 
show how we were able to design the faster new pipelined algorithm by looking at the 
problem graphically. 

3. Algorithm 

Chasing algorithms are standard ways of implementing the QR algorithm for eigenvalue 
computations. These are done by using Givens rotations, which are matrices that equal 
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to the identity matrix except for 2 x 2 submartix. Givens rotation have the form: 
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where c2 + s2 = 1. Givens matrices G are orthogonal (GTG = I), and so algorithms 
based on Givens matrices usually have good numerical stability properties. A Givens 
operation on a matrix A is the operation of computing A' = GT AG for a suitable Givens 
matrix G. Since cr = c-1 AG is a similarity transformation and consequently preserves 
the symmetry and the eigenvalues of A. 

To compute the eigenvalues of a symmetric matrix, the matrix is first transformed 
to tridiagonal form. Then using appropriate Givens operations, a new-zero entry is 
introduced into the matrix, outside the tridiagonal band. This additional entry is then 
chasing along, and parallel to, the tridiagonal band by applying a sequence of Givens 
rotation to the matrix. Chasing algorithms have also been used for transforming matrices, 
such as banded and arrowhead matrices, into tridiagonal matrices. However, all these 
algorithms so far had used the standard chasing step. In our work we concentrated on 
the implementation and performance issues for a new chasing algorithm for transforming 
arrowhead matrices to tridiagonal matrices. The existence of our new chasing algorithm 
was discovered by analyzing the graph structure of the standard chasing step. 

The numerical computations performed in the standard chasing step are, 
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The standard chasing step and the new chasing algorithm are illustrated graphically 
in Figure 1. The Greek letters at the nodes of the graph indicates the values of the 
diagonal entries in matrix while the Greek letters at the edges of the graph correspond 
to the off-diagonal entries. The value at node i represents aii, and the value associated 
with edge i j is aij = aji· A dark edge between nodes i and j indicates that the Givens 
operation is applied to rows and columns i and j. A dashed line between node i and j 
indicated that before the Givens rotation, aij # 0, but after the operation. If the edge 
between nodes i and j is marked with a cross (x) then it indicates that aii # 0 before the 
Given operation, but after a~i = 0 the Givens operation. 

If the chasing steps are presented in matrix form, applying new chasing algorithm to 
a 6 x 6 matrix will correspond to the following steps shown in Figure 2. In this figure, 
"*" indicates a non-zero entry, "+" indicates a newly created non-zero entry, and "0" 
indicates an entry that has just been made zero. 
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FIGURE 1. Chasing algorithms: (a) standard (b) new 
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FIGURE 2. Description of new chasing algorithm for a 6 x 6 matrix 
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(3.2) 

Similarly to the standard chasing step operations in the new chasing step requires 29 
flops plus a square root [11]. From Figure 1 we can also see that the new algorithm can 
be thought of as chasing a node along the path, while the standard algorithm chases 
an edge along the path. The main feature of the new chasing step is that it allows the 
chasings to have less interaction with the main path thus the density of bulges (triangles 
on Figure 1)) on the main path is higher. This benefits pipelined parallel algorithms. 
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FIGURE 3. Simultaneous steps for the new chasing algorithm 

direction of chase 

c::;l 

Processorp 

Processor p-1 Processor p+l 
~~---------v~--------_J~ 

overlap non-overlap overlap 
region region region 

FIGURE 4. Partitioning of data between processors 

We use the pipelined parallel algorithm presented in [11], for this new chasing scheme 
on O(n) processors with O(n) time complexity for tridiagonalizing an arrowhead matrix. 
The basis for the pipeline technique is the ability to chase multiple bulges along a path 
simultaneously, as illustrated in Figure 3. 

The new chasing step can be performed simultaneously since the only matrix entries 
that might be affected by more than one of the parallel chasing steps are those on the 
main path and they are not changed by a chasing step (as o/ = a and 'Y' = 'Y), the chasing 
steps shown can be done simultaneously. 

Parallel algorithms implementations demands attention to problems of overhead in 
message passing. This is particularly true for this pipeline algorithm since the natural 
message size (six entries per bulge) is quite small. Thus the block version implementation 
of the algorithm is used and implemented with a message passing library software (MPI). 
The block region version idea for this algorithm is represented in Figure 4. 

The sequence of operations on processor Pi is as follows: 

Repeat steps 2-5 until there are no bulges to chase: 
1. Chase Jl/21 bulges from the left-hand overlap region into the non-overlap region, 

and from the non-overlapping region into the right-hand overlap region, in processor 

Pi· 
2. Send Jl/21 bulges from the right-hand overlap region in the processor Pi to the 

left-hand overlap region in processor Pi+l· 
3. Chase off Jl/21 bulges from the right hand overlap region passing the right-most 

edge of this region, treating the end of this overlap region as the end of the matrix. 
The node in the bulges can be ignored once they are chased past the end of the 
right-most overlap region, since down stream entries do not affect upstream entries. 
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4. Receive ll/2l bulges from the right-hand overlap region in processor Pi-l into the 
left -hand overlap region in processor Pi· 

4. Implementation 

Three one-dimensional arrays are used to represent an arrowhead matrix. One for row 
one (or column one) and two for the tridiagonal entries since the matrix is symmetric. 

Processors are connected like an assembly line as shown in Figure 4. The load is 
partitioned across the processors as indicated in Figure 5. 
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FIGURE 5. Parallel Data Distribution in Graph Notation 

Each processor will start passing bulges to next the processor when it starts processing 
the maximum number of bulges (lk/2l) allowed per processor. The processor will receive 
new bulges from the left processor as it passes bulges to the next processor on the right. 

There are (I m/2l) overlap bulges (chasing step) between two processors. To keep 
data consistency in the overlap region (in circles), the processor Pi+l should pass his 
overlap information back to processor Pi· Nevertheless in practice this backward passing 
of information can be avoided by making processor Pi chase the bulges to the end of its 
own path even though it has sent it to next processor in the beginning of the overlap 
area. This extra chasing to the edge of the processor main path ensures consistency of 
the information in the overlap region. 

We can partition load such that we maximize processor utilization and minimize pro­
cessor communication. To achieve these goals we implemented three versions of the 
algorithm to analyze the effectiveness of techniques such as wrap around and message 
group passing. 

Implementation 1: The matrix is evenly divided by the number of processors be­
ing used. Each processor is responsible for a particular portion of matrix during the 
calculation. 

Implementation 2: To maximize the processor utilization and to minimize processor 
idle time, a wrap around of paths (cyclic filling of the pipe) is used. This way processors 
waiting to receive their first bulge will become active earlier. 

Implementation 3: To reduce communication time between processors, the informa­
tion from several bulges is combined for passing them to other processors. 

Chasing cycle: In a chasing cycle two entries will be chased off to the tridiagonal, 
one along the row and the other along the column. This is repeated n - 2 times for a· 
matrix of size n x n. Each chasing cycle with have a different number of chasing steps. 
The whole process starts with one chasing step for the first chasing cycle and ends with 
n- 2 chasing steps for the last one. A global view of the chasing cycle is shown in in Fig. 
7. Each processor is responsible for certain columns of matrix. Initially there is only one 
processor which is active since there is only one chasing step in the first chasing cycle. In 
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the following subsequent chasing cycles the number of chasing steps for each new chasing 
cycle considered increases one by one. The processor will become active whenever the 
chasing cycle length reaches that processor. 

5. Spectral Partitioning and Eigensolvers 

Many algorithms have been developed to partition a graph into k parts such that the 
number of edges cut is small. This problem arises in many areas including finding fill-in 
reducing permutations of sparse matrices and mapping irregular data structures to nodes 
of a parallel computer. 

The graph Laplacian of graph G is L = D- A, where A is G's adjacency matrix and D 
is a diagonal matrix where di,i equals to the degree of vertex Vi of the graph. One property 
of Lis that its smallest eigenvalue is 0 and the corresponding eigenvector is (1, 1, ... , 1). 
If G is connected, all other eigenvalues are greater than 0. Fiedler [3, 4] explored the 
properties of the eigenvector associated with the second smallest eigenvalue. (These are 
now known as the "Fiedler vector" and "Fiedler value," respectively.) Spectral methods 
partition G based on the Fiedler vector of L. It is well known that for any vector x 

xT Lx = "2: (xi- xj) 2 , 

(i,j)EE 

holds (see for example Pothen et al. [12]). 
Note that there is one term in the sum for each edge in the graph. Consider a vector 
x whose construction is based upon a partition of the graph into subgraphs P1 and P2 . 

Assign + 1 to xi if vertex vi is in partition P1 and -1 if vi is in partition P2 . Using 
this assignment of values to Xi and Xj, if an edge connects two vertices in the same 
partition then xi = Xj and the corresponding term in the Dirichlet sum will be 0. The 
only non-zero terms in the Dirichlet sum are those corresponding to edges with end 
points in separate partitions. Since the Dirichlet sum has one term for each edge and the 
only non-zero terms are those corresponding to edges between P1 and P2 , it follows that 
xT Lx = 4 *(number of edges between P1 and P2). 

An x which minimizes the above expression corresponds to a partition which minimizes 
the number of edges between the partitions. The graph partitioning problem has been 
transformed into a discrete optimization problem with the goal of 

• minimizing ~xT Lx 
• such that 

1. eTx = Owheree=(1,1, ... ,1f 

2. XTX = n. 

3. Xi= ±1 

Condition (1) stipulates that the number of vertices in each partition be equal, and 
condition (2) stipulates that every vertex be assigned to one of the partitions. If we 
remove condition (3) the above problem can be solved using Lagrange multipliers. 

We seek to minimize f(x) subject to g1(x) = 0 and g2(x) = 0. This involves finding 
Lagrange multipliers >.1 and >.2 such that 
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For this discrete optimization problem, f ( x) = ~ xT Lx, g1 ( x) = eT x, and g2 ( x) = ~ ( xT x­
n). The solution must satisfy 

Lx- = 0. 

That is, (L- Premultiplying by eT gives 

But eT L = 0, eT x = 0 so J\ 1 = 0. Thus 

and x is an eigenvector of L. 
The above development has shown how finding a partition of a graph which minimizes 

the number of edges cut can be transformed into an eigenvalue problem involving the 
graph Laplacian. This is the foundation of spectral methods. 

6. Our Graph Based Eigensolver 

We used the Davidson algorithm [2, 1, 10] as our eigensolver. The Davidson algorithm is 
a subspace algorithm which iteratively builds a sequence of nested subspaces. A Rayleigh­
Ritz process finds a vector in each subspace which approximates the desired eigenvector. 
If the Ritz vector is not sufficiently close to an eigenvector then the subspace is augmented 

adding a new dimension and the process repeats. The Davidson algorithm allows the 
of a preconditioner. V.fe used the structure of the graph in the development 

of our Davidson preconditioner. More details about this algorithm is given in [7, 6]. Here 
we outline the parts of the algorithm which used graph theory. 

6.1. Graphical Preconditioner \Ale developed a new preconditioner to improve 
the rate at which the Davidson algorithm converges to the Fiedler vector for that graph. 
1Ne will refer to our new preconditioned Davidson Algorithm as PDA. It operates in 
a manner similar to mul.tigrid methods for solving discretizations of PDE's [8]. How­
ever, our preconditioner differs from these methods in that we do not rely on obtaining 
coarser problems decimating a regular discretization. Our method works with irreg­
ular or unknown d.iscretizations because it uses coarser graphs for the multilevel frame­
work. The rnultilevel representation of the input graph G0 consists of a series of graphs 
{ G0 , , ... , Gn} obtained by successive coarsening. Coarsening G,i is accomplished by 
finding a maximum matching of its vertices and then combining each pair of matched 
vertices to form a new vertex for G;+1 ; unmatched vertices are replicated in Gi+l without 
modification. Connectivity of is maintained by connecting two vertices in Gi+1 with 
an edge if, and only if, their constituent vertices in G; were connected by an edge. The 
coarsening process concludes when a graph Gn is obtained with sufficiently few vertices. 
The next subsection describes another aspect of our preconditioned Davidson algorithm 
which resourced to graphical ideas [7]. 

6.2, Locality of Memory References In our method, no assumption was made 
about the regularity of the input graphs. Consequently, the manner in which the coarse 
graphs are constructed results in data structures with irregular storage in memory. The 
irregular storage of data structures has the potential of reducing locality of memory 
accesses and thereby reducing the effectiveness of cache memories. 
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FIGURE 7. Storage of data structures after reordering 

We developed a method called Multilevel Graph Reordering (MGR) which uses the 
multilevel representation of G0 to reorder the data structures in memory to improve 
locality of reference. Intuitively, we permute the graph Laplacian matrices to increase 
the concentration of non-zero elements along the diagonal. This improved locality of 
reference during relaxation operations which represented a major portion of the time 
required to compute the Fiedler vector. 

The relabeling of the graph is accomplished by imposing a tree on the vertices of the 
graphs { G0 , G1 , ... , Gn}· This tree was traversed in a depth-first manner. The vertices 
were relabeled in the order in which they were visited. After the relabelling was complete 
the data structures were rearranged in memory such that the data structures for the 
ith vertex are stored at lower memory addresses than the data structures for the i + 1st 

vertex. 
An example of reordering by MGR is shown in Figures 6 and 7. The vertices are shown 

as well as the tree overlain on the vertices. (The edges of the graphs are not shown.) If 
a vertex lies to the right of another in the figure, then its data structures occupy higher 
memory addresses. Notice that after reordering, the vertices with a common parent are 
placed next to each other in memory. This indicates that they are connected by an 
edge and will be referenced together during relaxation operations. Relaxation operations 
represented a large fraction of the total work done by our algorithms. This reordering 
has a positive effect of locality of reference during such operations. 
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The numerical results of [7] showed that our strategies were successful m improving 
purely spectral partitioning algorithms. 
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