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Abstract. The classical technique of stepwise regression provides a paridigm 
for variable selection in the linear least squares problem. Trust region meth
ods which control the size of the correction to the current solution estimate 
prove attractive for nonlinear least squares problems because of their good 
global convergence behaviour. Recently there has been a convergence of these 
techniques with the realisation that the l1 trust region method also provides a 
form of variable selection. These results are reviewed here, and computational 
methods discussed. 
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1. Introduction 

The basic linear least squares problem is 

. 1 2 
mm -llrll 2 ; r = Ax- b, 

X 2 

where A: RP ----+ Rn, and it is assumed that p :S n, and rank(A) = p. 
Two major application classes are considered: 

(1.1) 

Qj Variable selection. The computation here is essentially exploratory in nature. The 
idea is to choose the columns of the design matrix A from a potentially larger class 
of competitors in such a way as to provide an economical model for the vector of 
observations b. 

<D Trust region computation. Here the aim is to estimate a vector of parameters x by 
minimizing a nonlinear sum of squares 

(1.2) 

The norm constrained trust region method seeks a correction hk to the current estimate 
xk by solving the linear subproblem 

(LSP) 

Here the parameter ,., is a tuning parameter which is intended to provide a balance 
between good global convergence behaviour and rate of convergence by ensuring a satis
factory reduction in F(x) at each step. 
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For our purposes, the connection between these problems is provided by the h trust 
region method which has the property that solutions for an increasing sequence of values 
of"' contain, in general, an increasing number of variables. Thus the problem has a mech
anism for variable selection. Further, the multiplier associated with the norm constraint 
decreases as "' increases, and the solution corresponding to f.l = 0 is the least squares 
solution for the currently selected variables. 

Important questions concern the scaling of the variables in problem (1.1) and problem 
(LSP). The sum of squares of residuals is invariant under column rescaling, but this is 
not true in general of the riorm constraint. Rescaling with weights wi leads to a new 
norm given by 

where D(.) is a diagonal matrix. One important choice corresponds to Wj = 1/ I\A*jll 2where 
A*j is the j'th column of A. An important instance of this scaling corresponds to one in 
which the columns of A are scaled to have unit length in a preprocessing step. In many 
cases this step can be justified as establishing a basis for comparing the variables. Also, 
in the least squares regression case, it is usual for the design to have a column of 1's (an 
intercept term): 

A=(e A_]. 

In this case the necessary conditions for a minimum are 

eTr = 0, A=:r = 0. (1.3) 

If the optimal solution to (1.1) is partitioned to highlight the intercept term then 

where the least squares estimates are denoted by hats, and b = eTbjn. It follows from 
(1.3) that 

Thus x 1 is optimal for the reduced problem corresponding to the substitutions 

(1.4) 

This reduction is called centring the variables. 
The plan of the paper is as follows. First the basic results in stepwise regression are 

summarised. A general trust region algorithm for which the linear subproblem is a norm 
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constrained least squares problem is formulated in the next section, and a convergence 
proof provided for the nonlinear least squares problem. A novel feature is the form of 
the acceptance test for the trust region bound. Further insight into the structure of the 
algorithm is provided by considering the asymptotics for small "'· The results here show 
selection in the l1 case, and an interesting robustness in the l00 case. The necessary con
ditions for the l1 and l00 problems show a duality about a common structure which can 
be exploited in computation. Here, as "' increases, the set of active variables in the l1 case 
tends to increase, while the set of extrema in the l00 case tends to decrease. An attempt is 
made in section 6 to develop a general form of algorithm for the case where the unit ball 
is polyhedral. This provides insight into the relation between the necessary conditions in 
the h case and the variable selection property. It is noted that a homotopy approach can 
provide a complete solution to the h constrained problem, and that an implementation 
based on a modified Gram-Schmidt tableau can have advantages for all methods consid
ered. This material reports briefly on results given in [9]. Numerical results are reported 
in the final section. These make an interesting point regarding the solution sets that are 
reachable by the l1 selection technique, and the form of normalisation of the variables 
used. 

2. Stepwise regression 

Step,.vise regression has advantages as an exploratory tool both in simplicity of concept, 
and ease of access to software. As a consequence it has become a distinctly popular 
technique in exploratory data analysis. It makes the working assumption that an effective 
basis can be built up by adding columns to the design one at a time with the selection 
being made to maximise the improvement in the representation of the data vector. In 
addition, after each new variable is selected, the contributions of each of the current 
basis set is reviewed to ensure it remains significant. The process is heuristic in nature 
- there is no requirement for the best set of p + 1 variables to contain the best set of p 
variables or to be reachable from it by the allowed strategy of additions and deletions. 
Nor indeed is there any guarantee that the process will not cycle for reasonable choices 
of the significance levels for acceptance and rejection. A full discussion of the statistical 
implications of the technique is given in [4]. 

It is convenient to begin by assuming that a partial basis has been established, and 
that the current step of the process sets out to augment this. To itemize this subset 
introduce an index set 

a= { a(l), a(2), · · · , a(k)} 

pointing to the currently selected set of columns and let these be denoted by A". It will 
be useful to define the orthogonal factorization of A" by 

Then the least squares problem augmented by the j'th column has the design 
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The reduction in the sum of squares obtained by adding in the j 'th column to the basis 
is given by 

This proves a convenient way to compute variable addition as the terms involved are easy 
to update. Variable deletion also uses this identity, but reverses the process by considering 
the increases in the sum of squares corresponding to removing variables j E O". It is done 
more conveniently using an equivalent form based on the identity 

(brQ2QIA*i) 2 _ x} 

A:;jQ2QIA*i - s1e](A~Acr)- 1 ej 
(2.1) 

where 

and the degrees of freedom calculation assumes that the intercept term has been removed 
from the design and the remaining variables centred (1.4). The connection with a signif
icance test is provided by (2.1) as the right hand side can be identified formally with an 
F statistic. 

3. The norm constrained trust region algorithm 

The problem that the trust region algorithm sets out to solve is to find x* such that 

x* = argminF(x) 
X 

where F(x) is given (1.2), and where the problem data is assumed to be at least twice 
continuously differentiable. Let r", h" solve the linear subproblem (LSP) 

min ~ [[r[[;; r = f(x) + Ah 
lihii:S~< 2 

where A= Vf(x). It is assumed that A has full rank p, and this is a sufficient condition 
for (LSP) to have a unique solution. The essential step is encapsulated in the following 
result. 

Lemma 1 Let A have full rank p, and let v E 8 [[h[[. Then the (p + 1) x (p + 1) matrix 

has full rank. 

Proof. If the matrix is singular then there exists a vector z such that 
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This gives 

ZTV = 0, 

ZT AT A- VT = 0, 

which implies zT ATAz = 0, and this gives a contradiction. II 
The basic trust region algorithm considered is as follows: 

1. Select r;, > 0, 0 < CJ < .5, 0 < ex < 1, f3 > 1. 
2. Set step = 0. 
3. Solve (LSP) for r"', h"', set step= step+ L 
4. If 

then x +- x + h", 
else t<; = ex * r;,, 

repeat 3. 
5. If step = 1 then r;, = f3 * r;,. 
6. If not converged repeat 2. 

1 
--(J< 2 -

F(x) - F(x + h,J 
.5 (llf(x)ll;- llr"'ll;) 

47 

(3.1) 

Discussion of the strong convergence results associated with variants of this algorithm 
go back to More [5] and Osborne [6] who discuss rather different aspects of the case of 
a Euclidean norm constraint. Discussions that apply to more general classes of problem 
have been given Fletcher [3] who considers general (but smooth enough) unconstrained 
problems, and Osborne [7] who considers a convex composite objective subject to norm 
constraints which include l2 and l00 but not h norms. Here the main result considers the 
nonlinear least squares problem subject to a generic norm constraint. The direct attack 
on this general form of constraint would appear to be a new contribution. 

The preliminary results required are as follows. 
(i) Provided A has full (column) rank then problem (LSP) involves the minimization 
of a strictly convex objective function subject to a convex constraint. It has a unique 
solution, and the necessary conditions have the form 

T r"A = -J-L><V, 

/-LK. ~ 0, f_Lt< (r;, -llh/<11) = 0, 

v E 8llh"ll, llvll* = 1, 

(3.2) 

where f-L~-< is the multiplier, and 11.11* denotes the norm dual to the constraint norm. If 
v is known then (LSP) can be solved directly. Algorithms for this problem develop the 
correct v iteratively. Two useful results follow from (3.2) 

r~Ah" = -J-L~< lih~<ll = -,Ut<'"'' 

J-L, = llr~ All* 
(3.3) 
(3.4) 

Note that if hLS is the solution of the unconstrained least squares problem (1.1), and if 
llhLsll :S r;,, then J-Lx; = 0, and h" = hL8 



48 M.R. Osborne 

(ii) Selectively squaring (LSP) gives 

iir"li;- 2r~Ah" + h~AT Ah" = iifii;, 
and 

Thus 

(3.5) 

and 

(3.6) 

(3.7) 

This result shows that (LSP) generates a direction of descent for minimizing F(x). It 
follows from (3.7) that 

(3.8) 

(iii) It follows from (3.5) that 

A consequence is an order estimate as "- -7 0, 

(3.9) 

at points for which f.L~< > 0 as "- -7 0. 
(iv) It is important to have an estimate of p,"' at points x for which \7 F(x) -=f 0. From 

tt"' = llr~AII*, 
= IIATf +AT Ah"ll*' 
-j>llvF(x)ll*, "- -7 0, (3.10) 

as llh"ll = "-for all "- < llhLsll· This is actually an upper bound for J.L"' because, from 
(3.6), 

J.L"'::; jrT All::lll' "'::; llhLsll, 

::; lifT All*' 
where the generalised Cauchy inequality is used in the last step. 
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(v) The observation that K.hLs / llh£3 11 is feasible for the constrained least squares problem 
permits comparison between the constrained and least squares solutions. Let 

Then 

hLS 
s = f + KA llhLSii 

= f + AhLs- ( 1- llh:sll) AhLs 

= rLS- (1- llh:sll) AhLs. 

llr"ll;:::; llsll; = llr£8 11~ + (1- llh:sll) 2 
(hLs)T AT AhLs, 

= llrLsll~ + (1- llh:sll) 2 (ilfll~ -llrLsll~) · 
It follows that if K < llhLsll (otherwise the problems have identical solutions) then 

where e = ( 1 - llh1s 11 ) 
2

. Rearrangement gives 

llfll; -llrLsll~ 2 llfll~- llr,J; 2 (1- B) (llfll; -llrLsll~). (3.11) 

Note that() --7 0 asK --7 llh£3 11· 

Theorem 2 At each point x at which V F(x) =1- 0, and IIV F(x) II is bounded it is possible 
to find K > 0 such that the solution of (LSP) satisfies (3.1). It follows that the sequence 
of values { F(xj)} generated by the algor-ithm conver-ges. The bounded limit points of the 
cor-responding sequence { Xj} are stationary points of F(x) pmvided limj~= infj { Kj} > 0. 
If this condition is not satisfied then the sequence {IIV2 F(xj)ll} is unbounded at finite 
limit points which are not stationary points of F(x). 

Proof. Taylor expansion plus an application of (3. 7) gives 

1 
F(x + h,o)- F(x) = V F(x)h" + :2h~V2 F(x)h" + o(K2), 

= -t (llfll;- llr"ll;) + t t f;h~\72 fi(x)h" + o(K2). 

i=l 

As the first term on the right hand side is 0 (,.,;) by (3.9), while the second is 0 (;;;2 ) as 
K -> 0, it follows that (3.1) can be satisfied by taking K small enough. Consequences are 
that 
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~~~> The sequence {F(x)} is decreasing. As the sequence is bounded below by assump
tion it is convergent. 

• The sequence { [[f[[;- [[r"'[[;} --+ 0. 

If liminf {K:} > 0 then an application of (3.11) shows that {llf[[; -llr£5 11~}--+ 0. This 

suffices to establish that iimit points are stationary points of F(x) by the Osborne-Watson 
Lemma [10]. 

The final point that the sequence {[[\72F(xj)[[} is unbounded if limj__,00 infj {K:j} = 0 
is readily established. For this limit to occur there must be an infinite sequence of steps 
for which (3.1) does not hold so that 

F(x + h"') _ F(x) [\7 F(x)h"'[ -I ~h~\72 F(x)h"' I 
c > -.5 (llf[[;- llr"'[l;) = .5 (llfll;- llr"'ll;) 

where c = 1/2- CJ > 0, and the bar denotes a mean value. Using (3.6) and rearranging 
gives 

It follows that 

llv2F(x)ll > (2- c) (llfll; -11;"'11;)- 2J1K:' 
2 llh/<112 

(2- c) {h~AT Ah"' + 2f..LK:} - 2f..LK: 

> llhl<ll; ' 
> 2 (1- c) h~AT Ah"'/ JlK: = 0 (1/ K:)' 

llh/<112 
provided f..l is bounded away from 0. This condition is satisfied at finite limit points which 
are not stationary points ofF by (3.10). !Ill 

Remark 3 This result gives an "almost global" convergence result ifF is known to be 
smooth enough. For example, it works for exponential families, but not for approximation 
by rationals. A global resnlt is not possible in general because of a lack of compactness 
resnlts associated with nonlinear families. 

4. Trust region properties for small K: 

Trust region properties for small values of the constraint bound K: follow from the 
multiplier conditions (3.2). In particular, It follows from 

(f + Ahf A= -pNT, 

and [[h[l :::::; K:, that for points at which V F "/:- 0 the subgradient vector is given by 

1 \7FT 
v '== -p,\!Fr '== -[[VFII*. 

As v has to satisfy vrh = [[hll, llvl[* = 1, knowledge of v permits deductions to be made 
about h. 
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Example 4 Because the l2 norm is self dual it follows that 

h 
v = llhll2 ~ 

It follows that llhll becomes parallel to the steepest descent direction as K, --+ 0. This 
recovers a classical result. 

Example 5 In the l00 norm v is attained at the points of extremal deviation of h, and 

p 

llvll* = L lvil = 1. 
i=l 

Thus, as K, --+ 0, 

An interesting feature of this result is that h is invariant with respect to positive diagonal 
scaling of \1 F. This translates into invariance with respect to column scaling of A, and 
this translates directly to invariance with respect to positive diagonal transformation of 
x. Because in general \1 Fi -=/= 0 this implies all components of h are nonzero as K, --+ 0. 
This is not a situation that favours variable selection. 

Example 6 In the lr norm the small K, solution is given by x = K,ek in the case that 

is uniquely determined. To verify this note that the multiplier equation becomes 

\1 pT +AT A (hkek) = -JJN 

where the properties of the lr norm require vk = () = sgn (hk). Then 

-f.-LK, = ()K,\1 H + /'\,2 =? () = - sgn (\7 Fk), f.-L = IV HI+ 0 (K,), 

( 4.1) 

assuming the columns of A have been normalised to have length 1. To verify the solution 
note that 

This shows the necessary conditions are satisfied for K, small enough. 

Remark 7 Two aspects of the lr norm result are of interest: 

• Just one variable is selected in contrast to the other norms when , in general, all 
components of h are nonzero. This observation can be exploited to develop the lr 
norm constrained problem into a stepwise variable selection algorithm. In contrast, 
the number of components equal to the norm bound in the l00 norm decreases as K, 
increases. Generically it is just one when K, = llx£8 11, and zero thereafter. 

• The rule (4.1) for selecting k corresponds to the rule for entering the first variable 
in stepwise regression. 
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5. Necessary conditions for 11 and l00 constraints 

Knowledge of the special form of v E a llhll can be exploited in designing algorithms 
for the norm constrained least squares problem. For example, in the case of the l1 norm 
there is a permutation matrix P which selects the components of x at zero level such 
that: 

v E a llhll =? Pv = [ : 2 J , Px = [ ~1 J , (5.1) 

where x 1 # 0, fJ; = sgn((xl);), and -'-1 :S (v2); :S 1. The permutation matrix P is 
summarised conveniently by means of an index set a pointing to the nonzero components 
of x. In the l00 norm there is a similar decomposition in which P is determined by an 
index set a pointing to the components of x of maximum modulus. This has the form 

v E a llhll =* Pv = [ ~2 ] , Px = [ ~e ] , (5.2) 

where sgn((v2);) = fJ;, :2:'::; l(v2)l; = 1, and l(x1 );1 :S K,. The multiplier condition (3.2) can 
be written 

Introducing the partial orthogonal factorization 

reduces the necessary conditions to 

Substituting the h decomposition gives 

U1x1 = c1- p,U1re, 
JJV2 = BT c2 + p,U12ulre. 

The corresponding result for the l00 constraint is 

U1x1 = c1 - K,U128, 

/JV2 = BT c2- K,BT Be. 

(5.3) 
(5.4) 

(5.5) 
(5.6) 

In both cases the solution can be found once the partitioning determining P and the 
signs determining () are known. 

Remark 8 One interesting aspect of these systems is that they suggest rather different 
conditioning properties. In the l 1 case the necessary conditions (5.3) suggest that an in
version of the normal matTix is inescapable forcing a condition number of order cond(A) 2 . 

However, in the l00 case a dependence on cond(A) is suggested by (5.5). 
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6. Algorithms 

A basic descent algorithm which includes the l1 and l00 norms as special cases can 
be given in the case that the norm unit ball is polyhedral. The permutation matrix P 
then serves to split the components of x into those active components that enter the 
characterization conditions - zeros in lr, components of maximum modulus in l00 - from 
the remainder. The algorithm is an active set method in the above sense, and aims to 
generate a descent direction by a form of local linearization. 

1. Select x on the trust region boundary. Typically this would be done by shrinking the 
result of an initial computation which violates the norm bound. Select () E 8 llx1 ll 
where the subscript indicates restriction to the current active set. Select the value 
of the norm bound "'· 

2. Determine a correction h to the current estimate by solving the linear sub problem 

min II r ( x + h) II; ; H = { h : fF ( x + h) 1 < r;, 11 . hEH" . ·-
(6.1) 

3. If x* = X+ h, and () E a II xi II then 

test the multiplier conditions evaluated at the new point 

If satisfied then solution obtained, stop. 

(ii) else update Band repeat 2. This step modifies ()to take account of the manner 
of violation of the multiplier conditions. 

4. Else make a descent step in the direction determined by h: 

(6.2) 

This step terminates at a point at which e must be updated. The modification 
required to the active set here is complementary to that required by a violation of 
the multiplier conditions. Repeat step 2. The descent property associated with this 
step ensures that the other branch in 3. will be chosen eventually. 

Remark 9 In the l1 case e is given by the signs of the nonzero components of x, and 
violation of the multiplier conditions (5.4) in step 3{i) of the algorithm co?Tesponds to 
I (v2U > 1 in (5.4). This changes e by allowing a zero component ofx (say xk) to become 
nonzero. The appropriate choice of sign for xk is given by the sign of the corresponding 
element of v 2 [9}. In the descent step {6,2) the of 6 is triggered by a component 

x becoming zero. 

Remark 10 In the case e is given by the signs of the components of maximttm modu
lus ofx. The condition on v 2 that is violated in the mtdtiplier conditions (5. 6) corresponds 
to sgn(v2 ) 8 =/= ()8 , and the action taken is u +- u~ {u(s)}. The descent step (6.2) ter
minates when a new component (say xk) 1·eaches the norm bound. The action taken is 
u <- u U { k}. This algorithm plus refinements is discussed in [1]. 
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Variable selection in the h constrained problem has its origin in the observation (Re
mark 9) that each step of variable addition occurs as a consequence of the vio~ation of 
the multiplier condition l(v2 ) 8 1 ::; 1. Typically a strategy is employed that assocmtes the 
component of x to relax from zero with the most violated (in an appropriate sense) of 
these conditions on the multiplier vector. What remains to be spelt out is the manner of 
selecting the constraint bound r;,. As yet this problem does not have any very satisfactory 
solution and it can be circumvented by noting that the selection record for 0 ::; r;, ::; oo ' " . 
can be computed by a piecewise linear homotopy involving only a finite number of lmear 
pieces. This involves integrating the differential equations 

dtL 1 
dr;, - wTw' 

dx1 1 
U1 -~ =--w 

dr;, wTw ' 

d (11v2) _ __ l_UT 
dr;, - wTw 12w, 

where w = U1re, and where the differential equations are valid provided -f.Le < f-LV2 < 
f-1€, lxil > 0, i E a. Continuity of the trajectory at break points corresponding to the 
equality case in these inequalities is shown in [9]. 

Implementation of descent and homotopy algorithms for h and loo norm constrained 
least squares problems can make use of the tableau based modified Gram-Schmidt algo
rithm considered in [8] for stepwise regression. 

7. Numerical results 

Numerical results are presented for the homotopy algorithm applied to the Iowa wheat 
data set [2]. This is displayed in Table L Progress of the algorithm is recorded for the 
two cases corresponding to: 

111 An explicit intercept variable is added to the data set as variable number 1, each 
column is scaled to have length 1; and 

~~> The stepwise regression pattern is followed. That is each variable is centred first 
and then scaled to have length 1. 

The point of the example is to show that the two forms of the data set are certainly not 
equivalent in the presence of the norm constraint. The results are displayed in Table 2 
for the centred data, and Table 3 for the data with an explicit intercept added. The 
tables give the values of r;, and f-1 and the signs of the variables currently selected. In the 
centred data variable #8 is added after two steps and dropped after a further 4 steps. It 
is then reinstated with the opposite sign in the final steps of the algorithm. In the case of 
the explicit intercept the iteration builds up a full complement of variables and then in 
the final steps of the algorithm drops and then resurrects variables #6 and #8. What is 
happening is that when the full complement first occurs the constraint is active causing 
these two to have opposite signs to those that obtain in the full least squares solution. A 
change in sign forces a drop followed by reentry after the corresponding multiplier moves 
from one bound to the other. In both cases this change occurs in consecutive steps. 
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A b 
1930 17.75 60.2 5.83 69.0 1.49 77.9 2.42 74.4 34.0 
1931 14.76 57.5 3.83 75.5 2.72 77.2 3.30 72.6 32.9 
1932 27.99 62.3 5.17 72.0 3.12 75.8 7.10 72.2 43.0 
1933 16.76 60.5 1.64 77.8 3.45 76.4 3.01 70.5 40.0 
1934 11.36 69.5 3.49 77.2 3.85 79.7 2.84 73.4 23.0 
1935 22.71 55.0 7.00 65.9 3.35 79.4 2.42 73.6 38.4 
1936 17.91 66.2 2.85 70.1 0.51 83.4 3.48 79.2 20.0 
1937 23.31 61.8 3.80 69.0 2.63 75.9 3.99 77.8 44.6 
1938 18.53 59.5 4.67 69.21 4.24 76.5 3.82 75.7 46.3 
1939 18.56 66.4 5.32 71.4 3.15 76.2 4.72 70.7 52.2 
1940 12.45 58.4 3.56 71.3 4.57 76.7 6.44 70.7 52.3 
1941 16.05 66.0 6.20 70.0 2.24 75.1 1.94 75.1 51.0 
1942 27.10 59.3 5.93 69.7 4.89 74.3 3.17 72.2 59.9 
1943 19.05 57.5 6.16 71.6 4.56 75.4 5.07 74.0 54.7 
1944 20.79 64.6 5.88 71.7 3.73 72.6 5.88 71.8 52.0 
1945 21.88 55.1 4.70 64.1 2.96 72.1 3.43 72.5 43.5 
1946 20.02 56.5 6.41 69.8 2.45 73.8 3.56 68.9 56.7 
1947 23.17 55.6 10.39 66.3 1.72 72.8 1.49 80.6 30.5 
1948 19.15 59.2 3.42 68.6 4.14 75.0 2.54 73.9 60.5 
1949 18.28 63.5 5.51 72.4 3.47 76.2 2.34 73.0 46.1 
1950 18.45 59.8 5.70 68.4 4.65 69.7 2.39 67.7 48.2 
1951 22.00 62.2 6.11 65.2 4.45 72.1 6.21 70.5 43.1 
1952 1905 59.6 5.40 74.2 3.84 74.7 4.78 70.0 62.2 
1953 15.67 60.00 5.31 73.2 3.28 74.6 2.33 73.2 52.9 
1954 15.92 55.6 6.36 72.9 1.79 77.4 7.10 72.1 53.9 
1955 16.75 63.6 3.07 67.2 3.29 79.8 1.79 77.2 48.4 
1956 12.34 62.4 2.56 74.7 4.51 72.7 4.42 73.0 52.8 
1957 15.82 59.0 4.84 68.9 3.54 77.9 3.76 72.9 62.1 
1958 15.24 62.5 3.80 66.4 7.55 70.5 2.55 73.0 66.0 
1959 21.72 62.8 4.11 71.5 2.29 72.3 4.92 76.3 64.2 
1960 25.08 59.7 4.43 67.4 2.76 72.6 5.36 73.2 63.2 
1961 17.79 57.4 3.36 69.4 5.51 72.6 3.04 72.4 75.4 
1962 26.61 66.6 3.12 69.1 6.27 71.6 4.31 72.5 76.0 

TABLE 1. Iowa wheat data 
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