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1. Impact and friction 
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Rigid-body dynamics is the dynamics of bodies that do not deform. While no body 
is completely rigid, this is a model for a wide range of everyday objects which are 
stifF on the time and length scales of interest to us. 

Another that is of great in life are Coulomb (or dry) fric-
and impact. Whether v;re are walking, or (hitting balls, running, etc.), 

or operating a car , or picking up objects, impact and friction are commonplace 
effects. Yet the theoretical. understanding of these is still in its infancy. One 
of the reasons for this are the discontinuities introduced by standard models of these phe-
nomena. of rigid bodies leads to discontinuities of the A lesser, 
but still very discontinuity is due to Coulomb friction, where the equations of 
motion involves discontinuous functions. 

These discontinuities lead to both in terms of and in terms of com-
putation. are the more severe form of discontinuity: there are impulses 
in the contact forces which leads to discontinuities in the velocities (which are part of 
the state vector of the . Such impulsive forces are best modelled mathematically 
as 1neasures. Vl/hile measure differential have been around since at least the 
1950's (see, for example [12]), in this case the strength of the impulse is determined 
the configuration of the n1echanical and so is not known a priori This leads 
to measure differential inclusions and complementarity conditions between measures and 

measurable) functions. 
Coulomb friction forces are bounded relative to the normal contact forces, but the 

additional discontinuity is that the direction in which they apply is discontinuous in the 
relative slip vvhen that is zero. Since "sticking" is fairly common with 
Coulomb friction, it nwans that this discontinuity has to be dealt with. 

1.1" Impact Impacts in mechanical systems are extremely common, difficult to 
modeL Since for rigid impacts are instantaneous, there needs to be 

some rule which specifies how the bodies behave in an impact. Consider the difference 
between tvvo billiard balls colliding and tvlfO lumps of play-dough colliding. The former 
will bounce in a nearly elastic way, almost conserving the apparent kinetic energy, while 
the latter will undergo plastic deformation in the impact, and have little kinetic energy 
available for separating aftenvards. 

This is commonly modelled using Newton's lavv of impacts which states that the normal 
uv.uvi'" of the relative velocity after collision is -e times the normal component of 

relative velocity just prior to collision [28]. As it is commonly applied, it is known to 
sometimes give an increase in the total energy when friction is involved [34]. The quantity 
e is called the coefficient of restitution. 
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An alternative version of this is Poisson's impact law which states that the impact 
should be divided into compression and expansion phases: the normal contact impulse 
for the expansion phase should be e times the impulse for the compression phase. The 
compression phase should behave like an inelastic impact (in the Newtonian sense). (A 
fairly thorough derivation of the Poisson impact laws is given in [28].) However Poisson 
impact laws are known to give loss of energy for some situations with e = 1,' which should 
give perfectly elastic impacts which are energy conserving. 

Strange [34] has also given other impact laws which are based on the idea of ensuring 
that the post-impact kinetic energy associated with the normal velocity is e2 times the 
pre-impact kinetic energy associated with the normal velocity. 

Recent work [2, 33] suggests that none of the current impact laws is realistic. Further 
progress in this area will probably require a deeper understanding of the dynamic be
haviour of elastic bodies in impact. This area, too, is underdeveloped, and there are not 
even existence results for simple dynamic impact problems with Signorini (hard contact) 
conditions, with or without friction. (This is notwithstanding the recent paper of Jarusek 
and Eck !11].) 

1.2. Coulomb friction Coulomb friction was first formulated by C.A. Coulomb 
in 1781 [5], based on earlier ideas of Amontons in the 1600's. This formulation was 
essentially the following three rules: 

Ill The friction force between sliding objects is proportional to the normal contact 
force (the constant of proportionality is the coefficient of friction 1-"). 

o The direction of the friction force is opposite to the direction of relative motion 
between the bodies. 

fll If there is no slip, then the friction force can take any value with no 
greater than p, times the normal contact force. 

These three rules cover isotropic friction. More general anisotropic friction laws are 
needed for dealing with ice-skating, for instance. A more modern re-formulation of 
Coulomb's laws can be found in Goyal [10]. This formulation is the maximal dissipa
tion principle: the friction force is the one that maximizes dissipation of energy: 

min-cTv cr f rei subject to (1.1) 

where FC0 is a closed, balanced, convex set which gives the possible friction forces for 
unit normal contact force. Note that Vrel is the relative velocity vector for the of 
sliding bodies at the point of contact. Also note that en is the normal contact force. By 
making FC0 highly elliptical, with the major axis perpendicular to the line of the skates, 
the frictional behaviour of ice-skates on ice can be adequately represented. 

Given a representation of FC0 , this optimization problem can be solved using the 
Karush-Kuhn-Tucker (KKT) conditions given en. Note however, that the contact forces 
overall (en as well as c1) at any instant is not an optimization problem. Attempting 
to do so with pseudo-potentials (see, e.g., Moreau [20, 21], Duvaut and Lions !7]) leads 
to a number of difficulties such as non-convex objective functions, and non-existence of 
solutions in infinite dimensions. It is rather better to treat it as a complementarity or 
fixed-point problem. 
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FIGURE 1. Painleve's problem 

1.3. Painleve's problem In 1895 P. Painleve published a short paper [22] which 
seemed to show that rigid-body dynamics with friction was inconsistent. Until very re
cently, this problem was seen by many people in this area as showing that rigid-body 
dynamics with Coulomb friction as being inconsistent. More recent work of Moreau, 
Monteiro-Marques, and Stewart and others have changed this perception, although as
pects of the solution to this problem were apparent to some by the 1920's such as Delassus 
[6]. 

Painleve's problem is a simple problem of a rod touching a table while in motion (see 
Figure 1). 

Let N be the normal contact force at the contact point, and F the corresponding 
horizontal friction force. Let m be the mass of the rod, and J its moment of inertia. Also, 
let x and y respectively be the horizontal and vertical coordinates of the center of mass 
of the rod; let e denote the angle of the rod with respect to horizontal. See the diagram 
in Figure 1. The contact point is given by (xc,Yc) = (x- (L/2)cose,y- (L/2)sine). 
Suppose that ±c < 0 and Yc = 0 at some instant in time. The equations of motion are 
given by 

Then 

mx = F = JLN 
mjj=N -mg 
J iJ = (L/2)[+F sine- N cose] 

= (L/2)[J.Lsine- cose] N 

Yc = jj- (L/2) cos e ij + (L/2) sine 02 

= Njm- g- (L2 j4J) cose[J.Lsine- cos e] N + (L/2) sine iP. 

(1.2) 
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The contact conditions are that Yc 2:: 0 (no interpenetration), N 2:: 0 (no adhesion), and 
NYc= 0 (contact breaks implies no contact force). If 1/m-(£2 j4J) cosO[J.L sinO-cos 0] < 
0 and -g + (L/2)sinOiP < 0 (which is true for certain values of mL2 jJ, J.l, 0, and iJ) 
then Yc < 0 for every N 2:: 0. In particular, choose iJ = 0, make m£2 / J and J.Llarge, and 
choose a suitable value for 0 (say, 1fj3 radians). · 

The problem with this analysis is that we are assuming that F = +J.LN because i; < 0. 
If impulses are allowed, then the horizontal velocity can be brought to zero instanta
neously, allowing any F where IFI ~ J.LN. In this case, the problem is solvable. This is 
an example of an impulsive force without impact. This problem causes difficulties with 

2. Complementarity problems 

A complementarity problem is the task, given a function f : Rn ---+ Rn, of finding x 
where 

O~f(x) j_ x2:0 (2.1) 

where the inequalities are understood componentwise and "a j_ b" means that aTb = 0. 
These problems arise in a wide range of different contexts (economics, contact mechanics, 
game theory, electrical circuits). See [8] for a survey of applications. Since for non
negative vectors a and b, aTb 2:: 0, the complementarity condition a j_ b means that 
for each i, either ai = 0 or bi = 0. There are many variants on this including mixed 
complementarity problems (0 ~ f(x, u) j_ x 2:: 0 in Rn and 0 = g(x, u) in Rm with 
u E Rm) and generalized complementarity problems (where "x 2:: 0" means that x E K 
for a closed convex cone K, and "0 ~ f(x)" means that f(x) E K*, the dual cone 
K* = { w I wT x 2:: 0 \fx E K }. 

If f(x) = Mx+q then the complementarity problem is called a Linear Complementarity 
Problem (LCP) which is the subject of an entire encyclopedic monograph [4]. Not even 
LCP's have solutions in general, and there is no compact non-trivial characterization of 
which LCP's have solutions. Even the topology of the solutions to LCP's is far from 
trivial. Nevertheless, there are a number of well-known classes of M for which there is a 
well-known and very useful (constructive) existence theory. Foremost amongst these are 
the copositive matrices: a matrix M is copositive if 

(2.2) 

If M is copositive and sT q < 0 whenever s 2:: 0 satisfies sT M s = 0, then there is a 
solution of the complementarity problem 0 ~ z j_ M z + q 2:: 0. Furthermore, a solution 
can be found by Lemke's algorithm, which is a variant of the simplex method for solving 
complementarity problems. See [4] for more details. 

Nonlinear Complementarity Problems (NCP's) can be guaranteed to be solvable under 
some conditions, although this is often done on a case-by-case basis. For example, if f 
is a strongly monotone function ((x- yf(f(x)- f(y)) 2:: cllx- Yll 2 > 0) then solutions 
exist for the NCP 0 ~ z j_ f(z) 2:: 0. For friction problems (which are not monotone 
in general), the nonlinear complementarity formulations of [23] are guaranteed to have 
solutions, which· is shown using a homotopy argument. Other formulations, such as the 
early formulations of [13, 24], however, do not have solutions in general. 
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3. Formulating rigid-body dynamics 

Rigid-body dynamics needs to be formulated as a continuous-time problem, and then 
for the purpose of computation and simulation, as a discrete-time or numerical problem. 
Of course, the limit(s) of the numerical solutions as the computational parameters (such 
as step-size) approach the appropriate limit(s), should be solutions of the continuous
time problem. However, in the case of rigid-body dynamics with impact and friction, 
it is a non-trivial matter just to formulate what the continuous-time problem should 
be. Normally, we would think of writing down a set of differential equations which 
would have solutions by standard results (such as Picard's contraction mapping result, 
or Caratheodory's existence theorem). Then we would look for a numerical scheme to 
accurately solve the differential equations. 

For rigid-body dynamics with impact and friction, it is not possible to apply standard 
existence theories. The only existence results obtained so far, have been obtained by 
developing a numerical model, and showing that the numerical trajectories converge 
to continuous trajectories that solve the continuous-time problem. See, for example, 
the work of Monteiro-Marques [17] which gives the first rigorous proof of the existence 
solution of a rigid-body dynamics problem with impact and friction. Later work also uses 
this approach [26, 30]. 

3.1. Continuous time Below we see the continuous-time formulation of rigid-body 
dynamics with one contact. 

The trajectories are given by functions q( ·) whose values are generalized coordinates, 
and v(·) which are generalized velocities (dqjdt = v). In these generalized coordinates we 
have a Lagrangian L(q, v) = T(q, v)- V(q) where T(q, v) is the kinetic energy and V(q) 
is the potential energy. We assume that T(q, v) = ~vT M(q)v where M(q) is a symmetric 
positive definite matrix (called the mass matrix). The admissible region is specified by 
a scalar-valued function f(q): C = { q I f(q) 2: 0 }. The function f is assumed to be 
smooth and the normal direction vector n(q) = \lf(q) =I 0 for any q on the boundary 
(f(q) = 0). 

The normal contact force is in the direction n(q). However, since we are using gen
eralized coordinates, the plane of the friction forces is ·not necessarily perpendicular to 
n(q). For particles represented in natural Cartesian coordinates, the friction plane is 
perpendicular to n(q). However, for a body in two-dimensions, the configuration of the 
system is determined by three coordinates: ( x, y), the Cartesian coordinates of the centre 
of mass, and B, the angle of the body relative to a reference orientation. For such a body, 
the friction plane is typically not perpendicular to n(q) due to the angular variable. In 
fact, this turns out to be crucial in analysing problems such as Painleve's problem. 

To describe the friction cone, we use a homogeneous convex function '1/J(/3): FC0 (q) = 

{D(q)/3 I '1/J(/3)::; p,}. Homogeneity of 'ljJ means that '1/J(a/3) = a'I/J(/3) for any a 2:0. 
For FC0 (q) to be a balanced convex set, we also need '1/J(/3) = '1/J( -/3). For isotropic 
friction we can take '1/J(/3) = 11/311 2. The complementarity conditions given below are the 
KKT conditions (as interpreted using generalized gradients ala Clarke [3]) for the convex 
programming problem 

minvTD(q)f3 subject to '1/J(/3) < p,er,. 
~ -

(3.1) 

The continuous problem with one contact and inelastic impacts can be formulated as 
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one of finding a function v(.) of bounded variation, and an absolutely continuous q(,) 
along with the contact forces (measures) en the normal contact force, and f3 describing 
the frictional and a bounded Borel function A where 

M( )dv 
q dt 

dq 
dt 

0 < 

n(q) Cn + D(q) f3- 'VV(q) + k(q, v) + F'ext(t), 

v, 

Cn j_ f(q) ~ 0, 

0 E ft D(qf v+ + . .\ 81/;(/3), 
0 < A j_ f.LCn - 1/J(/3) ~ 0, 

0 n(q(t)f v+(t) if f(q(t)) = 0. 

(3.2) 

(3.3) 
(3.4) 
(3.5) 
(3.6) 
(3.7) 

For partly or fully elastic impacts with coefficient of restitution 0 ::; E ::; 1, we can replace 
(3.7) with 

n(q(t)f(v+ + Ev-) = 0 if f(q(t)) = 0. (3.8) 

3.2. Nume:ricaHy In order to handle problems like those arising with the Painleve 
a time-stepping approach which uses the integrals of the force functions (or 

measures) Cn and f3 over each time-step interval [tz, t 1+1]. Two different numerical forum
lations are presented here. The first is based on linear complementarity problems and 
uses a polyhedral approximation FC(q) to the friction cone FC(q). The second is a 
nonlinear complementarity formulation which uses 1p(f3) directly. 

The polyhedral approximation to the friction cone is the cone generated { n(q) + 
ft di(q) I i = 1, 2, 0 0., m} where f.-l di(q) is a collection of direction vectors in FC0 (q). 
Write D(q) = [d1 (q), d2 (q), ... , dm(q)]. The friction forces D(q)f3 are approximated by 
D(q)/3 where j3i ::::: 0 and j3i ::; ~ten· The relationship between FC'(q) and FC(q) is 
illustrated in Figure 2. It is assumed that for each i there is a j where di(q) = -d1(q). 
This is related to the assumption that FC0 ( q) is a balanced set: FC0 ( q) = - FC0 ( q). 

The discretization of is the problem of finding q1+1 and (and the force integrals 
c~+l, /31+1 , and Lagrange multiplier given q1 and v1 for a time-step of size h > 0 that 
satisfy the following conditions: 

M(l+l)(vl+l- vl) n(ql)c~+l + D(ql)j3l+l (3.9) 

+h[-\7V(q1) + k(q1,v1) + Fext(tz)] 
ql+l- ql hvl+l, (3.10) 
0 < cl+l 

- n 
j_ n(qlf(vl+l + Evl) ~ 0, (3.11) 

0 ::; j3l+l j_ ..\1+1 e + D(qlf vl+l ~ 0, (3.12) 

0 ::; Al+l j_ f.L c~+l - eT /31+1 ~ 0, (3.13) 

where f(q1 + h < 0; if f(q1 + hv1) ~ 0, then we set c~+l = 0 and /31+1 = 0 and solve 
the first two equations. Note that e is a vector of 1 's of the appropriate size. 

Given q1 and v1 the problem to compute q1+1 and v1+1 can be reduced in size by 
eliminating v1+1 and q1+1 in terms of the impulses c~+l and j3l+ 1 via equations (3.9,3.10). 
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polyhedral approximation 
to friction cone 

friction cone 

FIGURE 2. Polyhedral approximation to the friction cone 

The resulting problem is an LCP of the form: 
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The matrix in this LCP can be easily checked to be copositive since M is positive definite 
and p > 0, and the e and -eT entries form an antisymmetric sub-matrix. 
Solutions exist for such LCP's (and can be found using Lemke's algorithm) since the 
constant term satisfies the conditions of [4, Cor. 4.4.12, p. 27'7]. 

For smooth friction cones, another approach uses the 7./J function used in the previ-
ous section. Conditions (3.12,3.13) should be replaced the discrete analogues of the 
continuous time conditions (3.5,3.6): 

O E pD(ql)Tvl+1+;,l-HfJ?.jJ(j3l+1), 

0 :::; ;,l+ 1 j_ f-LC~+ 1 _ 1/J (pl+l) ?: 0. 

This leads to highly nonlinear complementarity problems. Nevertheless, such comple
mentarity problems can be solved. 

This discretization is a partly implicit Euler method. Therefore it can only give O(h) 
accuracy at best. However, unlike conventional discretizations, it can handle impulsive 
forces- in particular, it can handle Painleve's problem. Note that the complementarity 
condition 0 :=::; f(q) j_ en?: 0 does not appear explicitly in (3.9-3.13); (3.11) is essentially 
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the differentiated form of this condition. Using the differentiated constraint only can 
result in the true constraint "drifting" into the inadmissible region, which is an effect that 
has been noticed in relation to DAE formulations of rigid-body dynamics with bilateral 
(i.e., equality) constraints [1]. It is tempting to replace (3.11) with 0 ~ f(ql+ 1 ) j_ c~+l 2 0. 
This does not work: the resulting discretization behaves as if it had a "random" coefficient 
of restitution when impacts occur. (The effective coefficient of restitution depends on the 
time within the time-step [tz, t1+1] that contact occurs.) Since (3.11) uses differentiated 
constraints, it may be occasionally advisable to project q1+1 back to the feasible region. 
This can be done without disturbing the time-stepping, since the time-stepping method 
is a one-step method. 

The numerical formulation based on polygonal friction cones has been implemented 
and used to simulate a number of different systems. Typical simulation results are shown 
in Figure 3. This shows a thrown ball falling and then colliding with the first of three 
balls on a fiat table. The coefficient of restitution used is e = 0.9, and the coefficient of 
friction is p, ~ 0.4. 

4. Measure differential inclusions and convergence 

4.1. What are measure differential inclusions? To explain measure differential 
inclusions, we will first have a look at differential inclusions. Differential inclusions were 
originally introduced by A.F. Filippov in the early 1960's [9] as a means of "regularizing" 
ODE's with discontinuous right-hand sides. These differential inclusions have the form 

dx 
dt (t) E F(x(t), t) 

where F(x, t) is a set-valued function with the following properties: 

1. The values F(x, t) are closed, convex sets. 
2. F(-, t) is an upper semi-continuous function Rn -+ P(Rn); that is V is an open 

set containing F(x, t), then there is an open set U containing x in Rn such that 
F(y, t) c V for any y E U. 

3. IIF(x, t)ll = supzEF(x,t) llzll is an L 1 function oft for any fixed x. 

Then for any initial conditions x(t0 ) = x0 , dxjdt E F(x, t) at least has local solutions, 
and provided F(x, t) satisfies a "no blow-up" condition like xT F(x, t) ~ C(llxll 2 + 1), 
global solutions exist. These solutions are absolutely continuous functions x( ·) where for 
any t 1 < t 2 in the solution domain, 

x(t2)- x(t1 ) E 1:2 F(x(T), T) dT = {1:2 j(T) dT I j(T) E F(x(T), T)VT; f E L1 }. 

This is equivalent to requiring that x(·) is absolutely continuous, and dxjdt(t) E F(x(t), t) 
for almost all t. 

We consider measure differential equations of the form 

dx 
dt E F(y(t), t) 

where y(t) is an auxiliary function, perhaps defined through another differential equation 
such as dyjdt = g(x, y, t). 
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I\/[easure differential inclusions allow for unbounded F(y, t); condition (2) should be 
replaced the condition that F(·, t) has a closed graph (that is, zk E F(y1" t) and 
Yk ----+ y, zk ----+ z implies that z E F(y, t)); condition (3) can be dropped altogether. 
However, the solutions are not necessarily absolutely continuous: they can be functions 
of bounded variation. Then dxjdt is no longer a function, but a measure. Jumps in x(t) 
give impulses (or Dirac-8 functions) in dxjdt. Since we can no longer properly talk about 
the values dxjdt(t) even almost everywhere. 

Measure differential equations first appear in the literature in the work of Schatzman 
[29], but were first called "measure differential inclusions" by Moreau in connection with 
"sweeping processes" [18, 19]. The most general formulations of measure differential 
inclusions can be found in [31, 32]. In these most general formulations there are strong 
and weak formulations. The strong formulation is based on the Lebesgue decomposition 
of measures, and Radon-Nikodym derivatives, and most closely resembles the "dx / dt( t) E 
F(x(t), t) for a.a. t" condition for ordinary differential inclusions. The other is based on 
integrals and resembles the integral formulation of ordinary differential inclusions. 

If .\0 is the Lebesgue measure, then we can decompose the measure dxjdt = ~ .\0 + ( 
where ~ is a function in £1 and ( is a singular measure. The strong formulation requires 
that ~-(t) E F(y(t), t) for Lebesgue almost all t, and d(/dl(l(t) E F(y(t), t)oo where L00 

is the asymptotic or recession cone of a convex set L. The simplest definition of the 
recession cone is 

corresponds to the directions in L "at infinity"; the condition d(/dl(l(t) E F(y(t), t) 00 

says that the unbounded and impulsive forces must be in directions lying in F(y(t), t) 
"at infinity". 

The weak formulation is much better for proving convergence results: for every con
tinuous ¢, non-negative and not everywhere zero, 

J ¢(t) v(dt) E co 
J ¢(t) dt 

u K(T). 
T:<jJ(T)IO 

( 4.1) 

4.2" What kind of convergence? From functional analysis we learn that it can 
be quite important what kind of convergence we can obtain. the numerically 
computed forces and are sums of o-functions, we need to work in the space of 
bounded Borel measures. the usual topology of this space is difficult to 
vvork with numerically for these kinds of problems. To illustrate, suppose that we have 
some numerical procedure for investigating a single bounce of a ball with a rigid 
table subject to some external forces (like air resistance, for instance). Then for a given 
step-size h > 0 it will give us a certain time th of bounce and a certain strength of 
the impulse sh. Now it is clearly reasonable to expect that th ----+ t* and sh ----+ s* as 
h l 0 for some values t* and s*. The impulses computed numerically are then sho(t- th) 
and the "limiting" impulse is s*o(t - t*). However, unless th is exactly equal to t*, 

llsho(·- th)- s*8(·- t*)ll = f lsho(t- th)- s*o(t- t*)l dt = lshl + ls*l which does not 
(in general) go to zero. So we cannot use the usual strong (normwise) convergence in the 
space of measures. Furthermore, we do not even get convergence in the weak topology for 
bounded Borel measures. We finally get convergence in the weak* topology of bounded 
Borel measures. 
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A sequence of measures vh converges weak* to v means that for all continuous functions 
¢, I ¢(t) dl/h(t) -> I ¢(t) dv(t) as h l 0. There are a number of classical theorems of 
functional and classical analysis that give us tools to formulate convergence theorems. 
First we note the Reisz representation theorem for continuous functions: every linear 
functional on the space of continuous functions on [0, T] is precisely the space of bounded 
Borel measures on [0, T], which can in tern be represented by Riemann-Stieltjes integrals: 
l(¢) = I¢ du = I ¢(t) dg(t) where the final integral is a Riemann-Stieltjes integral with a 
function g of bounded variation. Then there is Helly's theorem, which is stated in terms 
of functions of bounded variation: if 9h is a family of functions with a uniform bound on 
their variation and values: V 9h::; and l9h(t)l ::; M for all h > 0 and t, then there is a 
pointwise limit g(t) for all but countably many t, and V g ::; M. The most general result 
that we will find useful here is Alaoglu's theorem, which states that any dosed, bounded, 
convex set in a dual Banach space is (sequentially) compact in the weak* topology. A 
good reference for functional analysis is [16]. 

4.3. The main result The strongest result that has been obtained for the above 
numerical schemes is as follows: 

Theorem 1 We assume the following (H1)-(H6): 

<~> (H1) The M(q), n(q), D(q) and V(q) are all smooth and globally Lipschitz 
continuous with Lipschitz constants LM, Ln, Lv and Lv respectively. 

® {I-!2) The matrices is uniformly positive definite; that is, Amin(M(q)) 2: f3M > 
0 for some f3M, all q. 

$ (H3) The functions M(q), n(q), and D(q) are all uniformly bounded in the 2-norm 
by, BM, and Bv respectively. 

Q; (f/4) The values n(q) are all bounded away from zero: lln(q)!l 2: f3n > 0 
all q. 

«~ The cone FC(q) is pointed fo1· all q. 
® (H6) For each i there is a k such that d~j)(q) = -d~)(q). 

Then there is a subsequence hk l 0 where 

qh" (.) 
vh,, (·) 

dvhk (.) 

--+q(-) 
--+ v(·) 
~, dv(·) 

uniformly, 
pointwise almost everywhere, 
weak * as Borel measures, 

(4.2) 

on [0, T], and every such subsequence converges to a solution (q(·), v(·)) of the measure 
difj'erential inclusion . Every such limit is exactly dissipative in that the total energy 
~vT Jvf(q)v + V(q) is non-increasing. In the one-contact case the impacts are inelastic in 
the sense that n( qf v+ = 0 whenever there is contact. Also, in the one-contact case, the 
approximate Coulomb friction law (for the polygonal approximation to the friction cone) 

holds for en -almost every point where v is continuous. The approximate Coulomb law 
also holds everywhere in the limit for the one-contact case if (1) n(q)T M(q)- 1z > 0 for 

all 0 -=1- z E FC(q), or (2) the friction planes are one-dimensional. 
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While this result is a significant advance on previous work (such as [17]), there are still 
a number of areas where improvement is clearly desirable, One of these is the issue of 
multiple contacts. Even in the frictionless case it is not clear what are suitable laws are 
for multiple simultaneous impacts. Another is the requirement that the friction planes 
are one-dimensional. On the other hand, this result not only shows the convergence of 
a numerical scheme, but also shows the existence of a solution to rigid-body dynamics 
that was not previously shown. 

5. Open questions 

There are a great many open questions remaining about rigid-body dynamics and how 
to simulate it. Here we give just a few of the issues that deserve study. 

5.1. Velocity-dependent friction coefficients Velocity-dependent friction coef
ficients (M = M(v) or M = M(llvll)) are commonly observed in practice, but present some 
significant theoretical challenges. There are two main models of velocity-dependent fric
tion coefficients: the two-coefficient model where M = Mdynamic if v =/= 0 and M = Mstatic if 
v = 0; there is also the continuous model where M = M(llvll) where M(s) is a decreasing 
positive function in s which varies smoothly from M(O) to Moo = lim8 __, 00 M( s) > 0. The 
former introduces a (probably spurious) discontinuity into the formulation which makes 
the theory substantially harder. The latter is much more reasonable. Experimental re
sults could confuse the two since the region where s > 0 and M' ( s) < 0 is very often 
dynamically unstable. Thus the transition from v = 0 (no slip) to large llv II can happen 
quickly giving the impression that there are just two coefficients of friction M(O) and Moo· 

5.2. Partly elastic impacts Partly elastic impacts have not been dealt with here. 
Important work on this in the frictionless case has been done by Paoli and Schatzman 
[27, 26, 25] and Mabrouk [15, 14]. Both groups have based their work on the study of 
particles and have focussed on Newtonian impact laws nT v+ = -e nTv- where e is the 
coefficient of restitution. However, the a priori assumption that e is a constant is clearly 
not even approximately. See, for example, the experimental and simulation results of 
Stoianovici and Hurmuzlu [33]. Another critique of conventional impact models is given 
by Chatterjee [2]. What is needed to resolve this situation is a way of incorporating 
elastic vibrations into rigid-body dynamics. 

5.3. Multiple simultaneous contacts Multiple simultaneous impacts is another 
area which needs development. Even giving theoretically justifiable impact laws for mul
tiple simultaneous impacts without friction is a difficult task. As noted in the previous 
subsection, resolving this issue will require incorporating elastic vibrations into "rigid" 
body dynamics. This is an area which will probably see considerable development in the 
coming years. 
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