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Abstract. In ensemble predictions, particularly in numerical weather fore­
casts, the true initial errors are usually not known, and can be optimally 
represented by an ensemble of perturbations. Thus the growth rate and pre­
dictability of an ensemble of perturbations have direct impact on the quality 
and predictability of an ensemble forecast. In this paper, local metric en­
tropy (LME) is introduced and used as a measure of local error growth of an 
ensemble of perturbations in chaotic dynamical systems. The predictability 
time scale of a dynamical system during a given period of time can also be 
estimated with higher accuracy using the LME. It is shown that LME, at 
any time during the evolution of a dynamical system, can be calculated as the 
sum of all the positive local Lyapunov exponents. LME does not depend upon 
the amplitudes nor the configurations of initial perturbations, it depends on 
the positive local LEs which are intrinsic properties of dynamical systems. 
LME is adopted as a measure of local error growth to examine the depen­
dence of an ensemble of perturbations to the dynamics of the system. In 
analysing local error growth rates, LME is compared with the local Lyapunov 
exponents, normal modes, optimal modes which are all commonly used in 
meteorological applictions. The correlations between LME, locally largest 
Lyapunov exponent, the first local Lyapunov exponent, growth rates of the 
first normal mode and first optimal perturbation are studied. When LME is 
used to estimate the predictability time scale of a system over a specified time 
period, it is found that the time scale defined the LME is closer to the 
autocorrelation times for some variables than the commonly used Lyapunov 
time and Kolmogorov - Sinai time in the two dynamical systems we have 
tested. 

1. Introduction 
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It is now knm;vn that both local and finite-time Lyapunov exponents (LEs) are more 
directly related to predictability and error growth during certain periods than global 
Lyapunov exponents [Farrell & Ioannou, 1996; Vastano & Moser, 1991; Toth & Kalnay, 
1993; Buizza & Palmer, 1995], since the most relevant and interesting timescales for most 
of our applications such as weather or climate predictions are from t = 0.0 to a finite­
time, not infinite time. The global LEs are the long-time averaged growth rates and have 
almost no correlation with the local growth rates. 

The local LEs describe the local growth rates, while finite-time LEs describe the fluc­
tuations of growth rates for certain periods of time. However, when local LEs are used, 
usually only the first local LE and its associated Lyapunov vector (LV) is followed. For 
instance, the points on a trajectory with maximum instability are identified with the 
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maxima of a time-series of the first local LEs. This is not accurate in general, since the 
local growth rate of the first LV is not always the largest, however its long-time averaged 
growth rate is the largest. The largest local growth rate cannot be represented solely by 
the first LE. Different perturbation directions must be considered, and this is especially 
true for systems with many degrees of freedom. 

In error growth and predictability studies, normal modes and optimal modes are also 
used to describe the local error growth and structure. Normal modes are the eigenvectors 
of the Jacobian matrix calculated at a particular point on the trjectory [Frederiksen & 
Bell, 1990; Farrell & Ioannou, 1996; Wei & Frederiksen, 1998]. When the basic state 
is time-independent, the leading normal modes associated with the largest real parts of 
eigenvalues will dominant the perturbation. Optimal modes are the eigen-modes of a 
symmetric matrix that is composed of the Jacobian and the transpose of the Jacobian 
[Frederiksen & Bell, 1990; Farrell & Ioannou, 1996]. Optimal modes provide the optimal 
local growth rates for a general dynamical system. However, in analysing the predictabil­
ity time of a dynamical system, usually the first growth rate is used to characterize 
the predictability time scale. This may not be accurate in reality, since any true initial 
perturbations which are not known initially can not be necessarily represented by these 
largest growing modes. 

In quantifying the predictability time scale of a dynamical system during certain pe­
riod of time, Lyapunov time and Kolmogorov-Sinai time (K-S time), which are defined 
as the inverses of the first global LE and the Kolmogorov-Sinai entropy (K-S entropy) 
respectively, have been used most often to estimate predictability times. Again both 
Lyapunov time and K-S time are not accurate, since the first global LE does not include 
the contributions from the other LVs such as 2nd, 3rd ... LVs, and thus the Lyapunov 
predictability time is only expected to be valid for dynamical systems of low order. The 
K-S entropy only includes contributions from LEs whose long-time averages are positive; 
it ignores LEs whose long-time averages are negative but whose short-time contributions 
may be positive. These neglected contributions may be significant for large systems. 

The predictabilities of nonlinear systems are severely limited due to their chaotic nature 
and difficulties of locating the true initial errors. For instance, weather forecasts still can 
not go beyond several days by single integrations of the most sophisticated numerical 
prediction models on powerful supercomputers. Ensemble predictions have already shown 
superiority to the single integrations of models in some major meteorology centers [Toth 
& Kalnay, 1993; Buizza & Palmer, 1995]. It is likely that all the daily weather forecasts 
by traditional single integrations will be replaced with ensemble forecasts in the near 
future. In fact one of the difficult tasks in numerical weather predictions is how to choose 
the initial perturbations which can optimally represent all the possible true errors. In 
reality these true errors, which are usually not known in advance, are best simulated by 
an ensemble of perturbations usually with equal probability. Thus for dynamical systems 
with some unknown true errors, the local error growth rates and the predictability times 
during a period of time are best estimated by analysing the local error growth rate and 
predictability time of an ensemble of perturbations. 

The primary motivation for this study is to examine questions concerning the estima­
tion of predictability time and measuring local instability and error growth of a dynamical 
system within chaotic dynamical theory framework. These include the following: (a) How 
to estimate the local error growth rate and predictability time of an ensemble of pertur-
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bations during a specified period of time with higher accuracy. (b) Do the first local LE, 
the growth rates of first normal mode and first optimal mode provide good description 
of local error growth of a dynamical system? (c) If we assume that the true errors in 
practical dynamical systems such as numerical weather prediction models are represented 
by an ensemble of errors, then to what extent the true error growth rate can be described 
by the first local LE, the largest local LE, the growth rates of first normal mode and first 
optimal mode? To what extent the time of a true error can be estimated 
using the first LE, K-S entropy, first normal mode and first optimal mode? 

In this paper we use what we may call local metric entropy (LME) to estimate the 
predictabilty time scale for a dynamical system. We use the inverse of the average of 
the LME over a time interval as an estimate of characteristic predictability time. The 
time scale defined through LM:E is compared with Lyapunov time and K-S thne for two 
dynamical systems originated from the atmospheric research. Since the predictability 
of a dynamical system is limited by all the contributions from the different expanding 
directions and the LME describes the local growth rate of information creation due to 
perturbation growth in all expanding directions, it is found that the time scale defined 
through LME is indeed of higher accuracy than Lyapunov time and K-S time for these 
two systems we have studied. The time scales defined the growth rates of first normal 
mode, first optimal mode, first singular vector and first finite-time normal mode may not 
be accurate. 

The local error growth rate and instability of a dynamical system might be better 
described the LIVl:E as a function of time, the maximum instability points could be 
identified with higher accuracy. The cause of the instability can then be examined by 
analysing the basic state trajectory and the perturbations at the time when the LME is 
maximunL We also the correlations between locally largest LE which is not 
necessarily the first growth rates of the first normal n1.ode and first optimal mode. 

Before the local metric entropy is presented in Sec. 3., we briefly discuss local Lyapunov 
exponents and K-S entropy in Sec. 2 .. Numerical experiments of the Lorenz [1963] system 
and a simple barotropic model will be carried out in Sec. 4.. Finally, our discussion is 
summarized in Sec. 5 .. 

2. Local Lyapunov Exponents and K-S Entropy 

Let X be an n-dimensional state vector in the phase space of a system described by 
the nonlinear evolution equation 

dX = H(X) 
dt ) (2.1) 

where H is a nonlinear operator. Suppose that x is a small perturbation to the state 
vector X. Then, for sufficiently short time, its evolution can be described by the linearized 
equation 

dx 
-=Ax. 
dt 

(2.2) 

Here A = dH/ dXix(t) is the tangent linear operator evaluated on the nonlinear trajectory 
X(t). Eq. (2.2) can be written in the integral form 

x(t) = G(t, to)x(to). (2.3) 
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The operator G(t, t 0 ) is called the forward tangent propagator which maps perturba­
tions along the nonlinear trajectory from an initial time t 0 to a future time t. For the 
application to weather prediction, if x(t0) is the typical error in the initial condition for 
a weather forecast, then (2.2) and (2.3) should hold for about 2 - 3 days. 

Generally, if we follow any random initial perturbation x(t0 ) for the nonlinear system 
(2.1) using (2.2) or (2.3), this perturbation will be attracted to the fastest growing di­
rection and gives rise to the largest LE such that limt_.oo(1/(t- to)) ln(llx(t)ll/llx(to)ll) = 
.:\ 1 , where 11·11 is the Euclidean norm. Thus x(to) will grow as llx(t) II ;:::o llx(to) II exp .:\1 (t- to) 
[Benet in et al., 1980]. Consequently, if llx( to) II = Oo and one accepts 8max as the 
maximum tolerance error of the system, then the system is predictable up to time 
T "" ( 1/ .:\1) ln( bmax/ Oo) · 

If one chooses the maximum tolerance 8max as the e times of the initial error 00 , the 
predictability time T;. 1 is just proportional to the inverse of the maximum LE [Lorenz, 
1996]. That is, T;. 1 = (1/.:\1), where T;. 1 is often called Lyapunov time [Dellago & Posch, 
1997]. 

Since we know that the most relevant and interesting timescales for weather or climate 
development are from t = 0 to a finite-time, it is necessary to define a finite-time and 
instantaneous quantity in order to describe the fluctuations of growth rate. We define 
finite-time Lyapunov exponents as Ai(t, T) = (1/T) ln(llxi(t + T)ll/llxi(t)ll), where xi(t) E 
Fi ( t), Fi ( t) are a set of disjoint subs paces defined in Eckmann & Ruelle [1985] and 
T = L!::..t (Lis a positive integer, tlt is an infinitesimal integration time step). Clearly 
Xi(t, T) depend on T, t and position of the trajectory X(t); they measure the average 
perturbation growth over a given interval T. The global LEs are recovered taking the 
limit T _. oo. When L = 1, we call them local Lyapunov exponents, which are denoted 
by .:\i(t). Thus 

>.i(t) = J_ ln llxi(t + D..t)JI 
!::..t llxi(t)il 

(2.4) 

Since both Fi(t) and >.i(t) are local properties of the dynamical system (2.1), and 
give the directions of perturbations and their growth rates in those directions respectively, 
they can be used to identify the local instabilities. It should be mentioned that these 
perturbations are generally different from the eigenfunctions of the local Jacobian at time 
t. 

The algorithm we are going to use for computing the Ai(t) and F; is based on 
the standard method [Benetin et al., 1980; Shimada & Nagashima, 1979]. The method 
consists of evolving a set of initial orthonormal vectors, chosen at random in the tangent 
space Tn(t) at X(t) by integrating the equations for both basic state flow (2.1) and 
the perturbations (2.2) or (2.3). The method determines the growth rates Ai(t) and the 
associated F;(t). The Fi(t) components of a perturbation will grow or shrink exponentially 
with A;(t). 

The set, of orthonormal vectors obtained by the standard method characterize the 
local directions of stretching or contraction of any perturbation and is identical to the 
set obtained by orthogonalizing the Fi starting from F1 [Vastano & Moser, 1991]. We 
call this orthonormal set of vectors generated through the standard method Lyapunov 
vectors. The LVs span the same spaces as Fi(t), and therefore their dimensions are the 
same, but Fi(t) have the advantage that the exponential rates of growth or decrease of 
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any perturbation along Fi(t) are given by ,\(t) when t--+ both -oo and +oo [Eckmann 
& Ruelle, 1985]. 

Note that the standard method for calculating the global LEs is also a numerical 
integration method. This means that t is not strictly continuous, but that a small finite 
time step !::.t is used in the integrations. Let t = k!:lt, and k = 0, 1, 2, ... , N- 1, then , 
(2.4) can be written as >..i( k!:lt) = (1/ !::.t) ln(llxi( ( k + 1 )L::.t) 11/llxi( k!::.t) II) and the global 
LEs are calculated as 

. 1 N-1 1 IIXi((k + 1)/:lt)ll . 1 N-1 

Ai = hm N L --;\ ln II (k!:l )II = hm N L >..i(k!::.t). (2.5) 
N-+oo k=O ut Xi t N-+oo k=O 

Then, 

n 1 N-1 1 N-1 n t1 J~oo N E Ai(kf::.t) = J~ N E t1 Ai(kf:lt) 

1 t 1 N-1 
lim- r \7. H(r)dr = lim - L [\7. H(k!::.t)], 
t-+oo t Jo N-+oo N k=O 

(2.6) 

which shows that 2:~= 1 >..i(k!::.t) = \7 · H(k!:lt). Thus at any timet on the trajectory X(t) 
we have 2:~=1 >..i(t) = \7 · H(t). This relation is confirmed in our computations, and in 
turn it verifies our numerical algorithms. 

A system with sensitive dependence on initial conditions produces information in the 
sense that two different initial conditions, which are indistinguishable to a certain ex­
perimental precision, will evolve into distinguishable states in a finite time, because the 
difference between the two conditions grows exponentially fast [Eckmann & Ruelle, 1985]. 
Kolmogorov and Sinai applied the concept of metric entropy introduced by Shannon in his 
information theory to dynamical systems and were able to prove that this metric entropy 
is a topological invariant. This metric entropy describes the mean rate of creation of 
information, also known as measure-theoretic entropy. It is now called Kolmogorov-Sinai 
entropy [Eckmann & Ruelle, 1985]. 

Pesin [1977] was able to show that, under some conditions, a link exists between the 
K-S entropy of a domain V of the phase space and the LEs. He showed that KS = 

fv 2::1 >..i(X)p(X)dX, where m is the largest Lyapunov index number such that Am > 0 
and p(X) is the invariant natural measure, i.e. the probability density. In many cases, 
the )..i are independent of X, so that this equation can be simplified to KS = 2::1 .Xi. We 
will use this to calculate KS in this paper. If the probability density p is continuous in 
all directions Fi associated with positive .Xi, one has at least KS :S 2::1 .Ai(X) [Eckmann 
& Ruelle, 1985; Argyris et al.,1994]. 

The K-S entropy has turned out to be an extremely useful quantity in nonlinear dy­
namics. It is invariant under changes of coordinates. It is often used to define chaos: 
a dynamical system is defined to be chaotic if it possesses a positive KS. Generally 
speaking, in higher dimensions the K-S entropy rather than the first LE characterizes the 
creation of information [Schuster, 1988; Argyris et al.,1994J. 

One of the most important applications of the K-S entropy is that it determines the 
average time over which the state of a chaotic system can be predicted [Schuster, 1988; 
Argyris et al.,1994]. It has been suggested that the predictability time for a dynamical 
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system, especially for a higher dimensional system, is T"' (1/ KS) ln(Omax/Oo) (Chapter 
5 of Schuster [1988]). By analogy with TA 1 , one can define a time scale associated with 
the KS as TKs = (1/ KS). TKs is often called the Kolmogorov-Sinai time (see Dellago & 
Posch, 1997 and references therein). The arguments leading to the above equations are 
similar to those resulting in T;'l, but replacing ,\1 with KS. We shall calculate both TA1 

and TKs and compare them with Tp, a time scale based on the Local Metric Entropy. 
Despite its usefulness, K-S entropy is of little help when studying local and finite-time 

error growth, which are of primary concern for weather forecasting as discussed in Sec. 
2 .. What we need is an indicator that is able to capture the essential feature of local error 
growth in a dynamical system and identify the local information creation rate which is 
closely related to local error growth and predictability. 

As we mentiond in Sec. 1., in numerical weather forecasts the true initial errors are 
usually not known, and they can be optimally represented by an ensemble of perturbations 
with each member having equal probability in most cases. Hence qualifying the local 
growth rate and measuring the predictability time scale of an ensemble of perturbations 
of a dynamical system are particularly important in numerical weather forecasts. We 
provide such a tool in the next section. 

3. Local Metric Entropy 

At any time t, we consider an infinitesimal volume of ensemble points around X(t). 
All these points also represent an ensemble of perturbations with respect to the reference 

X(t). When all the points including the reference point X(t) in this small volume 
8(t) move for the next time step according to (2.1), the perturbations are simultaneously 
propagated by the linear propagator G, and this process results in the deformation of this 
small volume 8(t). For a fixed initial time, the sum of all the global LEs is obtained 
the volume growth rate when taking the limit oft --7 oo. [Benetin et al., Shimada 
& Nagashima, 1979; Argyris et al., Rasband, 1990]. 

If we follow the infinitesimal volume of this ensemble of perturbations, according to 
Shannon's information theory(see Schuster [1988] pp.ll0-113 and the Appendix and 
Hilborn [1994]), the information needed to describe the state of this ensemble of pertur­
bations within 8(t) is proportional to S(t), where S(t) =- L;Ee(t) P; ln and P; is the 
probability of the ith perturbation, where we define P ln P = 0 if P = 0. S is called the 
Shannon entropy and S is always positive. 

Since we are interested in the change of local information of this ensemble of perturba­
tions within 8(t), we must consider the information change from t tot -1- !it. Let ME(t) 
denote the rate of this information change, then 

dS 1 
ME(t) = -d = lim --;;-(S(t -1- b.t)- S(t)). 

t £>t-+O ut 
(3.1) 

This is our mathematical definition of ME(t) describing the rate of local information 
change of an infinitesimal volume which contains an ensemble of perturbations. We call 
this local metric entropy due to its relationship with the K-S entropy. 

Simliar definitions to (3.1) are given for a general dynamical system in Sec. 9.6 of 
Hilborn [1994], but the right-hand side of (3.1) is not studied further and only used as 
the first step to introduce the K-S entropy in this book. In this study we apply these 
definitions to an infinitesimal volume 8(t) around X(t) at any timet, in particular we 
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will calculate ME(t) defined by (3.1). We should note that ME(t) is a local quantity, 
it doesn't cover the whole phase space, where "local" is meant both temporally and 
spatially. Due to the deformation nature of 8(t) during the evolution, S(t) is a function 
of time. 

Following Hilborn [1994], if we average ME(t) over the whole trajectories or over the 
entire attractor in a dissipative system, we have the K-S entropy, i.e. 

1 N-1 1 
KS = lim lim ---;;;- ). [S((k + 1)L1t)- S(kL1t)] = lim lim ! " [S(N L1t)- 8(0)], 

N~oo ~r-+0 ]IJ u.t l:;:;:b N__,oo ~,_,a v ut 

where t = kilt, and k = 0, 1, 2, ... , N- 1. It should be pointed out that the information 
gain, or loss, is produced by the expanding directions only, and this process cannot be 
restored by contracting directions which do not generate new information. Hence, in 
studying the information change of the small volume of ensemble perturbations, we are 
only concerned with the expanding directions. 

From Sec. 2. we know that at any time t, there are in general some positive local LEs 
which are associated with the expanding directions in the tangent space rn(t). Suppose 
that there are m positive local LEs at t, Le. Ai,(t),.\i2 (t), ... , (t) > 0, where ij = 

1, 2, ... , n and j = 1, 2,, .. , m. Let xi, (t) E Fi;(t), Xi2 (t) E Fi2 (t), ... , Xim (t) E Fi,Jt) 
be the corresponding vectors which represent all the different expanding 
directions. Each of these positive corresponds to a local expansion of small areas 

the direction of xij· In the of X(t), a piece of manifold in the subspace 
spanned these perturbation vectors can be called local unstable of X(t), and 
similarly a piece of manifold in the subspace spanned the perturbation vectors with 
negative local LEs can be called local stable of X(t) [Eckmann & Ruelle, 1985]. 

The volume of the m-dimensional on the unstable manifold at t is given 
by ( t) = I ( t) !\ Xi2 ( t) 1\ . 0 • ;\ Xim ( t) II, where the denotes the exterior 
product of it is a generalization of the ordinary cross product of vectors in three 
dimensional space. Due to the expanding nature of the unstable rnanifold, after one time 
step \!,., ( t) will become V.m( t + = llxd t + !:1t) !\ Xi2 ( t + llt)l\, ... , I\X;m (t + llt) II· 
From (2A) one has Xi1(t+ = xit(t)e.\;lt:.t, Xi2(t+ilt) = Xi2(t)e.Ai2t:.t, ... ,xim(t+Llt) = 
Xim (t)e>..;mL:.t. Therefore we have + tlt) = "L7'=1 (t) 

Note that, since xi(t) (E Fi(t)) are all very small perturbations in the tangent space at 
X ( t), it is not difficult to see that Vrn ( t) is also very small. One can think of this volume 
expansion process as follows: an m-parallelepiped of points whose volume is Vm(t) at 
t evolves into another stretched rn-parallelepiped of points with volume + Llt) at 
t + ilt 

At initial time, the m-parallelepiped of points contains an ensemble of initial conditions 
around X(t0 ). The distances between all the points and the reference point X(t0 ) consist 
of an ensemble of perturbations. At any time t, there is always an ensemble of expanding 
perturbations (say m perturbations) which are represented by Xi1 (t),xi2 (t), ... ,xim(t) 
in the tangent space. The volume of this m-parallelepiped of expanding perturbations 
changes from time to time under the linear action of the propagator G. 

For a classical dynamical system, the number of states is generally proportional to the 
volume in phase space [Rasband, 1990]. We recall that in ensemble numerical weather 
predictions, all the initial errors are usually assumed to have equal probabilities to op­
timally represent the true unknown errors [Buizza & Palmer, 1995]. Here we assume 
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that them-parallelepiped has Q(t) states and each is equally probable. This assumption 
should be well satistified by the m-dimensional parallelepiped. One has P; = 1/Q and 
8(t) = lnQ(t), where Q(t) = aVm(t) and a is a real constant. From (3.1), we have 

ME( ) = ]__ l Q(t + Llt) = ]__ 1 Vm(t + Llt) = ~, ( ) 
t Llt n Q(t) Llt m Vm(t) ~ "''j t · 

(3.2) 

where (t) > 0. We notice that the local information creation rate is equal to the local 
volume expanding rate in the local unstable space under our assumption. It is assumed 
that at any time t, each member of the ensemble perturbations in the m-dimensional 
parallelepiped is equally probable. In fact this is not a strong restraint on most classical 
dynamical systems. Because them-parallelepiped is composed of an ensemble of expand­
ing perturbations, the local volume growth rate at any time t itself is fascinating and 
important in ensemble predictability study. 

We remember that the standard method [Benetin et 1980; Shimada & Nagashima, 
1979] for calculating the global LEs was actually developed from considering the volume 
growth rate of a k-dimensional parallelepiped, here k is an integer and k S n. For a 
fixed initial time t 0 , the k-th order LE which is the sum of the first k global LEs is 
obtained taking the limit oft -'> oo. This has become a standard way of introducing 
the so-called standard method in textbooks [e.g. Argyris et al., 1994; Rasband, 1990]. A 
similar consideration to this has been taken here in deriving the LME. 

Equation (3.2) offers an easy way of calculating the local information creation rate for 
a dynamical system. We should emphasize again that L,'j=1 Aij ( t) itself is very interesting 
to no matter if the assumption is valid or not. We will use this to calculate the 
LME in this papeL 

ME(t) is more useful thanKS since it quantifies the local sustainable ensemble pertur­
bation growth rate. It includes all the contributions from all the expanding perturbations 
at any time. The dependence of local ensemble perturbations on the dynamics of the flow 
fields can be studied by calculating LME. From eq. (3.2), one can see that LME doesn't 
depend upon the amplitudes nor the configurations of initial perturbations, it depends 
on the positive local LEs which are the intrinsic properties of dynamical systems. Thus 
LME directly represents the local instability properties of the flows. We adopt LME as 
a measure of the error growth in this paper. 

It is expected that the maxima of ensemble instability can be identified studying 
the time series of ME(t). In the mean time ME(t) can also be used to quantify the 
predictability time for a dynamical system during a given period of time. We define 
Local Metric Entropy time by Tp = (1/ (ME(t)) ), where (-) is the average over a time 
intervaL This time interval can be extended to arbitrary time scales of interest. We will 
compare Tp with T>-. 1 and T xs in our numerical experiments. 

4. N ume:rical Results 

In this section, we carry out numerical experiments with two simple models, both of 
which originate from atmospheric dynamics, and test the utility of ME(t). The inde­
pendent variables in these two models are non-dimensional and, for time integrations, a 
fourth-order Runge-Kutta scheme is used with a time step 0.001 units in all the numerical 
computations. 
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4.1. The Lorenz system The first model is the well-studied Lorenz system[Lorenz 
1963] with only three degrees of freedom. This system has been studied largely as a 
good example of a simple nonlinear dynamical system exhibiting chaotic behaviour. The 
relevant differential equations are dxjdt = -Bx+By; dyjdt = Rx-y-xz; dzjdt = xy-bz 
. We choose the parameters as follows: B = 16.0, b = 4.0 and R = 45.92. From almost 
any initial point in the phase space the trajectory will converge to the familiar butterfly 
strange attractor. Any small perturbation vector at any point along a time-varying 
trajectory is described by the tangent linear system. 

We start the integration for 19990 steps from the initial condition (10.0, 0.0, 30.0) which 
is chosen at random. This is to allow the trajectory converge onto the attractor. Once 
the trajectory is on the attractor, we then simultaneously integrate both the nonlinear 
system and the associated tangent linear system for another 5 x 106 steps. This will ensure 
that the trajectory is on a well established attractor. All our numerical experiments 
discussed below for the Lorenz system are based on the last 2000 steps segment, i.e. from 
t = 4998 X 103 to 5 X 106 . 

Fig. 1a shows the first local LE, .\1(t), the LME, ME(t), the real part of the largest 
eigenvalue, J-L1 (t), of the tangent linear matrix A(t) which appears in (2.2), the first 
optimal local growth rate, 171 (t), and the K-S entropy, KS. The instantaneous optimal 
growth rate is defined as the largest eigenvalues of ~(A+ At) [Frederiksen & Bell 1990; 
Farrell & Ioannou, 1996]. The Re[J-Li(t)] can be understood as the growth rates along 
the normal modes. It is interesting to compare Re[J-L1(t)] with 171 (t), .\1 (t) and ME(t), 
although the normal mode theory applies when the basic flow is steady, i.e. Re[J-Li] can 
be used to quantify the perturbation growth when A is independent of time. 

Displayed in Fig. 1b are the 2nd and 3rd LEs, both global and local. One can easily 
see that the periods during which .\1 (t) < 0, but .\2 (t) > 0, do exist in this short time 
interval. This means that .\1(t) fails to identify the error growth property during some 
time intervals. Both .\3 (t) and .\.3 are always negative, which shows that the perturbation 
is a decaying structure along the 3rd LV direction. It is this feature that makes the strange 
attractor possible. One can also see that the optimal growth rate bounds nearly all the 
instantaneous growth rates when these growth rates are positive during this selected time 
segment. Both 171 (t) and Re[J-L1(t)] suffer from the similar problem as .\1 (t), i.e. there 
are some times when 171 (t) < 0 and Re[J-L1(t)] < 0 while as .\2 (t) > 0. We conclude 
that neither .\1 (t) nor 171 (t) and Re[J-L1 (t)], can be used to quantify the local perturbation 
growth during all time periods in this simple dynamical system. 

Fig. 2a shows the linear correlations of the ME(t) with >.i(t) where i = 1, 2, 3, Re[J-L1(t)] 
and t71 (t). A near zero coefficient between ME(t) and .\2 (t) indicates that they are 
nearly uncorrelated. We expect that .\1 (t) makes a large contribution to ME(t) since 
the correlation coefficient between them is close to 1. In contrast, .\2 (t), which oscillates 
around zero and has small magnitude, contributes little to the ME(t). We understand 
that .\1 (t) + .\2 (t) + >.3 (t) = -21.0 for the Lorenz system. Hence, one would expect 
a highly negative relationship (close to -1) between ME(t) and A3(t), i.e. an increase 
in ME(t) is accompanied by a decrease in .\3 (t). This is also shown in Fig. 2a. The 
correlations of ME(t) with both Re[J-L1(t)] and 171 (t) are also close to 1. 

We have seen from Fig. 2a that .\1(t) dominates the ME(t). This is not surprising, 
since the total number of degrees of freedom of the system is only three. It is also the 
reason why >.1(t) is able to quantify the local error growth to some extent. However, this 
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Fig. 2. (a) Linear correlations of ME(t) 
with Ak(t), here k = 1, 2, 3, Re{J.L1 (t)} and 
0'1 (t). (b) The time series of autocorrela­
tion functions of x, y, z and lvl with the 
delaytimeT. Also shown are = (l/.\1) 
and Tp = (1/(ME(t))). 

is not accurate for large dynamical systems as we will see in our next numerical example. 
In general the larger the systems are, the greater the difference between ME(t) and .A1 (t) 
would be, thus the smaller the correlations between them would be. 

We argue that for large dynamical systems, ME(t) should be used to quantify the 
local perturbation growth. This is particularly true in numerical weather forecasts where 
the true initial errors are not known. A common and realistic practice is to represent 
the unknown true errors by an ensemble of perturbations. Hence, to study the growth 
rate of an unknown error in a dynamical system, it is best to analyze the error growth 
rate of an ensemble of perturbations. With ME(t), we don't need to integrate all the 
ensemble members, because ME(t) describes the local error growth rate of an ensemble 
of perturbations. 

we examine the extent to which the future state of a chaotic dynamical system 
can be predicted from an initially chosen condition. A traditional measure of the loss 
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of information during prediction has been the autocorrelation time of a variable of a 
dynamical system. For a chaotic system the autocorrelation of a variable that is sensitive 
to initial conditions rapidly falls to zero as the delay time T is increased. Beyond a 
certain time Tc the variable is uncorrelated with itself and the system loses the memory 
of its previous states [Argyris et al.,1994]. We define this autocorrelation time Tc as the 
first zero of the autocorrelation function. Fig. 2b shows the autocorrelation functions of 
x, y, z and the Euclidean norm of the phase velocity lvl with the delay time T. Also 
shown are T:x. 1 = (1/ .AI) and Tp = (1/ (ME(t)) ). The Lyapunov time is the same as the 
K-S time since KS = .-\1 for this system. It is evident that Tp is much closer to all the 
autocorrelation times of x, y, z and lvl than T>.1 or TKs, thus supporting our argument 
that Tp is a useful measure of predictability time. 

4.2. Simplified baroptropic model The second dynamical system that we con­
sider consists of severe truncation of the barotropic vorticity equation describing two­
dimensional flow on the sphere. We use the spectral method and represent our system 
by 27 independent variables without using any fast Fourier transform and the popular 
spectral transform method[Bourke, 1972]. 

Barotropic model is the earliest developed and simplest model for weather prediction 
[Bourke, 1972]. For flow on a sphere, the barotropic vorticity equation is given by ~ = 

-J('IjJ, ~ + 20f-.l)- TJ'V'2~, where J('ljJ, ~) = ~~- ~M, also~= '\12 '1/J is the vorticity, 'ljJ is 
the streamfunction, tis time, .A is longitude, J-.l is sine of latitude, n is the earth's angular 
velocity and TJ is the coefficient of eddy viscosity. 

We expand the streamfunction and vorticity in spherical harmonics, for example 

'1/J(.A, J-.l, t) = L 'I/Jmz(t)P1m(J-.l) exp(im.A), 
m,l 

where P1m(J-.l) are orthonormalised Legendre functions, m is the zonal wave number and 
l is the total wave number. The prognostic spectral equations may then be expressed in 
terms of Re('I/Jmz) and Im('I/Jmz). With 

X=( ... , Re('I/Jmz), ... , Im('I/Jmz), .. . f 

denoting the column of real and imaginary parts of '1/Jmz, the spectral equations can be 
written formally in the form of (2.1). For simplicity, the spectral equation is truncated 
to have only 27 independent variables. Details of the model can be found in Wei [1996] 
and Wei & Frederiksen [1998]. 

As with the Lorenz model, we do not propose to use this simple model to simulate 
any real atmospheric phenomena, as it is far too simple compared with current standard 
numerical prediction models. The main reason for using this model is that it has many 
more degrees of freedom than the Lorenz model. Thus the difference between the LME, 
first LE and K-S entropy can be better demonstrated. Secondly, it is simple to use and 
computationally very cheap. 

First let us look at the inviscid situation, in this case the system is conservative. 
The dynamics in different regions of the phase space could be very different [Benetin et 
al., 1980]. Fig. 3 shows the numerical results from Run A whose statistical and ergodic 
properties were studied in Wei [1996]. The integration is from the same initial condition as 
that in Wei [1996] and carried out for 95500 steps. Displayed in Fig. 3a are ME(t), the first 
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three local LEs (.X1(t), .X2(t) and .X3(t)) and local exponential growth rate correspondipg 
to the most unstable Lyapunov vector .Xm(t) = max[.A1(t), .A2(t), ... , .Xn(t)}. 
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Fig. 3. Numerical results from 
Run A. (a) The time evolutions of 
IVIE(t), the top three numbered local 
LEs (:\1(t), A2(t), A3(t)) and local expo­
nential growth rate corresponding to the 
most unstable Lyapunov vector 
max{:\1(t), :\2(t), ... , An(t)}. (b) Corre­
lations Of IVIE(t) with ,\k(t), where k 
1, 2, 3, 4, 5 and Am(t). 

It is obvious that .Xm(t) is very differ-
ent from .X 1(t). This shows that .X1 (t) 
is far from being the maximum growth 
rate. ME(t) is different from both .Xm(t) 
and .X1(t), the correlations of ME(t) with 
them are very small, 0.35 and 0.3 re­
spectively, as displayed in Fig. 3b. Un-
like the Lorenz system, where ME(t) 
is dominated by .X 1(t) because of the 
very small number of degrees of free-
dom, there is almost no linear relation-
ship between ME(t) and .X 1 (t) or .Xm(t) 
here. Also shown in Fig. 3b are the cor­
relations between ME(t) and the other 
dominant local LEs .Xk(t) with k = 1, 2, 3, 4, 5. 
All of these correlations are quite small 
in this system. 

Similar numerical analyses from Runs 
B and C, which were studied along with 
Run A in Wei[l996] have been consid­
ered, but with an integration interval 
of 104 steps. The results are not shown 
here, the above conclusions for Run A 
also hold for these other two runs. As 
discussed above, we argue that the LME 
is a useful measure of the time scale of 
predictability for a dynamical system. 
Next, we examine this for different val­
ues of viscosity for Runs A, B and C. 
After initial nonlinear integrations for 
104 steps, both nonlinear and pertur­
bation equations are then integrated si-
multaneously for another 105 steps for 

Runs B and C and 106 steps for Run A, which converges more slowly than Runs B and 
C. 

The numerical results displayed in Fig. 4 are based on the last 104 steps for each of 
these three runs. As in Fig. 2b, we compare Tv, T>q and Txs with the autocorrelation time 

of the Euclidean norm of phase position ldl = /'E.~=l 1Xk(t)l2. Again Tp is much closer 
to the autocorrelation time Tc compared with T>, 1 and T xs for all values of viscosity that 
we considered in Run A. This is also true for Run B. For Run C, all the predictability 
time scales are relatively close to Tc with the T;..1 even closer. 

However, we should mention that the autocorrelation time estimates the rate of infor­
mation loss based on the evolution of just one variable. The autocorrelation times for 
different variables may be different as demonstrated in Fig. 2b for the Lorenz system. 
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Nevertheless, our numerical results do indicate that Tp is reasonably close to the auto­
correlation time Tc of ldl for all the tested cases. Both Lyapunov time T>,. 1 and the K-S 
time TKs are very different from Tc in Runs A and B. Runs A, Band C start from very 
different regions in the phase space. The first LE and K-S entropy in each run are in fact 
the average values for the period we have integrated. · 

5. Conclusions and Remarks 

We have presented theoretical arguments and numerical experiments in this paper 
supporting the usefulness of the Local Metric Entropy. The utility of LME has been 
demonstrated in comparisons with Lyapunov exponents (both global and local) and K-S 
entropy in studies of error growth. In particular, we have demonstrated that the LME 
employed in this paper is very useful in describing the local error growth rate of an 
ensemble of perturbations and estimating the predictability time of dynamical systems 
during given period of time. The local growth rate of an ensemble of perturbations 
with equal probability is determined by the sum of positive local LEs which are the 
intrinsic properties of a dynamical system, it doesn't depend upon the amplitudes nor 
the configurations of initial perturbations. It is evident that LME directly represents the 
local instability properties of the flows. The above conclusions make LME particularly 
important and useful in ensemble weather forecasts. 

The method is by no means limited to the dynamical systems derived from atmo­
spheric dynamics, although these models were used here to illustrate our ideas. The LME 
is expected to be potentially useful in dealing with chaotic phenomena in a wide range of 
applications. When applied to more general complex dynamical systems, the method can 
improve our understanding of the detailed mechanism of true local error growth and the 
related structures. At the same time, the characteristic predictability time limit during 
a specified period of time can be estimated with better accuracy. 

The LME is easier to compute than the LEs and the K-S entropy. It should be appli­
cable to systems in which KS = I:>..;>O Ai doesn't hold, e.g. one of the notable restrictions 
for this relation is that the LEs are the same for almost all initial conditions, i.e. inde­
pendent of position in phase space. Without this simple restriction, the K-S entropy can 
not be found easily. 

We notice that when LME is maximum, the instability properties have not been shown 
significantly different compared with the instability properties when A1 ( t) is maximum 
in these two simple dynamical systems. The advantages of LME may be better demon­
strated in larger systems. Applications to more complex dynammical systems are b-eing 
carried out. In fact we are planing to use the method proposed in this paper to atmo­
spheric numerical models to study atmospheric and climate phenomena such as blocking 
and El Nino-Southern Oscillation in the future. 

In the other application aspects, we expect that the local LVs associated with the 
largest local error growth rates would be good perturbations for ensemble predictions 
which will be widely used at the meteorology centers around the world. These vectors 
are somehow similar to the "breeding" vectors which have been used at NCEP (National 
Centers for Enviromental Prediction, USA) [Toth & Kalnay, 1993]. The breeding vectors 
are actually the superpositions of the leading LVs sampled at different periods of time, 
but they are not the vectors associated with the largest local LEs. This is demonstrated 
clearly in our two experiements. 
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The importance of ensemble predictions has been realized due to the difficulty of finding 
the true intial errors and the chaotic nature of atmosphere and climate systems. The. 
future numerical weather forecasts will be based on ensemble predictions. One of the 
critical challenges to the scientists in meteorology community is how to choose the best 
possible initial enemble perturbations which can represent the true errors as accurate 
as possible. Since these true errors are not known, they are assumed to be represented 
by the fastest growing combinations of possible analysis errors. At ECMWF (European 
Centre for Medium-Range Weather Forecasts), singular vectors have been used as initial 
errors for the ensemble prediction system [Buizza & Palmer, 1995]. 
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Fig. 4. Comparison of time scales based on 
different measures as functions of viscosity 
for (a) Run (b) Run B; (c) Run C. 

Since operational ensemble forecasts 
began at ECMWF and N CEP, there 
has been controversy in the meteorol­
ogy literature about the suitability of 
their different methods for generating 
the ensemble initial perturbations [Toth 
& Kalnay, 1993; Buizza & Palmer, 1995; 
Farrell & Ioannou, 1996]. Are the ini­
tial ensemble perturbations best repre­
sented by the breeding vectors, fastest 
growing singular vectors or the LVs as­
sociated with the largest local growth 
rates? There is still no definite answer 
to this question yet. It would be in­
teresting to compare the local error growth 
rate and the predictability time scale 
defined by LME with the skills of an 
ensemble prediction systems based on 
breeding vectors, singular vectors, finite­
time normal modes and Monte Carlo 
method that was first studied by Leith 
[1974] in meteorology. In a Monte Carlo 
ensemble forecast, the large number of 
initial perturbations are usually chosen 
at random with equal probability in or­
der to locate the true unknown errors. 
All the members of the ensemble will be 
integrated, this is very expensive. By 

using the LME, we don't need to carry out this large number of integrations. 
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