
38

THE SOLUTION OF SINGULAR-VALUE AND EIGENVALUE

PROBLEMS ON SYSTOLIC ARRAYS

Richard P, Brent and Franklin To Luk

o. SUM~1ARY

Parallel algorithms ax'€.! praS811:ted for :;;omptrti]."!i.g cl s:LngnlaJ::-=valu€

decomposition of an m x n mai:rix {m::: nl and an eigenvalue

decomposition of an n x n symmetric matrix. A linear array of 0 (n)

processors is proposed for the singular-value problem and the associated

algorithm requires -time 0 (runS), where S is the n1llIliber of Jacobi

sweeps (typically s:so 10). A square array of 0 processors wi-th

nearest-neighbor communication is proposed for the eigenvalue problem;

the associated algorithm requires time o(nS).

1. INTRODUCTION

A singular-value decomposition (SVD) of a real m x n (m::: nl

matrix A is its factorization into the product of three matrices:

(1.1) A

where U is an m x n matrix with orthonormal columns, L: is an

n x n nonnegative diagonal matrix and the n x n matrix V is

orthogonal. This decomposition has many important scientific and

engineering applications (cf. [1,11,27,28]).

39

If the ma>crix A is square (Le., m= nl and symmetric, we may

adjust the sign of the elements of I so that U = V. We then obtain

an eigenvalue decomposition:

(1. 2) A

where U is orthogonal and D diagonal. The advent of massively

parallel computer architectures has aroused much interest in parallel

singular-value and eigenvalue procedures, e,g, [2,4,5,6,7,9,13,14,16,

18,20,22,23,24,25]. Such architectures may turn out to be indispensable

in set-tings where real-time computation of the decompositions is

required [27,28]. Speiser and Whi-tehouse [27] survey parallel

processing architectures and conclude that systolic arrays offer the

bes'c combina-tion of characteristics for utilizing VLSI/VHSIC technology

to do real-time signal processing. (See also [17,28].)

In this paper we present an array of O(n) linearly-connected

processors which computes an SVD in time o (mnS) . Here S is a slowly

growing function of n which is conjectured to be a (log n); for

prac-tical purposes S may be regarded as a constant (see [21]). Our

array implements a one-sided orthogonalization method due to Hestenes

[15]. His method is essentially the serial Jacobi procedure for finding

an eigenvalue decomposi-tion of the matrix A TA , and has been used by Luk

[20J on the ILLIAC IV compu-ter. We also describe how one may implement

a Jacobi me"t-l1od on a t~lo-dimensional array of processors to compute

an eigenvalue decomposition of a symmetric matrix. OUr array requires

0(n2) processors and o(ns) units of time. Assuming that S=O(log nl,

this tLme requirement is within a factor O(log nl of that necessary

for the solution of n linear equations in n unknovms on a systolic

array [2,3,17].

40

Results similar to ours have been reported in the

literature. For comppting the SVD,Sameh [23] describes an

implementation of Hestenes'method on a ring of O(n) processors.

Suppose n is even (the result is similar for an odd n). At

each orthogonalization step n
2

column rotations are performed.

Sameh's permutation scheme requires 3n - 2 steps to ensure the

execution of every possible pairwise rotation at leas~once; our

permutation scheme (presented in Section 3) requires only n - 1

steps.

Parallel Jacobi methods for computing eigenvalues are

given in [7,16,22]. However, the procedure of Sameh [22] may be

unsuitable for multiprocessor arrays. For simplicity, assume again

that n is even, so n
2

off-diagonal elements can be set to zero

at each elimination step. Let us compare the number of permutations

necessary for the annihilation of each off-diagonal element at least

once. OUr procedure (see Sections 3 and 6) requires n - 1

permutations, which is optimal; that of Chen and Irani [7] requires

n permutations. The scheme of Kuck and Sameh [16] is worse.

Their basic scheme appears to cycle every 2n - 2 steps and to miss

some off-diagonal elements. A modification ("the second row and

column are shifted to the n-th position after every (n - 1) orthogonal

transformations") can be made to overcome this problem, but

the modified scheme requires (n - 1)2 permutations [7].

Let us generalize the notion of a "sweep" and use it to

denote a minimum - length sequence of rotations that eliminates each

off-diagonal element at least once [7]. It is probably fair to assume

41

that the Jacobi procedures in [7, ,16J and in this paper require an

equal number (say S) of sweeps for convergence. For the algori,thms

presented in this paper a sweep always consists of n(n - 1)/2

rotations (the minimal number possible), but -this is not the case

for the Chen and Irani or Kuck and Sameh algori'chllls mentioned above.

The archi,tecture proposed in [7] is a linear array of 0 (nl processors;

the associated Jacobi method requires time o(n2s). The architecture

described in [16] is a square array of O(n) processors, with boundary

wraparounds and a broadcas't unit. The associated algorithm requires

')

In comparison, our procedure requires O(n~) processors

and 0 (nS) units of ,time.

The principal. results of this paper were first reported in

[4,5 J. A related SVD algori,thm is presen'ted by the authors and Van Loan.

It requires 0(n2) processors and 0(n8) time to compute 'i:..he

singular values of an 11 x n matrix. For a generalization of this result,

see [6J.

This paper is organized as fol.lows. Sections 2-4 are

devoted to the singular-value problem and SectionG5-'1 to the eigenvalue

proble."ll. Hestenes'method is reviewed in Section 2. The ne", ordering

is described in section 3 and the corresponding SVD algorith..m in Section 4.

The serial Jacobi method is outlined in Section 5. Details are filled in

and some variations and extensions of the basic algoriUlln are mentioned in

S8ction 7.

The SVD algorithm described in Sections 3-4 below is being

implemented on an experimental 64-processor systolic array by Speiser

at the Naval Ocean Systems Center (San Diego) .

42

HESTENES'METHOD

We wish to compute an SVD of an m x n matrix A, where

m ::: n. An idea is to generate an orthogonal matrix V such that

the 'crans formed matrix AV = W has orthogonal columns" Normalizing

the ,euclidean length of each nonnull column to uni'cy, we get the

relation

(2.1)

where D is a matrix Itlhose nonnu11 columns form an orthonormal se'c of

vectors and Z is a nonnegative diagonal matrix. An SVD of A is

given by

(7. .1') A

As a null colUlI1lll of U is always associated with a zero diagonal

element of Z, there is no essential difference between (1.1) and (2.1').

Hestenes [151 uses plane rotations to construct V. He

generates a sequence of matrices {'\:} using the relation

where Al and is a plane rotation. Let
(k) (k)

= A Qk '\: - (~1 ' •• ":-n)
and Qk ::

(k)
(qrs l, and suppose Qk represents a rotation in -the (i, j)

plane, with i < j, i.e.

cos a ,
(2.2)

-sin 8 ,

(k)
qij

(k)
qjj

43

sin S

cos a .

We note that postmul"tiplication by Qk affects only

and that

(lI:)
a.
-~

(2.3) (a~k+l), a~k+l)
-~ -J

(k) a ~k)) C c~sS sinS).
(~i '~J -s~na cosa

and
(k)

a.
-J

The rotation angle a is chosen so that the two new columns are orthogonal.

Adopting the formulas of Rutishauser [21], we let

(2.4) II (kl112 , i3 - ~j 2' Y -

We set e = 0 if Y = 0" otherwise we compute

l;
i3 - a,

= ---::z:y

(2.5) ·t
sign (1:;)

It;! + 11 +~

cose
1

~

(k) T (k)
a. a.
-~ -J

44

and sine t cos8 •

The rotation angle always sat:isfies

(2.6) <
Ti

4

However, there remains the problem of choosing (i,j), which is usually

done according to some fixed cycle. An objective is to go through all

column pairs e",actly once in any sequence (e sweep) of n (n - 1) /2

rotations. A simple sweep consists of a cyclic-by-rows ordering:

(2 .7) (1 ,2) , (1,3) , ••• r (1, n) r (2 ,3) , ••• , (2 ,n) , (3 ,4) r ••• , (n-l ,n) •

Forsythe and Henrici [10] prove that, subject to (2.6), the cyclic-by-rows

Jacobi method always converges. Convergence of the cyclic-by-rows Hestenes'

method thus follows.

Unfortunately, the cyclic-by-rows scheme is apparen'tly not

amenable to parallel processing. In section 3 we present an ordering

that enables us to do L%J ro'tations simultaneously 0 The (theorei;ical)

price we pay is the loss of guaranteed convergence. Hansen [12]

discusses the convergence properties associated with'various orderings

for the serial Jacobi methodo He defines a certain "preference factor"

for comparing different ordering schemes. Our new ordering is in fact

qui te desirable, for it asymp,totically optimizes the preference factor

as n +00. Thus, although the convergence proof of [10] does not apply,

we expect convergence in practice to be faster than for the cyclic-by-

rows ordering. Simulation resul,ts support this conclusion.

45

To enforce convergence, we may choose a threshold approach

[30, pp.277-278]. That is, we associate with each sweep a threshold

value, and when making the ·transfoDlIations of that slt/eep, we ami t any

rotation based on a normalized inner product

which is below the threshold value. Al though such a stra·tegy guarantees

convergence, we do not know any example for which .our new ordering fails

to give convergence even without using thresholds. Our method, like

the cyclic-by-rows method, is ultimately quadratically convergent [29J.

The plane rotations are accumulated if the matrix V is

desired. We compute

with VI

by v(k)

= 1. Denoting the r-th Column of Vk (respectively

(respectively v (k+l)) ,
_r we may update both IlK and _r

simultaneously,

I r (k)
(

,l.ne 1 (k+1) (k+1) (kll feo,e a. a. a. a,
-~ -J -~ -J

(2.8)
(k+l) (k+l) v~k)

v (k'i sinS case

J
v. V.
_l -J -~ -J

46

3. G~NERATION OF ALL PAIRS.

In this section we show how O(n} linearly-connected

processors can generate all pairs (i,j), I ~ i < j ~ n, in O(n}

steps. The application to the computation of the SVD and of the

symmetric eigenvalue decomposition is described in section 4 and in

sections 6-7, respectively.

First, suppose n is even. We use n/2 processors

PI' ••• , Pn/2 , where Pk and Pk+l communicate (k = 1,2, ••• ,

n/2 - l) • Each . processor Pk has registers ~ and ~ , outpUt

lines ou~ and ou~, arid input lines inLk and i~, except

that outLl , ·inLl , OUtRn/2 and inRn/2 are omitted. The

output out~is connected to the input inLk~l as shown in

Figure 1.

ILl R11 inR1 outL~ B inRZ outL: B inR3 outL~ B
P1 Pz P3 P4

Figure 1: Inter-processor connections for .n = 8

47

Initially = 2k - I and ~ 2k. At each time step processor

Pk executes the follo\lIing program:

if Lk < ~ then process (Lk'~) else process (~,Lk);

if k=l then out~:=P~

else if k < n/2 then out~:=~;

if k > 1 then outLk:=~;

{wait for outputs to propagate to inputs of adjacent processors}

if k < n/2 then Rk:=in~ else ~:=Lk;

if k > 1 then Lk:=inLk ;

Here ''process (i,j'j'means perform whatever operations are required on

the pair (i,j), I ,,; i < j ,,; n 0 The operation of the systolic array

is illustrated in Figure 20

We see that the index 1 stays in the regis'cer Ll of

processor Pl. Indices 2, 0 •• , n travel through a cycle of

length n-l consisting of the registers LZ,L3, ... , Ln/ 2 ,Rn / 2 ,

R R During an·y n-l consecutive steps a pair (i,J") n/2-1' ... , l'

or (j,i) can appear in a register pair (Lk'~~) at most once. A

parity argument 8ho"'18 that (i,j) and (j ,i) can not both occur

(see Figure 2). Since there are n/2 register pairs at each of n-l

time steps, each possible pair (i,j) , 1"; i < j ,,; n , is processed

exactly once during a cycle of n-1 consecutive steps.

48

Figu!e 2: Full cycle of the systolic array for n 8

If n is odd, we use rdf\ processors hut initialize

- 2k - 1 for k-l , ...• and omit any

calls from processor

It is interesting to note that similar permuta-tions are "",ell

known" for use in chess and bridge t.ournamen'cs, but have apparently

not been applied to parallel computation.

4. A ONE-DIMENSIONAL SYSTOLIC ARRAY FOR SVD COMPUTATION

Assume that n is even {else we can add a zero column to A

or modify the algorithm as described at the end of Section 3), We

use n/2 processors PI' .. " Pn/2' as described in Section 3,

except that Lk and are now local memories large enough to store

a column of A (Le., Lk and ~ each has at least m floating-point

49

words) . Shift regis·ters or other sequential access memories are

sufficien·t as we do not need random access -to the elements of each row.

Suppose processor contains column
c

a.
-~

in and

column
c

a.
-J

in It is clear that can implement the column

or-thogonalization scheme in time Oem) by making one pass through

c
and

c
to the inner produc'cs (2.4) , and another a. a. compute pass

~~ -]
to

perfoTIl1 -the transformations (2.3) or (2.8) . Adjacent processors can

then exchange columns in the same way that the processors of Section 3

exchange indices. This takes time 0 (m) if the bandwidth bet1iJeen

adjacent processors is one floating-point vvord. (Alternatively,

exchanges can be combined with the transformations (2.3) or (2.8).)

Consequently, we see tha-t n/2 processors can perform a

full sweep of the Hestenes method in n - 1 steps of time O(m) each, i.e.,

in total 'cilue 0 (mnl. Ini-tial.ization requires tha-t the (2k-l) -th

and 2k-·th colurrms of p, be stored in ·the local memory of processor

Pk for k = 1, ••• ,11./2; clearly this can also be performed in time

O{mn) .

'l'he process is iterative. Suppose S sweeps are required -to

orthogonalize 'che columns to full machine accuracy. We ·then have a

systolic array of n/2 processors which computes the SVD in time O(mnS).

By comparison, -the serial Hestenes algorithm takes time 0(mn2s). Our

simulation results suggest -that S is 0 (log n) 1 although for practical

purposes we can regard S as a constant in the I'ange six -to ten [21].

Af-ter an integral nUI11ber of sweeps the columns of the matrix

W ::: AV (see (2.1» "7ill be s·tored in the systolic array (two per

processor). If V is required, i'c can be accumulated a·t the same time

that W is accumulated, at the expense of increasing each processor's

local memory (but the computation time remains O(mnS»: see (2.8).

50

5. SERIAL JACOBI METHOD

We now consider the related problem of diagonalizing a

given n x n symmetric matrix A The serial Jacobi method

generates a sequence of symmetric matrices via the relation

where is a plane rotationo Let and suppose

represents a rotation through angle 8 in the (i, j) plane, with i < j

(see (2.2)). We choose the rotation angle to annihilate the (i,j)

element of ~. If
(k) a, , = 0, we do not rotate, i.e., e = o.

:LJ

we use the formulas in [21] to comput:e sinS and cosS

(k) (k)
a .. - a ..

JJ Ll

2a ~l~)
~J

t
sign (0 ·tanS ,

(5.1)

cosS
1

and

sinS t cos8 •

Note that the rotation angle S

\8\ <

may be chosen to sa·tisfy

1T

4

Otherwise

The new matrix differs from ~ only in rows and columns i

and j. The modified values are derined by

51

(k+l)
aii

(k)
aii - t

(k)
a ij

(k+l) (k) + t
(k)

a jj a jj a ..
1J

(5.2)
(k+l)

a ij
(k+l)

a ji
,., 0

(k+I) (k+l)
cosS

(k) (k)
a iq a . a.

q1 1q Jq ,m' a. 1
(q " i ,j) •

(HI) (HI)
sinS a~k)+ cosS

(k)
a jq a qj 1q

a jq

Again we choose (i,j) in accordance to the new ordering introduced

in Section 3. The comments that were made in Section 2 concerning

various aspects (convergence proof, convergence rate, threshold approach,

etc.) of the Hestenes method apply equally well here to the Jacobi

procedure.

6. AN. IDEALIZED SYSTOLIC ARCHITECTURE

In this section we describe an idealized systolic architecture

for implementing the Jacobi method to compute an eigenvalue decomposition

of A. The architecture is idealized in that it assumes the ability to

broadcast row and column rotation parameters in constant time. In Section

7 we mention how to avoid this assumption.

Assume that the order n is even and that we have a square

array of n/2 by n/2 processors, each processor containing an 2 x 2

submatrix of A == (a~. '). Initially processor P ..
1J

contains

[
a 2i- 1 ,2 j -l a2i-l,2j

a 2i ,2j-l a 2i ,2j
for i,j 1, ... ,n/2

to its nearest neighbors

and P ..
1J

general P ..
1J

P i±1, J' and P. . +) (see Figure
1,J- a... 8"1

contains four real numbers 1J ~1J , l Y ij U ij J

is connected

3) • In

52

where

The diagonal processors p, .
J.:l.

(i '" 1,0 •• ,n/2) act diffel:errtly

from the off-diagonal processors P (i ~ j 1 < i j < n/2) Each t.ime

.cep the diag=al procee'o", ~~pu,. ro~ti:n; [~i ~:l to

annihilate their off-diagonal elements Bii and Yii '

(actually , i.8., so that
2 2

c. + S. = 1
:J. 1.

and

r"A---'~_~"~---~------"-~~
..

~,-- /'~~.

all aU , aU a 14 a l6

I'll P12 1'13

a 21 a 22
, a 23 a 24 8 25 a 26

f' "-

- ~
,;'

1
81 32

"
8133 a 34 a 35 8136

PZl 1'22 1'23
8141 £1 42 1/ a 43 a 44 , 8 45 8146

,-- i , I I
I I

a S1 aS2 --;;.
a S3 £154 r-----)

a S5 £156

1'31 P32 1"33
a 61 a 62 8 63 a64 I'

a 65 a 66

Figure 3: Initial configuration (idealized, n - 6)

[
OC1i
o

o 1 is diagonal.

8i i

From (5.1) and (5.2)

with a change of notation we find that

(6.1) [:~ 1
:I.

-=/1===+=t=: tJ

i

and

(6.2)

and

53

[
et. .1 [-1]

11j + t_, 13, ,
0, , L 11 1

11

t if SE

I sign(~i)

0 .. - a,.
11 11

2(3 ..
11

o

if BE of 0 ,

To complete the rotations which annihilate 13ii and Yii ,

1, ... ,n/2 , the off-diagonal processors P. ,
1J

(i f j) must perform

the transformations

processor

and

rCi -si]l(aij13ij] r c j Sj] We assume that the diagonal

~ s , c , y .' cS ,. l -s , c ,
1 1 1J 1J J J

P" broadcasts the rotation parameters
Ll.

c, and s.
1 1

to processors

(j = 1, ... ,ni2) in constant time, so that the off-diagonal

processor Pij has access to the parameters c 1" S4' c, and s
~ J j

when required.

(This assumption is removed in Section 8,)

To complete a step, columns (and corresponding 1:01.18) are interchanged

bet'Jleen adjacent processors so that a new set of n off-diagonal elements is

ready to be annihilated by the diagonal processors during the next time~tep.

This is done in two sub-steps, First, adjacent colum.TJS are exchanged as in the

SVD algorithm described in Sections 3-4 and as illustrated in Figure 20

Next, the same permutation is applied to rows, so as to maintain symmetry,

Formally, we can specify the operations performed by a processor P ij with

outputs outha." ... ,outh6,.,outva", ... ,outvo",
1J 1J 1J 1J

and inputs inha, . , .•. , invo , ,
1J 1J

by Program 1, Note that outputs of one processor are connected. to inputs of

adjacent processors in the obvious way, eog, outhS" is connected to iuha, '+1
1J 1,]

54

{subscripts (i,j) omitted if no ambiguity results}

{column interchanges}

if i '" 1 then [outhS +- 8; Gutho +- 6]

else if i < n!2 then [outhS +- Ci.; outM +- y];

if i > 1 then [outha +- 13; outhy +- 0];

{wait for outputs to propagate to inputs of adjacent processors}

if i < n/2 then [8 +- tnh8; 0 ~- inho]

else [6 +- a; 6 +- yl;

if i :;, 1 then [0, +- inh(1.; y +- inhy];

{row interchanges}

if j = 1 then [outvy +- y; outvo +- oj

else if j < n/2 then [outvy +- a; outva +- 8];

if j > 1 then [outva +- y; outvS + 0];

{wait for outputs to propagate to inputs of adjacent processors}

if j < n/2 then [y -<- invy; a +- invo]

else [y +- u; 0 +- SJ;

if j > 1 then [a +- inva; S +- inv6l;

Program 1: Column and row interchanges for idealized processor Po.
~J

(1 ~ i ~ n/2, 1 ~ j < n/2): see Figure 4. Note that, in Figure 4 and elsewhere,

we have omitted subscripts (i,j) if no ambiguity arises, e.g. inva is used

instead of invaij •

The only difference between the data flow here and that in Section .. 4 is that

here rows are permuted as \,ell as columns in order to maintain the sYlIlllIetry of

A and move the elements to be annihilated during the next time step into the

diagonal processors. Hence, from Section 3 it is clear that a complete

sweep is performed every n - 1 steps, because each off-diagonal element of A

is moved into one of the diagonal processors in exactly one of the steps.

Each sweep takes time 0 (n) so, assuming that 0 (log nl sweeps are

55

required for convergence, the total -time required to

diagonalize A is 0 in log nl.

inha

outha

tully ---"

,'Ie
outval

I

0;

inv(~,

outbY~ y

inv'(T J,UlVY

outv linvS

P ..
J.]

Figure 1.[: Input and output lines for idealized processor

nearest-neighbour connections

T. FURTHER ~ETAILS

outhS

inhi3

outho

fuhO

with

Several assumptions were made in Section 6 to simplify the exposition.

In this section ",e shmoJ hOvl to remove these assumptions.

7.1 Threshold strategy':'

It is clear that a diagonal processor Pii might omit rotations if

its off-diagonal elements Pii

required is to broadcast (:~]
~

Y ii "lere sufficiently small. All that is

[~J along processor row and column i

56

As discussed in Section 2, a suitable threshold strategy guarantees

convergence, although we do not know any example for which our ordering

fails to give convergence even ~li.thout a threshold strategy.

'1.2 Computat:ion ·of eigenvectors

If eigenvectors are required, the matrix U of eigenvectors can be

accumulated at the same time as A is being diagonalized. Each systolic

processor P ..
l.J

(1 ~ i,j ~ n/2) needs four additional memory cells

• and during each step sets

\) i j] [Sj]
T .• -5. C.

1.J J J

l'l1o \iT) Each processor transmits its values to adjacent processors in the

same way as its (ay ~) u values (see Program i). Initially

if Vii ~ 0 ,

After a sufficiently large (integral) number of sweeps, we have U defined

to working accuracy by

[
U 2i- 1 ,2 j -1

U 2i ,2j-l

1.3 Diagonal connections

U 2i- 1 ,2J]

U 2i, 2j

In Program 1 we assumed that only horizontal and vertical nearest-

neighbour connections were available. Except at the boundaries, diagonal

connections are more convenient. This is illustrated in Figures 5 and 6

(with subscripts (i,j) omitted).

57

ina: outS

inS

iny I P I out6

/~~
o8ty in6 .

Figure 5; Diagonal input and output lines for processor Pij

~,,-/~_P_42--k-
Figure 6: "Diagonal" connections, n = 8

(here and below ~ stands for « »)

58

Diagonal outputs and inpu·ts are connected in ·the obvious '!tlay, as shmVYl

in Figure 6. Horizontal and vertical connections (not shown) are still

required for the transmission of rota'cion parameters"

7.4 Taking full advantage of symmetr~

Because A is symmetric and our transformations preserve symm.etry, only

a triangular array of
1 + 1) n(n + 2)/8 systolic prccecssors is necessary

for the eigenvalue computation. In the description above, Silllply replace any

reference to a below-d.i.agonsl element (or processor P ij) with i:> j

by a reference to the corresponding above-diagonal element a ji (or processor

Pji). Note, however, that this idea complicates the programs, and. cannot be

lIsed if eigenvectors as well ·as eigenvalues are to be compute.d,

7.5 Odd n

So far '!tIe assumed n to be even. For odd n we can modify the

program for processors P Ii and P i1 (i = 1,",. ,fIl) in a manner analogous

to that used in section 3, or simply border A by a zero row and colunITl. For

simplicity we continue to assume that n is even.

7.6 Rotati.on parameters

In Section 6 we assumed that the diagonal processor Pii would compute

and according to (6, 1) ,

s, along
1.

processor row and column

only t, (given
],

by (6.2)) and let

c, , c, and s, from
1. J J

and then bro2.dcast both c. a.nd
1.

i It may be preferable to broadcast

each off-diagonal processor compute

and t, Thus communication costs are
J

reduced at the expense of requiring off-diagonal processors to compute t\W

square roots per time step (but this may not be significant since t.he diagonal

processors must compute one or two square roots per step tn any case). In

t.hat follows a "rotation parameter" may mean either or the pair

(c~, s.).
b 1.

59

7,7 Avoiding broadcast of rotation parameters

The most serious assumption of section 6 is that rotation parameters

computed by diagonal processors can be broadcast along rows and COlUIlLTlS in

cons-tant time. However, it is possible to avoid this assumption, using a

special case of the general technique of Leiserson and Saxe [19]. For the

details, see [5]. The conclusion is that we only need to transmit rotation

parameters at constant speed between adjacent processors.

7.8 Solving large problems on small systolic arrays

We have assumed that an array of r%l by r%l systolic processors is

available. In practice the systolic array would have a fixed number of

processors, and a large problem might have to be decomposed in some

manner in order to fit on -the available hardware. This is an interesting

problem of some practical significance, but space limitations preven-t us

from discussing it here. For some ideas (which might be improved) on how

to solve it, see [26].

60

8. CONCLUS ION

We have presented a linear array of r %l processors, . each

able to perform floating-point operations (including square roots)

and with O(m) local storage; for computing. the SVD. of a real. mx n

matrix in time O(mn log n), with a small constant. We have also

described how a square array of r ~ by r ~ 1 processors, each

with similar arithmetical capabilities but with only 0(1) local

storage, and having connections to nearest horizontal and vertical

(and preferably also diagonal) neighbors, can compute the eigenvalues

and eigenvectors of a real symmetric matrix in time 0 (n log n) •

The constant is sufficiently small that the method is competitive

with the usual 0(n3) serial algorithms, e.g., tridiagonalization

followed by the QR iteration, for quite small n. The speedup

should be significant for real-time computations with moderate or

large n. For further results along these lines, see [6].

Acknowledgement

A revised and expanded version of this paper is to appear in SIAM

Journal on Scientific and Statistical Computing. The work of the second

author was supported in part by the U.S. Army Office under grant

DAAG 29-79-COl24 and the National Science Foundation under grant

MCS-82l37l8, and in part by the Mathematical Sciences Research Centre and

the Centre for Mathematical Analysis, ANU.

61

REFERENCES

[1] H.C. Andrews and C.L. Patterson, "Singular value decomposition and

digital image processing", IEEE Trans. Acoustics, Speech and Si{jaal

PY'ocess'lng ASSP-24 (1976), 26-53.

[2] A. Bojanczyk, R.P. Brent and H.T. Kung, "Numerically stable solution

of dense systems of linear equations using mesh-connected processors" ,

SIAM J. Sci. Statist. Comput. 5 (1984), to appear.

[3] R.P. Brent and F.T. Luk, "Computing the Cholesky factorization using a

systolic architecture", Proc. 6-th Austral'lan Corrrputel' Sc'lence

Conference (1983), 295-302.

[4] R.P. Brent and F.'l'. Luk, "A systolic architecture for the singular value

decomposition", Tech. Report 'l'R-CS-82-09, Dept. of Computer Science,

Aust. Nat. Univ., August, 1982.

[5] R.P. Brent and F.T. Luk, "A sys"tolic architecture for almos·t linear-"time

solution of the sY!Illuetric eigenvalue problem", Tech. Report TR-CS-82-10,

Dept:. of Computer Science, Aust. Nat. Univ., 1982.

[6] R.P. Brent, P.T. Luk and C. Van Loan, "Computation of the generalized

singular value decomposi'cion using mesh-connec·ted processors",

Proceedings SPIE Volwne 431, Real l'ime EHgnal Processing TII, Society of

Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1983,

66-71. (Also available as Report CMA-R31-83, CMA, ANU, .Aug. 1983.)

[7] K-W. Chen and K.B. Irani, "A Jacobi algorittLTTI and its implementation on

parallel computers", Proc. 18-th Annual Allerton Conference on

Communication, Control and CompuHng (1980), 564-573.

[8] P.J. Eberlein and J. Boothroyd, "Solution to the eigenproblem by a norm

reducing Jacobi type method", in [31], 327-338.

[9] A.M. Finn, F.T. Luk and C. Pottle, "Systolic array computation of the

singular value decomposition", Proc. SPIE Syrrrp. East 1982, Vol. 341,

Real Time S'lgnal Processing V (1982), 35-43.

62

[10] G.E. Forsythe and P. Henrici, "The cyclic Jacobi method for computing

the principal values of a complex matric"', Trans. Amel'. Math. Soc. 94

(1960), 1-23.

[11] G.B. Golub and F.~r. Luk, "Singular value decomposition: applications and

computations", ARO Report 77-1, Tl~ans. of 22nd Conf. of Army Mathematicians

(1977), 577-605.

[12] E. R. Hansen, "On cyclic' LJacolli methods", J. Soc. Indust. AppL Math. 11

(1963), 448··459.

[13] D.E. Heller and LC.F. Ipsen, "Sys"tolic netvlOrks for orthogonal

equivalence transformations and their applications", Proc. 1982 Conf. on

Advanced Research in VLSI, MIT (1982), 113-122.

[14] D.E. Heller and I.C.F. Ipsen, "Systolic networks for orthogonal

decompositions", SIAM J. Sci. Statist. Comput. i (1983), 261-269.

[15] M.R. Hestenes, "Inversion of matrices by biorthogonalization and

related results", J. Soc. Indust. Appl. Math . .§. (1958), 51-90.

[16] D.J. Kuck and A.H. Sameh, "Parallel computation of eigenvalues of real

matrices", Information Processing 1971, North-Holland, Ams"terdam, (1972),

1266-1272.

[17] H.T. Kung, "Why systolic architectures", IEEE Computer 15, 1 (1982),

37-46.

[l8] S.Y. Kung and R.J. Gal-Ezer, "Linear or square array for eigenvalue and

singular value decompositions?", Proe. USC ~loY'kshop on VLSI and Modern

Signal Processing, Los Angeles, California. (Nov. 1982) v 8.9··98.

[19] C.E. Leiserson and J.B. Saxe, "Optimizing synchronous systems", J. VLSI

and Computer Systems 1 (1983), 41-67.

[20J F.T. Luk, "Computing the singular-value decomposition on the ILLIAC IV",

ACM Trans. Math. Softw. 6 (1980), 524-539.

63

[21] H. Rutishauser, "The Jacobi method for real symmetric matrices", in

[31], 202-211.

[22] A.B. Sameh, "On Jacobi and Jacobi-like algoritt.ms for a parallel

computer", Math. Computo ~ (1971), 579-590.

[23] A.H. Sameh, "Solving the linear least squares problem on a linear array

of processors,"' Proc. Purdue Florkshop on Alg01'ithmically-specIalized

Computer OrgawlzatIons (1982).

[24] R. Schreiber, "Systolic arrays for eigenvalue computation", Proc. SPIE

Symp. Eas-t; 1982, Vol. 341» Real-TIme SIgn.al ProcessIng (1982).

[25] R. Schreiber, "A systolic architecture for singular value decomposi-tion" ,

Proc. 1st Intern. Coll. on Vector and Parallel ComputIng In SdentIfIc

ApplIcatIons, Paris, France (1983).

[26] R. Schreiber, "On the systolic arrays of Brent, Luk and Van Loan",

Proceedings SPIE Vol. 431, Real-Time Signal Processing VI, Society of

Photo-Opti.cal Instrumentation Engineers, Bellingham, Washington, 1983,

72-78.

[27] J .1'1. Spei.ser and H •• }. Whitehouse, "Architecture for real-time matrix

operations", Proe. 1980 Government Microcircuits Applications Conf.,

Houston, Texas (Nov. 1980).

[28] H.J. Whitehouse, J.M. Speiser and K. Bronley, "Signal processing

applications of systolic array technology", Proc. USC Workshop on VLSI

and Modern Signal Processing, Los Angeles, California (Nov. 1982), 5-10.

[29] J.H. Wilkinson, "Note on the quadratic convergence of the cyclic Jacobi

process", NW7Ier. Math. i (1962), 296-300.

[30] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,

Oxford, 1965.

64

[31] J. H. Wilkinson and C" Reinscl:). (editors), Handbook for Automatic

Computation, Vol-. 2 (Linear Algebra), Springer-Verlag, Berlin, 19710

Richard P. Brent
Cen'cre for Mathematical l',nalysis
Australian National University
GPO Box 4, Canberra, ACT 2601
AUSTRAl,IA

Franklin T. Luk
Department of Computer Science
Cornell University
ITHACA NY 14853
U.S"A.

