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where 

The diagonal processors p, . 
J.:l. 

(i '" 1,0 •• ,n/2) act diffel:errtly 

from the off-diagonal processors P (i �~� j 1 < i j < n/2) Each t.ime 

.cep the diag=al procee'o", �~�~�p�u�,�.� �r�o�~�t�i�:�n�;� �[�~�i� �~�:�l� to 

annihilate their off-diagonal elements Bii and Yii ' 

(actually , i.8., so that 
2 2 

c. + S. = 1 
:J. 1. 

and 

�r�"�A�-�-�-�'�~�_�~�"�~�-�-�-�~�-�-�-�-�-�-�"�-�~�~� 
_._. 

�~�,�-�- �/�'�~�~�.� 

all aU , aU a14 a l6 

I'll P12 1'13 

a21 a22 
, a23 a24 8 25 a26 

f' "-

- �~� 
,;' 

1 
8132 

" 
8133 a34 a35 8136 

PZl 1'22 1'23 
8141 £142 1/ a43 a44 , 8 45 8146 

,-- i , I I 
I I 

aS1 aS2 --;;. 
aS3 £154 r-----) 

aS5 £156 

1'31 P32 1"33 
a61 a62 8 63 a64 I' 

a65 a66 

Figure 3: Initial configuration (idealized, n - 6) 

[
OC1i 
o 

o 1 is diagonal. 
8ii 

From (5.1) and (5.2) 

with a change of notation we find that 

(6.1) �[�:�~� 1 
:I. 

-=/1===+=t=: tJ 
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and 

(6.2) 

and 
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[
et. .1 [-1] 

11j + t_, 13, , 
0, , L 11 1 

11 

t if SE 

I sign(~i) 

0 .. - a,. 
11 11 

2(3 .. 
11 

o 

if BE of 0 , 

To complete the rotations which annihilate 13ii and Yii , 

1, ... ,n/2 , the off-diagonal processors P. , 
1J 

(i f j) must perform 

the transformations 

processor 

and 

rCi -si]l(aij13ij] r c j Sj] We assume that the diagonal 

~ s , c , y .' cS ,. l -s , c , 
1 1 1J 1J J J 

P" broadcasts the rotation parameters 
Ll. 

c, and s. 
1 1 

to processors 

(j = 1, ... ,ni2) in constant time, so that the off-diagonal 

processor Pij has access to the parameters c 1" S4' c, and s 
~ J j 

when required. 

(This assumption is removed in Section 8,) 

To complete a step, columns (and corresponding 1:01.18) are interchanged 

bet'Jleen adjacent processors so that a new set of n off-diagonal elements is 

ready to be annihilated by the diagonal processors during the next time~tep. 

This is done in two sub-steps, First, adjacent colum.TJS are exchanged as in the 

SVD algorithm described in Sections 3-4 and as illustrated in Figure 20 

Next, the same permutation is applied to rows, so as to maintain symmetry, 

Formally, we can specify the operations performed by a processor P ij with 

outputs outha." ... ,outh6,.,outva", ... ,outvo", 
1J 1J 1J 1J 

and inputs inha, . , .•. , invo , , 
1J 1J 

by Program 1, Note that outputs of one processor are connected. to inputs of 

adjacent processors in the obvious way, eog, outhS" is connected to iuha, '+1 
1J 1,] 
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{subscripts (i,j) omitted if no ambiguity results} 

{column interchanges} 

if i '" 1 then [outhS +- 8; Gutho +- 6] 

else if i < n!2 then [outhS +- Ci.; outM +- y]; 

if i > 1 then [outha +- 13; outhy +- 0]; 

{wait for outputs to propagate to inputs of adjacent processors} 

if i < n/2 then [8 +- tnh8; 0 ~- inho] 

else [6 +- a; 6 +- yl; 

if i :;, 1 then [0, +- inh(1.; y +- inhy]; 

{row interchanges} 

if j = 1 then [outvy +- y; outvo +- oj 

else if j < n/2 then [outvy +- a; outva +- 8]; 

if j > 1 then [outva +- y; outvS + 0]; 

{wait for outputs to propagate to inputs of adjacent processors} 

if j < n/2 then [y -<- invy; a +- invo] 

else [y +- u; 0 +- SJ; 

if j > 1 then [a +- inva; S +- inv6l; 

Program 1: Column and row interchanges for idealized processor Po. 
~J 

(1 ~ i ~ n/2, 1 ~ j < n/2): see Figure 4. Note that, in Figure 4 and elsewhere, 

we have omitted subscripts (i,j) if no ambiguity arises, e.g. inva is used 

instead of invaij • 

The only difference between the data flow here and that in Section .. 4 is that 

here rows are permuted as \,ell as columns in order to maintain the sYlIlllIetry of 

A and move the elements to be annihilated during the next time step into the 

diagonal processors. Hence, from Section 3 it is clear that a complete 

sweep is performed every n - 1 steps, because each off-diagonal element of A 

is moved into one of the diagonal processors in exactly one of the steps. 

Each sweep takes time 0 (n) so, assuming that 0 (log nl sweeps are 
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required for convergence, the total -time required to 

diagonalize A is 0 in log nl. 

inha 

outha 

tully ---" 

,'Ie 
outval 

I 

0; 

inv(~, 

outbY~ y 

inv'( T J,UlVY 

outv linvS 

P .. 
J.] 

Figure 1.[: Input and output lines for idealized processor 

nearest-neighbour connections 

T. FURTHER ~ETAILS 

outhS 

inhi3 

outho 

fuhO 

with 

Several assumptions were made in Section 6 to simplify the exposition. 

In this section ",e shmoJ hOvl to remove these assumptions. 

7.1 Threshold strategy':' 

It is clear that a diagonal processor Pii might omit rotations if 

its off-diagonal elements Pii 

required is to broadcast (:~] 
~ 

Y ii "lere sufficiently small. All that is 

[~J along processor row and column i 
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As discussed in Section 2, a suitable threshold strategy guarantees 

convergence, although we do not know any example for which our ordering 

fails to give convergence even ~li.thout a threshold strategy. 

'1.2 Computat:ion ·of eigenvectors 

If eigenvectors are required, the matrix U of eigenvectors can be 

accumulated at the same time as A is being diagonalized. Each systolic 

processor P .. 
l.J 

(1 ~ i,j ~ n/2) needs four additional memory cells 

• and during each step sets 

\) i j ] [ Sj] 
T .• -5. C. 

1.J J J 

l'l1o \iT) Each processor transmits its values to adjacent processors in the 

same way as its (ay ~) u values (see Program i). Initially 

if Vii ~ 0 , 

After a sufficiently large (integral) number of sweeps, we have U defined 

to working accuracy by 

[
U 2i- 1 ,2 j -1 

U 2i ,2j-l 

1.3 Diagonal connections 

U 2i- 1 ,2J] 

U 2i, 2j 

In Program 1 we assumed that only horizontal and vertical nearest-

neighbour connections were available. Except at the boundaries, diagonal 

connections are more convenient. This is illustrated in Figures 5 and 6 

(with subscripts (i,j) omitted). 
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ina: outS 

inS 

iny I P I out6 

/~~ 
o8ty in6 . 

Figure 5; Diagonal input and output lines for processor Pij 

~,,-/~_P_42--k-
Figure 6: "Diagonal" connections, n = 8 

(here and below ~ stands for « ») 
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Diagonal outputs and inpu·ts are connected in ·the obvious '!tlay, as shmVYl 

in Figure 6. Horizontal and vertical connections (not shown) are still 

required for the transmission of rota'cion parameters" 

7.4 Taking full advantage of symmetr~ 

Because A is symmetric and our transformations preserve symm.etry, only 

a triangular array of 
1 + 1) n(n + 2)/8 systolic prccecssors is necessary 

for the eigenvalue computation. In the description above, Silllply replace any 

reference to a below-d.i.agonsl element (or processor P ij) with i:> j 

by a reference to the corresponding above-diagonal element a ji (or processor 

Pji ). Note, however, that this idea complicates the programs, and. cannot be 

lIsed if eigenvectors as well ·as eigenvalues are to be compute.d, 

7.5 Odd n 

So far '!tIe assumed n to be even. For odd n we can modify the 

program for processors P Ii and P i1 (i = 1,",. ,fIl) in a manner analogous 

to that used in section 3, or simply border A by a zero row and colunITl. For 

simplicity we continue to assume that n is even. 

7.6 Rotati.on parameters 

In Section 6 we assumed that the diagonal processor Pii would compute 

and according to (6, 1) , 

s, along 
1. 

processor row and column 

only t, (given 
], 

by (6.2) ) and let 

c, , c, and s, from 
1. J J 

and then bro2.dcast both c. a.nd 
1. 

i It may be preferable to broadcast 

each off-diagonal processor compute 

and t, Thus communication costs are 
J 

reduced at the expense of requiring off-diagonal processors to compute t\W 

square roots per time step (but this may not be significant since t.he diagonal 

processors must compute one or two square roots per step tn any case). In 

t.hat follows a "rotation parameter" may mean either or the pair 

(c~, s.). 
b 1. 
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7,7 Avoiding broadcast of rotation parameters 

The most serious assumption of section 6 is that rotation parameters 

computed by diagonal processors can be broadcast along rows and COlUIlLTlS in 

cons-tant time. However, it is possible to avoid this assumption, using a 

special case of the general technique of Leiserson and Saxe [19]. For the 

details, see [5]. The conclusion is that we only need to transmit rotation 

parameters at constant speed between adjacent processors. 

7.8 Solving large problems on small systolic arrays 

We have assumed that an array of r%l by r%l systolic processors is 

available. In practice the systolic array would have a fixed number of 

processors, and a large problem might have to be decomposed in some 

manner in order to fit on -the available hardware. This is an interesting 

problem of some practical significance, but space limitations preven-t us 

from discussing it here. For some ideas (which might be improved) on how 

to solve it, see [26]. 
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8. CONCLUS ION 

We have presented a linear array of r %l processors, . each 

able to perform floating-point operations (including square roots) 

and with O(m) local storage; for computing. the SVD. of a real. mx n 

matrix in time O(mn log n), with a small constant. We have also 

described how a square array of r ~ by r ~ 1 processors, each 

with similar arithmetical capabilities but with only 0(1) local 

storage, and having connections to nearest horizontal and vertical 

(and preferably also diagonal) neighbors, can compute the eigenvalues 

and eigenvectors of a real symmetric matrix in time 0 (n log n) • 

The constant is sufficiently small that the method is competitive 

with the usual 0(n3) serial algorithms, e.g., tridiagonalization 

followed by the QR iteration, for quite small n. The speedup 

should be significant for real-time computations with moderate or 

large n. For further results along these lines, see [6]. 
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