

53

and
g G4 -1
v +tByy ’
854 844 !
where
Jo if B, =0
6. =
(e f1 sign(E,)
—_— if B . #0,
tlgi| T+] ii
i3 = %44
and &, T B
il

To complete the rotations which annihilate Bii and Y4 0

i=1,...,0/2 , the off-diagonal processors Pij (i # j) must perform

a . By ai. Bi.
the transformations J 1« J J , where
]]
Yig %) Wiy Cug
al. BI. ey =8yl (945 By c, s,
+ H = + +J d J J1 . We assume that the diagonal
1] 1] -
iy Sy g ey gy Sgy) 1785 <y

processor Pii broadcasts the rotation parameters c, and s, to processors
Pij and Pji (j =1,...,0/2) in constant time, so that the off-diagonal
processor Pij has access to the parameters ;s Si’ cj and sj when required.
(This assumption is removed in Section 8.)

To complete a step, columns (and corresponding rows) are interchanged
between adjacent processors so that a new set of n off-diagonal elements is
ready to be annihilated by the diagonal processors during the next time istep.

This is done in two sub-steps. First, adjacent columns are exchanged as in the

SVD algorithm described in Sections 3-4 and as illustrated in Figure 2.

Next, the same permutation is applied to rows, so as to maintain symmetry.

Formally, we can specify the operations performed by a processor Pij with

outputs outhd. .,...,outhd ,,outvo,,s...,outvd,, , and inputs dinho, . ,...,invé, .
ij ij ij ij ij i

by Program l. Note that outputs of one processor are connected to inputs of

adjacent processors in the obvious way, e.g. outhBij is connected to inhai j+1
9

54

{subscripts (i,j) omitted if no ambiguity results}
{column interchanges}
if i = 1 then [outhB < B; outhd « §]
else if i < n/2 then [outhf < a; outhd <« Y];

if 1 > 1 then [outha <« B; outhy « 6];
{wait for outputs to propagate to inputs of adjacent processors}
if i < n/2 then [B < inhB; & « inh§)

else [B <« a; § « y];
if 4 > 1 then [a « inha; vy <« inhy];
{row interchanges}
if j = 1 then [outvy < Y; outvd <« §]

else if j < n/2 then [outvy + a; outvd « B];

if j > 1 then [outva + Y; outvB <« 8];
{wait for outputs to propagate to inputs of adjacent processors}
if j < n/2 then [Y « invy; § <« invd{]

else [y « a; & « Bl;
if § > 1 then [0 « inva; B + invf];

Program l: Column and row interchanges for idealized processor Pij

(1 £i<n/2, 1< 3j<n/2): see Figure 4. Note that, in Figure 4 and elsewhere,
we have omitted subscripts (i,j) if no ambiguity arises, e.g. invo 1is used
instead of invaij .

The only difference between the data flow here and that in Section.4.is that
here rows are permuted as well as columns in order to maintain the symmetry of
A and move the elements to be annihilated during the next time step into the
diagonal processors. Hence, from Section 3 it is clear that a complete
sweep is performed every n - 1 steps, because each off-diagonal element of A
is moved into one of the diagonal processors in exactly one of the steps.

Each sweep takes time O(un) so, assuming that O(log n) sweeps are

55

required for convergence, the total time required to

diagonalize A is O(n log n).

outva,f iinvot outhT lian

inh0 ——3 ——s outhf

outho ¢&—| é ° &~ inhf
P..

inhy — + > outhd

outhy &— ! ° £— inhé

ianT loutvy invST lputvé

Figure 4: Input and output lines for idealized processor P'j with

nearest-neighbour connections

T FURTHER DETAILS

Several assumptions were made in Section 6 to simplify the exposition.

In this section we show how to remove these assumptions.

7.1 Threshold strategy

It is clear that a diagonal processor Pii might omit rotatioms if

its off-diagonal elements B,. = V..

. were sufficiently small. All that is
ii ii

[1
required is to broadcast {Sl] = {0} along processor row and column 1 .
i

56

As discussed in Section 2, a suitable threshold strategy guarantees
convergence, although we do not know any example for which our ordering

fails to give convergence even without a threshold strategy.

7.2 Computation of eigenvectors

If eigenvectors are required, the matrix U of eigenvectors can be
accumulated at the same time as A 1is being diagonalized. Each systolic

processor Pij (1 £i,j £ n/2) needs four additional memory cells

Hi3 Vi
, and during each step sets
g,. T..
i3 1]
. V.. V.. C. S,
Hij ij| L Hij ij j i
ag T, . g, . T, =S . c,
ij ij ij ij J 3

v
H] values to adjacent processors in the

Each processor transmits its [0 T

same way as its [$ S} values (see Program 1l). Initially
Mig = Vi3 =04y =Ty =0 if iF 3, and wy, =T, =1, 04y "V =0

After a sufficiently large (integral) number of sweeps, we have U defined

to working accuracy by

Y2i-1,25-1 “2i-1,2j Hig o Vi

Y21,25-1 Y21,2j ij ij

7.3 Diagonal connections

In Program 1 we assumed that only horizontal and vertical nearest-
neighbour connections were available. Except at the boundaries, diagonal
connections are more convenient. This is illustrated in Figures 5 and 6

(with subscripts (i,j) omitted).

outd

iny

Figure 5: Diagonal input and output lines for processor Pi

¥

olity

outf

inB

out$

ind

J

Pl #12 P13 Py
Po1 Pao a3 Pos
Py EY) P33 P34
Pu1) Pu3 L

Figure 6:

"Diagonal' connections, n = 8

(here and below ¢«—» stands for &)

58

Diagonal outputs and inputs are connected in the obvious way, as shown
in Figure 6. Horizontal and vertical connections (not shown) are still

required for the transmission of rotation parameters.

7.4 Taking full advantage of symmetry

Because A 1is symmetric and our transformations preserve symmetry, only
a triangular array of %u%(% + 1) = n(n + 2)/8 systolic processors is necessary
for the eigenvalue computation. In the description above, simply replace any

reference to a below-diagonal element aij (or processor P j) with i > j

i
by a reference to the corresponding above-diagonal element aji (or processor
Pji). Note, however, that this idea complicates the programs, and cannot be

used if eigenvectors as well .as eigenvalues are to be computed.

7.5 0dd n

So far we assumed n to be even. For odd n we can modify the
program for processors Pli and Pil (i = 1,...,f%‘) in a manner analogous
to that used in Section 3, or simply border A by a zero row and column. For

simplicity we continue to assume that n is even.

7.6 Rotation parameters

In Section 6 we assumed that the diagonal processor Pii would compute
ey and s; according to (6.1) , and then broadcast both c, and
55 along processor row and column 1 . It may be preferable to broadcast
only ti (given by (6.2)) and let each off-diagonal processor Pij compute
Ci 5 Si s Cj and Sj from ti and tj . Thus communication costs are
reduced at the expense of requiring off-diagonal processors to compute two
square roots per time step (but this may not be significant since the diagonal
processors must compute omne or two square roots per step in any case). In

what follows a "rotation parameter’ may mean either ti or the pair

(ci, si).

59

7.7 Avoiding broadcast of rotation parameters

The most serious assumption of Section 6 is that rotation parameters
computed by diagonal processors can be broadcast along rows and columns in
constant time. However, it is possible to avoid this assumption, using a
special case of the general technique of Leiserson and Saxe [19]. For the
details, see [5]. The conclusion is that we only need to transmit rotation

parameters at constant speed between adjacent processors.

7.8 Solving large problems on small systolic arrays

We have assumed that an array of (%1 by r%} systolic processors is
available. In practice the systolic array would have a fixed number of
processors, and a large problem might have to be decomposed in some
manner in order to fit on the available hardware. This is an interesting
problem of some practical significance, but space limitations prevent us
from discussing it here. For some ideas (which might be improved) on how

to solve it, see [26].

60

8. CONCLUSION

We have presented a linear array of [ﬁgfl processors, .each
able to perform floating-point operations (including square roots)
and with O(m) local storage, for computing.the SVD.of a real mxn
matrix in time O(mn log n), with a small constant. We have also
described how a square array of {_é:‘ by rgJ processors, each
with similar arithmetical capabilities but with only 0(1) local
storage, and having connections to nearest horizontal and vertical
(and preferably also diagonal) neighbors, can compute the eigenvalues
and eigenvectors of a real symmetric matrix in time O(n légrﬂ .
The constant is sufficiently small that the wethod is competitive
with the usual O(n3) serial algorithms, e.g., tridiagonalization
followed by the QR iteration, for quite small n. The speedup
should be significant for real-time computations with moderate or

large n. For further results along these lines, see [6].

Acknowledgement

A revised and expanded version of this paper is to appear in SIAM
Journal on Scientific and Statistical Computing. The work of the second
author was supported in part by the U.S. Army Office under grant
DAAG 29-79-C0124 and the National Science Foundation under grant
MCS-8213718, and in part by the Mathematical Sciences Research Centre and

the Centre for Mathematical Analysis, ANU.

61

REFERENCES

[1] H.C. Andrews and C.L. Patterson, "Singular value decomposition and
digital image processing", IEEE Trans. Acoustics, Speech and Signal

Processing ASSP-24 (1976), 26-53.

[21 A. Bojahczyk, R.P. Brent and H.T. Kung, "Numerically stable solution

of dense systems of linear equations using mesh-connected processors",

SIAM J. Sei. Statist. Comput. 5 (1984), to appear.

[3] R.P. Brent and F.T. Luk, "Computing the Cholesky factorization using a

systolic architecture", Proc. 6-th Australian Computer Science

Conference (1983), 295-302.

[4] R.P. Brent and F.T. Luk, "A systolic architecture for the singular value

decomposition”, Tech. Report TR-CS-82-09, Dept. of Computer Science,

Aust. Nat. Univ., August,.1982.

[5] R.P. Brent and F.T. Luk, "A systolic architecture for almost linear-time

solution of the symmetric eigenvalue problem", Tech. Report TR-CS-82-10,

Dept. of Computer Science, Aust. Nat. Univ., 1982.

[6] R.P. Brent, F.T. Luk and C. Van Loan, "Computation of the generalized

singular value decomposition using mesh-connected processors"”,

Proceedings SPIE Volume 431, Real Time Signal Processing VI, Society of

Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1983,

66-71. (Also available as Report CMA-R31-83, CMA, ANU, Aug. 1983.)

[7] X-W. Chen and K.B. Irani, "A Jacobi algorithm and its implementation on

parallel computers", Proc. 18-th Annual Allerton Conference on

Communication, Control and Computing (1980), 564-573.

[8] P.J. Eberlein and J. Boothroyd, "Solution to the eigenproblem by a norm

reducing Jacobi type method", in [31], 327-338.

[9] A.M. Finn, F.T. Luk and C. Pottle, "Systolic array computation of the
singular value decomposition", Proc. SPIE Symp. East 1982, Vol. 341,

Real Time Signal Processing V (1982), 35-43.

[101

[11]

[121

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

62

G.E. Forsythe and P. Henrici, "The cyclic Jacobi method for computing
the principal values of a complex matric", Trans. Amer. Math. Soc. 94

(1960), 1-23.

G.H. Golub and F.T. Luk, "Singular value decomposition: applications and
computations™, ARO Report 77-1, Trans. of 22nd Conf. of Army Mathematicians

(1977), 577-605.

E.R. Hansen, "On cyclic'Jaccbi methods", J. Soc. Indust. Appl. Math. 11

(1963), 448-459.

D.E. Heller and I.C.F. Ipsen, "Systolic networks for orthogonal
equivalence transformations and their applications", Proc. 1982 Conf. on

Advanced Research in VLSI, MIT (1982), 113-122.

D.E. Heller and I.C.F. Ipsen, "Systolic networks for orthogonal

decompositions", SIAM J. Sci. Statist. Comput. 4 (1983), 261-269.

M.R. Hestenes, "Inversion of matrices by biorthogonalization and

related results", J. Soc. Indust. Appl. Math. 6 (1958), 51-90.

D.J. Kuck and A.H. Sameh, "Parallel computation of eigenvalues of real
matrices", Information Processing 1971, North-Holland, Amsterdam, (1972),

1266-1272.

H.T. Kung, "Why systolic architectures", IEEE Computer 15, 1 (1982),

37-46.

S.Y. Kung and R.J. Gal-Ezer, "Linear or square array for eigenvalue and
singular value decompositions?", Proc. USC Workshop on VLSI and Modern

Signal Processing, Los Angeles, California (Nov. 1982), 89-98.

C.E. Leiserson and J.B. Saxe, "Optimizing synchronous systems", J. VLSI

and Computer Systems 1'(1983); 41-67.

F.T. Luk, "Computing the singular-value decomposition on the ILLIAC IV",

ACM Trans. Math. Softw. 6 (1980), 524-539.

[21]

[22]

[23]

[24]

[25]

[26]

[271]

[28]

[29]

[301]

63

H. Rutishauser, "The Jacobi method for real symmetric matrices", in

[311, 202-211.

A.H. sameh, "On Jacobi and Jaccobi-like algorithms for a parallel

computer", Math. Comput. 25 (1971), 579-590.

A.H. sameh, "Solving the linear least squares problem on a linear array
of processors,” Proc. Purdue Workshop on Algorithmically-specialized

Computer Organizations (1982).

R. Schreiber, "Systolic arrays for eigenvalue computation"”, Proc. SPIE

Symp. East 1982, Vol. 341, Real-Time Signal Processing (1982) .

R. Schreiber, "A systolic architecture for singular value decomposition",
Proc. 1st Intern. Coll. on Vector and Parallel Computing in Scientific

Applications, Paris, France (1983).

R. Schreiber, "On the systolic arrays of Brent, Luk and Van Loan",
Proceedings SPIE Vol. 431, Real-Time Signal Processing VI, Society of
Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1983,

72-78.

J.M. Speiser and H.J. Whitehouse, "Architecture for real-time matrix
operations", Proc. 1980 Govermment Microcircuits Applications Conf.,

Houston, Texas (Nov. 1980).

H.J. Whitehouse, J.M. Speiser and K. Bronley, "Signal probessing
applications of systolic array technology", Proc. USC Workshop on VLSI

and Modern Signal Processing, Los Angeles, California (Nov. 1982), 5-10.

J.H. Wilkinson, "Note on the quadratic convergence of the cyclic Jaccbi

process", Numer. Math. 4 (1962), 296-300.

J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,

Oxford, 1965.

64

[31] J.H. Wilkinson and C. Reinsch (editors), Handbook for Automatic

Computation, Vol. & (Linear Algebra), Springer-Verlag, Berlin, 1971.

Richard P. Brent Franklin T. Luk

Centre for Mathematical Analysis Department of Computer Science
Australian National University Cornell University
GPO Box 4, Canberra, ACT 2601 ITHACA NY 14853

AUSTRALIA U.S.A.

