

52

where

The diagonal processors p, .
J.:l.

(i '" 1,0 •• ,n/2) act diffel:errtly

from the off-diagonal processors P (i �~� j 1 < i j < n/2) Each t.ime

.cep the diag=al procee'o", �~�~�p�u�,�.� �r�o�~�t�i�:�n�;� �[�~�i� �~�:�l� to

annihilate their off-diagonal elements Bii and Yii '

(actually , i.8., so that
2 2

c. + S. = 1
:J. 1.

and

�r�"�A�-�-�-�'�~�_�~�"�~�-�-�-�~�-�-�-�-�-�-�"�-�~�~�
..

�~�,�-�- �/�'�~�~�.�

all aU , aU a14 a l6

I'll P12 1'13

a21 a22
, a23 a24 8 25 a26

f' "-

- �~�
,;'

1
8132

"
8133 a34 a35 8136

PZl 1'22 1'23
8141 £142 1/ a43 a44 , 8 45 8146

,-- i , I I
I I

aS1 aS2 --;;.
aS3 £154 r-----)

aS5 £156

1'31 P32 1"33
a61 a62 8 63 a64 I'

a65 a66

Figure 3: Initial configuration (idealized, n - 6)

[
OC1i
o

o 1 is diagonal.
8ii

From (5.1) and (5.2)

with a change of notation we find that

(6.1) �[�:�~� 1
:I.

-=/1===+=t=: tJ

i

and

(6.2)

and

53

[
et. .1 [-1]

11j + t_, 13, ,
0, , L 11 1

11

t if SE

I sign(~i)

0 .. - a,.
11 11

2(3 ..
11

o

if BE of 0 ,

To complete the rotations which annihilate 13ii and Yii ,

1, ... ,n/2 , the off-diagonal processors P. ,
1J

(i f j) must perform

the transformations

processor

and

rCi -si]l(aij13ij] r c j Sj] We assume that the diagonal

~ s , c , y .' cS ,. l -s , c ,
1 1 1J 1J J J

P" broadcasts the rotation parameters
Ll.

c, and s.
1 1

to processors

(j = 1, ... ,ni2) in constant time, so that the off-diagonal

processor Pij has access to the parameters c 1" S4' c, and s
~ J j

when required.

(This assumption is removed in Section 8,)

To complete a step, columns (and corresponding 1:01.18) are interchanged

bet'Jleen adjacent processors so that a new set of n off-diagonal elements is

ready to be annihilated by the diagonal processors during the next time~tep.

This is done in two sub-steps, First, adjacent colum.TJS are exchanged as in the

SVD algorithm described in Sections 3-4 and as illustrated in Figure 20

Next, the same permutation is applied to rows, so as to maintain symmetry,

Formally, we can specify the operations performed by a processor P ij with

outputs outha." ... ,outh6,.,outva", ... ,outvo",
1J 1J 1J 1J

and inputs inha, . , .•. , invo , ,
1J 1J

by Program 1, Note that outputs of one processor are connected. to inputs of

adjacent processors in the obvious way, eog, outhS" is connected to iuha, '+1
1J 1,]

54

{subscripts (i,j) omitted if no ambiguity results}

{column interchanges}

if i '" 1 then [outhS +- 8; Gutho +- 6]

else if i < n!2 then [outhS +- Ci.; outM +- y];

if i > 1 then [outha +- 13; outhy +- 0];

{wait for outputs to propagate to inputs of adjacent processors}

if i < n/2 then [8 +- tnh8; 0 ~- inho]

else [6 +- a; 6 +- yl;

if i :;, 1 then [0, +- inh(1.; y +- inhy];

{row interchanges}

if j = 1 then [outvy +- y; outvo +- oj

else if j < n/2 then [outvy +- a; outva +- 8];

if j > 1 then [outva +- y; outvS + 0];

{wait for outputs to propagate to inputs of adjacent processors}

if j < n/2 then [y -<- invy; a +- invo]

else [y +- u; 0 +- SJ;

if j > 1 then [a +- inva; S +- inv6l;

Program 1: Column and row interchanges for idealized processor Po.
~J

(1 ~ i ~ n/2, 1 ~ j < n/2): see Figure 4. Note that, in Figure 4 and elsewhere,

we have omitted subscripts (i,j) if no ambiguity arises, e.g. inva is used

instead of invaij •

The only difference between the data flow here and that in Section .. 4 is that

here rows are permuted as \,ell as columns in order to maintain the sYlIlllIetry of

A and move the elements to be annihilated during the next time step into the

diagonal processors. Hence, from Section 3 it is clear that a complete

sweep is performed every n - 1 steps, because each off-diagonal element of A

is moved into one of the diagonal processors in exactly one of the steps.

Each sweep takes time 0 (n) so, assuming that 0 (log nl sweeps are

55

required for convergence, the total -time required to

diagonalize A is 0 in log nl.

inha

outha

tully ---"

,'Ie
outval

I

0;

inv(~,

outbY~ y

inv'(T J,UlVY

outv linvS

P ..
J.]

Figure 1.[: Input and output lines for idealized processor

nearest-neighbour connections

T. FURTHER ~ETAILS

outhS

inhi3

outho

fuhO

with

Several assumptions were made in Section 6 to simplify the exposition.

In this section ",e shmoJ hOvl to remove these assumptions.

7.1 Threshold strategy':'

It is clear that a diagonal processor Pii might omit rotations if

its off-diagonal elements Pii

required is to broadcast (:~]
~

Y ii "lere sufficiently small. All that is

[~J along processor row and column i

56

As discussed in Section 2, a suitable threshold strategy guarantees

convergence, although we do not know any example for which our ordering

fails to give convergence even ~li.thout a threshold strategy.

'1.2 Computat:ion ·of eigenvectors

If eigenvectors are required, the matrix U of eigenvectors can be

accumulated at the same time as A is being diagonalized. Each systolic

processor P ..
l.J

(1 ~ i,j ~ n/2) needs four additional memory cells

• and during each step sets

\) i j] [Sj]
T .• -5. C.

1.J J J

l'l1o \iT) Each processor transmits its values to adjacent processors in the

same way as its (ay ~) u values (see Program i). Initially

if Vii ~ 0 ,

After a sufficiently large (integral) number of sweeps, we have U defined

to working accuracy by

[
U 2i- 1 ,2 j -1

U 2i ,2j-l

1.3 Diagonal connections

U 2i- 1 ,2J]

U 2i, 2j

In Program 1 we assumed that only horizontal and vertical nearest-

neighbour connections were available. Except at the boundaries, diagonal

connections are more convenient. This is illustrated in Figures 5 and 6

(with subscripts (i,j) omitted).

57

ina: outS

inS

iny I P I out6

/~~
o8ty in6 .

Figure 5; Diagonal input and output lines for processor Pij

~,,-/~_P_42--k-
Figure 6: "Diagonal" connections, n = 8

(here and below ~ stands for « »)

58

Diagonal outputs and inpu·ts are connected in ·the obvious '!tlay, as shmVYl

in Figure 6. Horizontal and vertical connections (not shown) are still

required for the transmission of rota'cion parameters"

7.4 Taking full advantage of symmetr~

Because A is symmetric and our transformations preserve symm.etry, only

a triangular array of
1 + 1) n(n + 2)/8 systolic prccecssors is necessary

for the eigenvalue computation. In the description above, Silllply replace any

reference to a below-d.i.agonsl element (or processor P ij) with i:> j

by a reference to the corresponding above-diagonal element a ji (or processor

Pji). Note, however, that this idea complicates the programs, and. cannot be

lIsed if eigenvectors as well ·as eigenvalues are to be compute.d,

7.5 Odd n

So far '!tIe assumed n to be even. For odd n we can modify the

program for processors P Ii and P i1 (i = 1,",. ,fIl) in a manner analogous

to that used in section 3, or simply border A by a zero row and colunITl. For

simplicity we continue to assume that n is even.

7.6 Rotati.on parameters

In Section 6 we assumed that the diagonal processor Pii would compute

and according to (6, 1) ,

s, along
1.

processor row and column

only t, (given
],

by (6.2)) and let

c, , c, and s, from
1. J J

and then bro2.dcast both c. a.nd
1.

i It may be preferable to broadcast

each off-diagonal processor compute

and t, Thus communication costs are
J

reduced at the expense of requiring off-diagonal processors to compute t\W

square roots per time step (but this may not be significant since t.he diagonal

processors must compute one or two square roots per step tn any case). In

t.hat follows a "rotation parameter" may mean either or the pair

(c~, s.).
b 1.

59

7,7 Avoiding broadcast of rotation parameters

The most serious assumption of section 6 is that rotation parameters

computed by diagonal processors can be broadcast along rows and COlUIlLTlS in

cons-tant time. However, it is possible to avoid this assumption, using a

special case of the general technique of Leiserson and Saxe [19]. For the

details, see [5]. The conclusion is that we only need to transmit rotation

parameters at constant speed between adjacent processors.

7.8 Solving large problems on small systolic arrays

We have assumed that an array of r%l by r%l systolic processors is

available. In practice the systolic array would have a fixed number of

processors, and a large problem might have to be decomposed in some

manner in order to fit on -the available hardware. This is an interesting

problem of some practical significance, but space limitations preven-t us

from discussing it here. For some ideas (which might be improved) on how

to solve it, see [26].

60

8. CONCLUS ION

We have presented a linear array of r %l processors, . each

able to perform floating-point operations (including square roots)

and with O(m) local storage; for computing. the SVD. of a real. mx n

matrix in time O(mn log n), with a small constant. We have also

described how a square array of r ~ by r ~ 1 processors, each

with similar arithmetical capabilities but with only 0(1) local

storage, and having connections to nearest horizontal and vertical

(and preferably also diagonal) neighbors, can compute the eigenvalues

and eigenvectors of a real symmetric matrix in time 0 (n log n) •

The constant is sufficiently small that the method is competitive

with the usual 0(n3) serial algorithms, e.g., tridiagonalization

followed by the QR iteration, for quite small n. The speedup

should be significant for real-time computations with moderate or

large n. For further results along these lines, see [6].

Acknowledgement

A revised and expanded version of this paper is to appear in SIAM

Journal on Scientific and Statistical Computing. The work of the second

author was supported in part by the U.S. Army Office under grant

DAAG 29-79-COl24 and the National Science Foundation under grant

MCS-82l37l8, and in part by the Mathematical Sciences Research Centre and

the Centre for Mathematical Analysis, ANU.

61

REFERENCES

[1] H.C. Andrews and C.L. Patterson, "Singular value decomposition and

digital image processing", IEEE Trans. Acoustics, Speech and Si{jaal

PY'ocess'lng ASSP-24 (1976), 26-53.

[2] A. Bojanczyk, R.P. Brent and H.T. Kung, "Numerically stable solution

of dense systems of linear equations using mesh-connected processors" ,

SIAM J. Sci. Statist. Comput. 5 (1984), to appear.

[3] R.P. Brent and F.T. Luk, "Computing the Cholesky factorization using a

systolic architecture", Proc. 6-th Austral'lan Corrrputel' Sc'lence

Conference (1983), 295-302.

[4] R.P. Brent and F.'l'. Luk, "A systolic architecture for the singular value

decomposition", Tech. Report 'l'R-CS-82-09, Dept. of Computer Science,

Aust. Nat. Univ., August, 1982.

[5] R.P. Brent and F.T. Luk, "A sys"tolic architecture for almos·t linear-"time

solution of the sY!Illuetric eigenvalue problem", Tech. Report TR-CS-82-10,

Dept:. of Computer Science, Aust. Nat. Univ., 1982.

[6] R.P. Brent, P.T. Luk and C. Van Loan, "Computation of the generalized

singular value decomposi'cion using mesh-connec·ted processors",

Proceedings SPIE Volwne 431, Real l'ime EHgnal Processing TII, Society of

Photo-Optical Instrumentation Engineers, Bellingham, Washington, 1983,

66-71. (Also available as Report CMA-R31-83, CMA, ANU, .Aug. 1983.)

[7] K-W. Chen and K.B. Irani, "A Jacobi algorittLTTI and its implementation on

parallel computers", Proc. 18-th Annual Allerton Conference on

Communication, Control and CompuHng (1980), 564-573.

[8] P.J. Eberlein and J. Boothroyd, "Solution to the eigenproblem by a norm

reducing Jacobi type method", in [31], 327-338.

[9] A.M. Finn, F.T. Luk and C. Pottle, "Systolic array computation of the

singular value decomposition", Proc. SPIE Syrrrp. East 1982, Vol. 341,

Real Time S'lgnal Processing V (1982), 35-43.

62

[10] G.E. Forsythe and P. Henrici, "The cyclic Jacobi method for computing

the principal values of a complex matric"', Trans. Amel'. Math. Soc. 94

(1960), 1-23.

[11] G.B. Golub and F.~r. Luk, "Singular value decomposition: applications and

computations", ARO Report 77-1, Tl~ans. of 22nd Conf. of Army Mathematicians

(1977), 577-605.

[12] E. R. Hansen, "On cyclic' LJacolli methods", J. Soc. Indust. AppL Math. 11

(1963), 448··459.

[13] D.E. Heller and LC.F. Ipsen, "Sys"tolic netvlOrks for orthogonal

equivalence transformations and their applications", Proc. 1982 Conf. on

Advanced Research in VLSI, MIT (1982), 113-122.

[14] D.E. Heller and I.C.F. Ipsen, "Systolic networks for orthogonal

decompositions", SIAM J. Sci. Statist. Comput. i (1983), 261-269.

[15] M.R. Hestenes, "Inversion of matrices by biorthogonalization and

related results", J. Soc. Indust. Appl. Math . .§. (1958), 51-90.

[16] D.J. Kuck and A.H. Sameh, "Parallel computation of eigenvalues of real

matrices", Information Processing 1971, North-Holland, Ams"terdam, (1972),

1266-1272.

[17] H.T. Kung, "Why systolic architectures", IEEE Computer 15, 1 (1982),

37-46.

[l8] S.Y. Kung and R.J. Gal-Ezer, "Linear or square array for eigenvalue and

singular value decompositions?", Proe. USC ~loY'kshop on VLSI and Modern

Signal Processing, Los Angeles, California. (Nov. 1982) v 8.9··98.

[19] C.E. Leiserson and J.B. Saxe, "Optimizing synchronous systems", J. VLSI

and Computer Systems 1 (1983), 41-67.

[20J F.T. Luk, "Computing the singular-value decomposition on the ILLIAC IV",

ACM Trans. Math. Softw. 6 (1980), 524-539.

63

[21] H. Rutishauser, "The Jacobi method for real symmetric matrices", in

[31], 202-211.

[22] A.B. Sameh, "On Jacobi and Jacobi-like algoritt.ms for a parallel

computer", Math. Computo ~ (1971), 579-590.

[23] A.H. Sameh, "Solving the linear least squares problem on a linear array

of processors,"' Proc. Purdue Florkshop on Alg01'ithmically-specIalized

Computer OrgawlzatIons (1982).

[24] R. Schreiber, "Systolic arrays for eigenvalue computation", Proc. SPIE

Symp. Eas-t; 1982, Vol. 341» Real-TIme SIgn.al ProcessIng (1982).

[25] R. Schreiber, "A systolic architecture for singular value decomposi-tion" ,

Proc. 1st Intern. Coll. on Vector and Parallel ComputIng In SdentIfIc

ApplIcatIons, Paris, France (1983).

[26] R. Schreiber, "On the systolic arrays of Brent, Luk and Van Loan",

Proceedings SPIE Vol. 431, Real-Time Signal Processing VI, Society of

Photo-Opti.cal Instrumentation Engineers, Bellingham, Washington, 1983,

72-78.

[27] J .1'1. Spei.ser and H •• }. Whitehouse, "Architecture for real-time matrix

operations", Proe. 1980 Government Microcircuits Applications Conf.,

Houston, Texas (Nov. 1980).

[28] H.J. Whitehouse, J.M. Speiser and K. Bronley, "Signal processing

applications of systolic array technology", Proc. USC Workshop on VLSI

and Modern Signal Processing, Los Angeles, California (Nov. 1982), 5-10.

[29] J.H. Wilkinson, "Note on the quadratic convergence of the cyclic Jacobi

process", NW7Ier. Math. i (1962), 296-300.

[30] J.H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,

Oxford, 1965.

64

[31] J. H. Wilkinson and C" Reinscl:). (editors), Handbook for Automatic

Computation, Vol-. 2 (Linear Algebra), Springer-Verlag, Berlin, 19710

Richard P. Brent
Cen'cre for Mathematical l',nalysis
Australian National University
GPO Box 4, Canberra, ACT 2601
AUSTRAl,IA

Franklin T. Luk
Department of Computer Science
Cornell University
ITHACA NY 14853
U.S"A.

