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NUMERICAL ANALYSIS OF THE BOUNDARY
INTEGRAL METHOD

G.A. Chandler

One of the important recent developments in numerical engineering has
been the boundary integral method (bim) ([5], [6], [10], [18]). This
technique is useful because the most common practical problems can sen-
sibly be expressed as linear equations in a homogeneous medium, and the
full generality of the finite element method is not needed. In these "simple"
situations the bim is a valuable means of using the special structure of a
problem to save computational effort. Additionally the scope of the bim is
currently being extended to include some non-linear, time dependent and non-
homogeneous problems ([ 67, [187).

A parallel effort has also been made to give a theoretical basis for
the bim. Two of the important early papers were Nedelec and Planchafd [14]
and Hsiao and Wendland [9]. The difficulty is the appearance of first kind
integral equations. The classical boundary integral equations (bie's)
described in [12] or [13] reformulate potential problems as second kind
integral equations. The numerical solution of these equations is understood
(€11, 3], [41, [11], [16]), and is well described by the most elementary
functional analysis. To deal with first kind equations more theory is
required, and fractional order Sobolev spaces are introduced to describe the
boundary values of the solution to the underlying differential equation.

Because of their importance the fractional order spaces have been
developed in great generality ([15]). However for the analysis of
numerical solutions to bie's most of this is unnecessary, and references to

the literature can give a false impression of the difficulty of the pre-
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requisites. The aim here is to give a very gentle self-contained introduction
to the ideas required to deal with first kind equations in the simplest
situations. More precisely, we use nothing that is not commonly used in

the theory of second kind equations. A better review of the range and

generality of the problems that can be covered is contained in Wendland [201].

1. BOUNDARY INTEGRAL EQUATIONS

The simplest problem to which the bim can be applied is the interioxr
Dirichlet problem. Here Q+ c 1R2 is a bounded region with a smooth
boundary T , and g: I' + R is the given boundary data. We seek the

unknown function U: @ + R satisfying

-

(1) Au(x) =0, e ,
and
(2) UII‘ =g ;

where AU = V.VU ( V is the gradient operator). For any x ¢ [ , Vv(x)
denotes the outward pointing unit normal, and Q = ]R\ﬁ+ is the unbounded
exterior. The bim is only possible because the fundamental solution (or

Green's function) is known to be

G(x,8) =-§l1—f tn|x-E|, x,E ¢ 1R2 .

For x # & let
G (%,E) = o Gx,E)
v oV (&) !

Then for any u: I' + R define the double layer potentials V;,VD and

VD by
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+ *
(3) (VDu)(x) := erv(x,-)u , xef ,
(4) (VDu)(x) := [FGv(x,-)u , xel .
Define the single layer potentials V;, VS, V;, by
+ t
(5) (Vo) (x) == f Glx,-)u, xe§ ,
s T
(6) (V u) (x) := f Glx,)u, xel .
s r

Direct differentiation shows that U;u and V;u are harmonic. Thus if
u or v can be chosen so that V;u or V;u satisfy the boundary conditions
(2), the original differential equation has been solved. The classical or
indirect bim chooses to represent the solution as U = Vgu ; for then the
boundary conditions are satisfied provided u satisfies a second kind
equation. However once the difficulties of the first kind formulation are
overcome, the alternative of the direct bim is generally preferred in
practice.

All bim's depend on the behaviour of the potentials as the boundary
is crossed. This is best motivated by remembering the physical interpreta-
tions. Vzv is the potential created when positive charges are distributed

around T with a density of v(x) per unit length at x ¢ ' . B2s

+ o+ - - - -
x >+ x (x e , x Q) physics suggests both V;v(x+) and st(x )

increase to a common limit (VSV)(X) (see Fig. 1) . That is

(7 vty

S IF = VSV = VSV‘F .

However Fig. 1 also suggests that the normal derivatives (V;v)v and
- + +
(VSV)V have oppositive signs. Thus denoting (USV)V(X) = lim (st)v(x) .
xtx
+ - . . , . s
we have (USV)V[F # (st)vlr . More precisely, if VD is the adjoint of

VD defined by
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FIG. 1

FIG. 2
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(V;v)(x) 2= IFGV(E'X)V(E)dE ’

then
T + v
(8) (VSV)VIF = thv + V-

V;u is the potential of dipoles distributed around I' with density
A sas +
u (positive charges pointing out). Intuitively as x * x , (V;u)(x+)
becomes more negative and as X +x, (VDu)(x_) becomes more positive

(because of the dipoles' allignment. See Fig. 2.) In fact
Vi ¥ v
(9) ( Du)lF = Fu+ Vu .

Note the difference between V;v|r which is defined by a careful limiting
process, and VDu which is the direct application of (4).

The "jumps" (7)-(9) are not too difficult to prove when u and Vv
are smooth ([12], p.160 ££. ) If only the minimum regularity of u and
v is assumed (to ensure that V;u and V;v are weak solutions to (1))
matters become more complex. This is avoided, here.

The direct bim combines (7)-(9) by examining the potential V' defined by

(10) vhoa= V;v - V;u )

But this is familiar from Green's third identity, which states for a

harmonic function U: Q+ + R

(11) f G(x,)U. -G (x,)U = Ux) xe
T v AY]
= LU(x) xel
= 0 %€ .

The “converse" is also true.
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PROPOSITION 1. If smooth functions wu,v on T , with I v =0,
T

satisfy the bie
(12) Usv - VDu = %u ,

then v defined by (10) satisfies

‘ +
(13) Vip=u,
and
+
(14) "vlr =v .
Proof. Equation (13) is a consequence of (7) and (9). To prove (14)

let w = VS = v . Applying (11) to V+ and then using (13) shows

sz = 0 . Hence Green's first identity and (8) give

(15) 0= (sz,w)

+ -
(sz. (sz)v - (Vs“’)v)

-2
[wl® | twpi?
Q Q
*
where (u,v) denotes uv . Therefore Vsz =0, and so
T

+ =
w = (sz)v!P - (sz)\)Ir =0 . /B
To arrange u and v so that v’ defined by (10) solves the interior
Dirichlet problem, first choose wu=g . Then (13) shows the boundary

conditions are satisfied if v satisfies the bie
Vv = v .
(16) gV =%+ Vg

Once v. has been found approximately, U can be approximated at any
interior point by (10). But (14) shows that v is the unknown normal
derivative of U , and in practice this is often the quantity of interest.

Thus the further (expensive) computations can be avoided. With indirect
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methods UV must be calculated after the bie is solved. (For an analogous
description of the direct and indirect methods in elastostatics see

Hartmann, Ch. 4 in [5].)

2.  NUMERICAL SOLUTIONS

The analysis of the numerical solution of the bie(16) requires some
manipulation of US and the introduction of some new function spaces.
Then (16) becomes a second kind integral equation, to which the standard
theory applies.

Suppose [' is parameterized as the smooth curve vy: [-m,m] + Izz ’
and for convenience suppose !#I is constant (i.e. the arc-length around
I' to vy(s) is proportional to s ). BAny function v: ' > R may be
identified with the periodic function vey: [-m,7] + R . We write
v(s) for v(y(s)) when appropriate. Then for v € CZ , the set of
infinitely differentiable functions with (v,1) =0 ,

1 A
v(s) = on z v (m) exp ims
m#0

with

1 ™
Q(m) = /EE'IV(S)eXP -ims ds .
=T

Define the norm l.;t for any t € R by
an lvl2 = Jnm |2

(the range of summation, m # O , is omitted for convenience). If t =0
. 2 s .
lv[o is the L normof v . For a positive integer k , lv!k = |D v[

2
the L  norm of the kth derivative. For negative integers, define the

anti-derivative D--l by

D Dv=v, (D "v,1) =0 .
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-k
Then if k is positive lvl_k = lD 0"
Define the fractional order Sobolev spaces H;(T) (or just Hg ) to
(ee]
be the completion of Co under l;'t ; or eguivalently for t 2 0 ,
Hg ={u e L2: lu[t < ®g (u,1) = 0}

When t <0 , Hg includes functions which do not belong to L2 . Thus
the delta "function" 60 defined by (u,ﬁc) = u(0) , is the limit of the
smooth functions
1

¢ (s) := o )  exp-imo exp ims
O<|m]<n
when t < =% , and hence 60 € Hg if t <%,

These spaces have a number of properties which hold in more general
circumstances. Here however the proofs involve the simplest properties

of Fourier series and some standard limit arguments. Thus they are

omitted.

THEOREM 2. (i) H; 18 a Hilbert space with inner product

(u,v)t = z mZtﬁ(m)C(m)

(i) If s <t then Hi > H; and the inclusion is

a compact map.

(iii) The dual of HC 4s H.C . That is the functional

u I+ (u,v) <8 bounded on Hg Oif and znly if v e Hgt . and
(18) |v|_t = sup{(u,v)/lult: ueHE} .
(iv) If t=9tl+(l—6)t2,tl<t2,osesl
we have the interpolation inequality
(19) Jul, < iu|2liu|t'9 : Y
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The relevance of these spaces can be seen when I' is the unit circle

C . Writing (cos s, sin s) = ¢&is s , and using USC’VDC etc for the potentials

in this special case

g 1 A
.1 . s=0 _ —— v v(m) .
(20) (VSCV)(s) = Eﬁ-[q?n|251nr374v(c)dc = o/ z I exp ims
and
(Ut )(r cis s) = —L z‘e(m) £|m| .
v) (r cis s) = exp ims .
sC 2/21 || P

(These formulae may be obtained by contour integration, or by using the
uniqueness of the exterior and interior Dirichlet problems and checking (7)

holds. See [13]). Clearly

(21) WVgoviv) = (v,v) _, and |v|_% = IVscvll5 .
. . - +12
Thus VSC is an isometry between H0 and H0 .

For general regions the simple formula (20) is no longer true. However

we have the decomposition

LT
Vv (v (s) =-Lf tn|Y(s) =y (0) |v(0)do

2m
-
el Iy ]
=- ¢nlcis s - cis ol + &n v(o)do
2m B |cis s - cis Ul_ :
- =T
That is
(22) (VSV) (y(s)) = (VSCV) (s) + (KSV) (s}
where
g [v(s) -y (o) ]
(Kw)(s) = | k(s,*)v , k(s,0) := n .
S |cis s - cis UI

=

Note that the kernel function k is smooth. Therefore for any v € Hg .

KSV has derivatives of all orders with
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(23) f% (st) (s) = (.—B—% k(s,"),v) .

s , ds
(Since v € HE the inner product on the rhs of (23) is defined. A simple
argument shows that it is the derivative of KSV . ) Hence KS: H8%~+Hg+l
is bounded for any & , and by properly (ii) KS: Ha% -+ Hﬁ is compact.
Therefore K:= (VSC)—lKS is a compact operator on Ha% , and the

decomposition (22) becomes
(24) VS = VSC(I+K)

(I is the identity operator). Therefore the bie may be rewritten as the

operator equation on H,"
(25) (TeKyv = £, £=V2iegtl @) .
! sC D

-3
(It is necessary to check that £ € Hdi. Since we assume g is smooth
Lg + VDg is also smooth, and it suffices to show that (%g+VDg,1) =0 .

But by the definition of V; and using (8)
= L. ¥ - -
(agtV g, 1) = (g VD) (CHURNN IS IR

A direct calculation shows VV;l = 0 , and hence (V;l)vlr =0 as
required.)

The introduction of the spaces H; has reduced the first kind bie
to a second kind equation (24), and the standard Fredholm theory may be
applied. If vV e Hg% solves (I+K)v = 0 , then v = -Kv and the smooth-
ness properties of KS show v is smooth. (i.e. Vv ¢ H% for all integers
£ ) Then the arguments used in the proof of Proposition 1 show v = 0 .
Hence the Fredholm alternative ([13]) shows (24) (or equivalently (16))
has a unique solution.

Most numerical solutions to the bie's are use piecewise polynomial

basis functions: - the boundary element method. Thus let
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T = sO < sl < ... < sn =T be a subdivision of [-T,T] with

max{|s,

1+1-sil} =h . Define Sh to be the set of piecewise polynomials

of order r (degree r-l) , which have V continuous derivatives at the
knot points {Si} (if Vv = -1 the functions are allowed to be discontinuous.)

Let
st ={pes: (,1) =0} .

We seek to approximate the solution veoY to the bie by an element of

Sg . The element may be selected in a variety of ways, but the easiest to
analyse theoretically is the Galerkin method. Here v, € S% is defined
by the Galerkin equations
(26) ¥ et W ,d = (5.0 .

0 Sh' !

If a basis '{¢i} is chosen for Sg , then vh = Zai¢i and the Galerkin
equations reduce to a system of linear equations for the vector [ui] .
These may in turn be solved by standard or non-standard methods. However
the procedure breaks down if the linear equations become singular, and
this possibility must be eliminated in a theoretical justification.
Applying the decomposition (24) and using (21) shows that (26) is

equivalent to
Wov-5g-V g,9) = (Vg lv, =v),¢) = ((I+K) (v, =) ,9) , =0 .

Thus the Galerkin method for the first kind bie(16) is just the Galerkin

L
method for the second kind equation (25) in the space H ? . But then

0
the standard theory ([3], [11]) shows that the Galerkin equations are non-

singular for h sufficiently small and

27) !vh—vl_% <cC inf{i¢-v!_%: ¢ € Sg} '
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where here and elsewhere the constant C is independent of v and h .

This bound is the basis for the qualitative convergence theorem.
THEOREM 3. (i) The Galerkin approximate solution to (16) satisfies
(28) v, vl , < Ch’“-+’flv|r )

(ii) If in addition the mesh satisfies the quasi-uniformity

condition
(29) max{]si+l-sil}/min{|sj+l—sj|} <0

for some constant o independent of h ; then

r
0 = < .
(30) |vh VIO Ch !vlr
Proof. The proof is the derivation of the required approximation
0 . . .
theory. For any u € HO let Pu e Sg be the orthogonal projection defined
by
h

(31) ¥o € S (Pu-u,¢) =0 .

o 7
Then it is well known ([7] for example) that
r
- <
(32) |Pu ulo < Ch lulr .

(If Vv is small, the proof of this result is fairly straight forward,

r
o’

depending only on a scaling argument.) For any Y ¢ H (31) shows
(Pu-u,¥) = (Pu-u,¥-p¥) < c[Pu-u!o|W-PT[0 .
and hence (18) and (32) give
: 2r
[pu~u| = sup{(Pu-u,¥)/|¥|} < ch™|u| .
=r r r

Finally (19) with 0 = 1/2r gives
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) 1-6
(33) |pu-ul, = |pu—u]? |pu-u|}7° < cn 2l
which combined with (27) gives (28).

Because of the quasi-uniformity condition, any continuous piecewise

polynomial satisfies

(34) lv| sch'll‘Plo )

1

For any ¢ € Sh ’ D_1¢ is a continuous piecewise polynomial, and

0

hence (34) shows
=1 =1y -1 -1
l6ly = ID770l, s cn™[p7¢[  =cn " fol ; .
Thus the interpolation inequality gives
ki 5 -5
lol Ly, = ol folg < en™lol -

Combined with (30) and (33) we have

Ivh-vlo < |vh-Pv|0 + va-vIO
< Ch—%|
< vh—Pv| a4t IPv-vlo
< Ch_%([vh—vl_% + lV—PVI_%) + IPV-VIO
<

r
Ch Ivlr /4

2
The L estimate (30) is a more deep and meaningful estimate of the

error in Ve But (28) is also useful. Assuming Green's identity (16)

for piecewise polynomials,
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2

2
Lflvvs (v, =v,) |© + LZ-IVVS(Vh-VO) (Vg tv, =) v, v )

((1+K) (vh-vo) ,vh-vo) -

2
C|vh--vo -y .

IN

Thus (28) measures (in the "energy" norm) the difference between the solution
U of the interior Dirichlet problem and its approximation by the potential
+ yt, o
V= sth VDg .
The Galerkin method is of limited usefulness because of

the integrations needed to set up the Galerkin equations. Collocation

methods are preferred in practice, and some of these can be treated in the

h

above framework. For instance let S0 be the space of Hermite cubics.
Then as VSC is an isometry Hg/z . Hg/z , the Galerkin equations
Vo e st (U (v =v),0), = ((I+K) (v —v) ,0), - = O
0" S h rYh2 h 'Yi3/2
are equivalent to the collocation equations
35 i = = = =
(35) Vi Vs(vh v)(si) DUS(Vh v)(si) 0

([2] or [20]). Thus the convergence of the collocation method (35)

follows from the Galerkin theory. Indeed this particualr collocation method
is used in the elastostatic software [19]. However not all collocation
methods can be analysed in this way. The results and techniques of [8]
cover some of the remaining éases; but the Fourier analysis there is
restricted to uniférm meshes. Thé techniquesydescribed here are more
flexible, and can be more easily extended to more difficult problems.

(When the boundary contains corners for example. See [171.)

4. A MIXED PROBLEM

The second advantage of the direct bim is that it can be readily
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applied to mixed boundary conditions. Here the boundary I is divided

into two segments Pl and Fz and we need to solve

(36) CAUx) =0, xe@F,
(37) vl

where we assume the boundary data g and h are given as smooth functions
defined over the entire boundary with (h,1) = 0 . The direct bim again

+ + ..
seeks u and v such that V = VSV - Vgu satisfies the boundary

conditions (37). That is we must satisfy

Vv - - Lu =

sV VDu hu = 0
+ + .

so that V |P = u and Vv‘T = v , together with

(u - @lr =0, (v - hﬂr =0 .
1 2

Equivalently writing u = u, +qg9g, v= V5 + h we need

(38) sto - VDuO - %uo =f, f= —(Vsh—VDg-%g)
and
(39) ul. =0, v.|. =0 .

0 Fl 0 F2

For i = 1,2 define Cm(Fi) to be the smooth functions on the boundary
o CO {>e]
T which are zero outside Pi . CO(Ti) =C (Fi) n CO(T) . Then (38) is

satisfied iff

v e C Ty)) » Ve CO(Fl)

(40) (%u0+VDuO—VSVO-f,¢) =0 = (VSVO-VDuo—f,w) .
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Let H-%(F ) be the completion of Cg(Pl) in the |-|

0 1 noxrm.

]
In fact ‘

= B _Lz
Ho%(Fl) = {vlrl: v e Hy () & L‘ v = 0}
1

2 .
but this useful characterization is not necessary. HO(FZ) =1L (F2) is
the space of square integrable functions defined on F2 with norm

0
e H (Pz) ’

2
lul™ = (u,u) . Then equations (39) are satisfied provided Uy

-3 0 ] ©
v, € Hy (Pl) . For ujcH (PZ) A Ho (Pl) , boe CO(Fl)
-1
(VSVO—UDuO,W) = ((I+K)v0 - VSCVDU0:¢)_%
and thus

I(USvO-vDuO,w)ls C(IVOI_% + uuou)lwl_% .

. . =% .
> _
Hence VY (VSVO VDuO,w) is a bounded functional on HO (Pl) . Using

the compactness of K and VD , there is a compact operator

Kl‘ HO(PZ) x H:’(Pl) > H:f(rl) such that

(VSVO-VDUOIIP) = (u0+K1(uO.V0) ,w)_;i °
-5

Similarly, there is a compact operator K_: Ho(Pz) X Hy (Tl) +~HO(P2)

2
such that for all ¢ € Coo(I"z)

(u0+2VDuO-2VSVO,¢) = (uO+K2(uO,VO),¢)

Hence the equations (40) can be expressed as the operator equation on

-4

0
H (P2) X HO

(rl) 14

(41) + = H

where f. € HO(PZ) , £, e H (') are defined by

1
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¥ e C (T): (£, , = £.0,
¥ e Co(T): (£,,0) = (£,) .

Thus again a first kind bie has been expressed as a second kind equation on
unfamiliar spaces.

To solve the bie numerically introduce the spaces

') ={pes 6x) =0 xxT.} ,
1 1
h h h
so(Fi) =S (Pi) n sO .
Note sg(rl) - H(‘)"’(rl> because sg(rl) < B)(r)) and HO(T) < H:i(rl) .

The Galerkin solutions to the bie (38)-(39) are the piecewise polynomials

h h . h h
w €S (Tz) PV € So(Fl) defined by ¥ € S (TZ) , Uoe So(Fl)

(42) (Vsuh—VDuh—%uh-f,¢) = (sth—VDuh—f,w) =0 .

These are clearly equivalent to Galerkin's method for the second kind
equation (41). We again conclude that, provided the bie has a unique
solution, (42) uniquely determines uy and vy for h sufficiently

small, and

Po-ugh + |vy vyl
. h h
<C 1nf{“¢—uoﬂ + !w—vol_%: ¢ €S (Fz) r Ve SO(Tl)} .

But the proof that the bie has a unique solution depends on uniqueness
results for mixed problems. This in turn is complicated by the fact that
u,v are not smooth even though g and h are. That is

t t-1 :
ue H(T) , ve Ho (TY for + < 1, but not for higher t . Thus the
jump formulae and Green's identities need to be proved for non-smooth

functions. There is also the practical consequence that the piecewise

polynomial bases must be modified to produce higher order approximations
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to u and v ([193, [21]). Nevertheless the above theory assures the

convergence of the Galerkin method if it is applied to well posed problems.
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