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NU~1ERICAL ANALYSIS OF THE BOUNDARY 

INTEGRAL METHOD 

C. A. Chandler 

One of the important recent developments in numerical engineering has 

been ·the boundary integral method (bim) ([5J, [6J, [lOJ, [18J). This 

technique is useful because the most corrmlon practical problems can sen­

sibly be expressed as linear equations in a homogeneous medium, and the 

full generality of the fini'ce element me·thod is not needed. In these "simple" 

situations the bim is a valuable means of using the special structure of a 

problem to save computational effort. Additionally the scope of the bim is 

currently being extended ·to include some non-linear, time dependent and non­

homogeneous problems ([ 6 1, [18]}. 

A parallel effort has also been made to give a theoretical basis for 

the bim. Two of the important early papers \vere Nedelec and Planchard [14J 

and Hsiao and Wendland [9J. The difficulty is the appearance of first kind 

integral equations. The classical boundary integral equations (bie's) 

described in [12J or [13J reforrnulate potent.ial problems as second kind 

integral equations. 'I'he numerical solution of these equations is understood 

([1J, [3J, [4J, [11J, [16J) , and is vlell described by the most elementary 

functional analysis. To deal with firs-t kind equations more 'cheory is 

required, and fractional order Sobolev spaces are introduced to describe 'che 

boundary values of the solution to the underlying differential equation. 

Because of their importance the fractional order spaces have been 

developed in great generality ([15J). However for the analysis of 

numerical solutions to bie's most of this is unnecessary, and references to 

the litera-ture can give a false impression of the difficulty of the pre-
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requisites. The aim here is -to give a verY' gentle self-contained introduction 

-to -the ideas required to deal wi-th first kind equations in the simplest 

si tua_tions. Mi:>re precisely, r,ile use nothing tha-t is no-t cOllLmonly used in 

the -theory of second kind equations. A. better review of the range and 

generality of the problems that can be covered is contained in Wendland [20]. 

1. BOUNDARY INTEGRI\l 

'I'he simplest problem to , .. hich -the bim can be applied is the in-terior 

Dirichlet problem. Here n+ c is a bounded region with a smooth 

boundary r g and g' r -+ JR is the given boundary data. We seek the 

unknown function u, n+ -+ JR satisfying 

(1) flu (x) 0, X E 

and 

(2) g 

where flU = V. ilu (II is the gradient operator). For any x E r, V {xl 

denotes the outward pointing unit normal, and n- '" IR \IT+ is 'che unbounded 

ext_erior. The bim is only possible because the fundO:lI1entaZ solution (or 

Green's function) is known to be 

For x i' I; let 

G (x, EJ '" - 21 in I x-I; I, x, I; E JR 2 
.'IT 

Then for any U: r ->- IR define the double layep potentials 

v; by 

v+ V and 
D' D 



( 3) 

(4) 
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r 
: = i _ Gv (x, ,1 u 

lr 

(IInu ) (x) := f G (x,·)u, x EO r 
r V 

Define the single layer potentials V;, Vs ' V;, by 

f G (x, .) u 
+ 

(5) (xi ~= x EO n-
ir 

(6) (x) := J r G (x,·) u , X E r 

Direct differentiation shows that V;u and + IIDu are harmonic. Thus if 

u or v can be chosen so ·that or satisfy the boundary conditions 

(2), the original differential equa·tion has been solved. The classical or 

indi.Y'ect bim chooses to represent. the solution as for ·then the 

boundary conditions are satisfied provided u satisfies a second kind 

equation, Ho\:,ever once the difficulties of the first kind formulation a.re 

overcome, the alternative of the direct. bim is generally preferred in 

practice. 

lUI bim's depend on the behaviour of the potentials as the boundary 

is crossed. This is best motivated by remembering ·the physical interpreta­

± 
tions, V S v is the pot.ential created when posi·tive charges are dist:ributed 

around r ,qi'ch a density of v (x) per unit. length at x ErAs 

± 
x -+ x + + --

(x Ell ,x En ) physics suggests both and 

increase to a common limit (V s v) (x) (see Fig. 1). That is 

(7) +- I iI v s r II v 
S 

HOvlever Fig. 1 also suggests that "che normal deriva·tives 

have appositive signs, 

we have (V;vl,)r '" (V~vj)r . 

liD defined by 

+ 
Thus denoting (V~v)\J(x) 

More precisely, if v* 
D 

(V\,) and 
S \) 

is the adjoint of 
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FIG. 1 

FIG. 2 



then 

(8) 

(V~v) (x) 
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:= ( G (~,x)v(~)d~ , Jr V 

I)'+u is the potential of dipoles distributed around r with density 
D 

u (positive charges pointing out). Intuitively as + 
x -+ X fl 

becomes more negative and as x + x, (VDul (x-) becomes more positive 

<because of the dipoles' alligrunent. See Fig. 2.) In fact 

(9) 

No·te the difference bet·ween V~ v I r which is defined by a careful limiting 

process, and IJou which is the direct application of (4). 

The "jumps" (7)-(9) are not too difficult to prove when u and v 

are smooth ([ 12], p.160 if. ) If only the minimum regularity of u 

+ V-v v is assumed (to ensure that !!Dll and are weak solutions to 
D 

matters become more complex. This is avoided, here. 

The direct bim combines (7) - (9) by examining the potential v+ 

(10) 

But this is familiar from Green's third identity, which states for a 

harmonic function u: ~t -+- JR 

(11) I G (x, • ) U - Gv (x, .) u 
r V 

J.,U(x) xd 

The "converse" is also true. 

and 

(1) ) 

defined by 



PROPOS ITION L 

satisfy the bie 

(l2) 
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If smooth functions li,V on r, with Ir" 

- II u 
D 

!;,u , 

then defined by (10) satisfies 

(13) u , 

and 

(14) v 

o $ 

Proof. Equation (13) is a consequ,ence of (7) and (9) 0 To prove (14) 

let w 

II w '" 0 
S 

(15) 

v~ - v . Applying (11) to + 
V and then using (13) shm\ls 

Hence Green's first identity and (8) give 

o + 
(V;W)V) (II sW, (V swl V -

1\7V~wI2 + IVIJ;wj2 

+ 
Therefore \7V- 0 and so Sw , where (u,v) denot,es Ir uv 

w 1111. 

To arrange u and v so that v+ defined by (10) solves the interior-

Dirichlet problem, first choose u=g Then (13) shows the boundary 

conditions are satisfied if v 

(16) 

satisfies the bie 

!;,g + II g 
D 

Once v has been found approximately, U can be approxima'ced at any 

interior point by (10). But (14) shows that v is the unknown normal 

derivative of U, and in practice this is often the quan'tity of interest. 

Thus the further (expensive) computations can be avoided. With indirect 
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methods Uv must be calculated after the bie is solved. (For an analogous 

description of the direct and indirect methods in elastostatics see 

Hartmann, Ch. 4 in [5J.) 

2. NUMERICAL SOLUTIONS 

The analysis of the numerical solution of the bie(16) requires some 

manipulation of V S and the introduction o,f some new function spaces. 

Then (16) becomes a second kind integral equation, to which the standard 

theory applies. 

Suppose r is parameterized as the smooth curve 
2 

y: [-1T,1TJ + lR 

and for convenience suppose Iyl is constant (i.e. the arc-length around 

r to y(s) is proportional to s). Any function v: r + lR may be 

identified with the periodic function v,o-y: [-1T,1TJ + JR 

v(s) for v(y(s» when appropriate. Then for V E 

infinitely differentiable functions with (v,l) = 0 

with 

Define the norm 

(17) 

v(s) ~ \ A 
~ L v(m)exp ims 

v21T m~O 

1 f 1T 
= I2:IT v(s)exp 

-1T 

I . I for any t E lR 
t 

Ivl~ 

by 

-ims ds 

COO 
o 

We write 

the set of 

(the range of summation, m ~ 0 is omitted for convenience). If t = 0 , 

is the L2 norm of v • For a positive integer k, 

the L2 norm of the kth derivative. For negative integers, define the 

anti-derivative 
-1 

D by 

-1 
D Dv v , 

-1 
(D v,l) o 
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Then if k is positive Ivl_k = ID-kvlo. 

Define the fractional order SObolev spaces H~ (r) (or just 

COO 

be the completion of 0 under or equivalently for t ~ 0 , 

t . { 2 I I } HO = U € L: u t < 00 & fu,l) = 0 

When t < 0, H~ includes functions which do not belong to L2. Thus 

the delta "function" Ocr defined by (u,Ocr) = u(cr) , is the limit of the 

smooth functions 

<P (s) 
n 

1 
: = 121[ I exp -imcr exp ims 

o<lml<n 

when t < -~ , and hence " t ~f Ucr € HO • t < -1:1 • 

These spaces have a number of properties which hold in more general 

circumstances. Here however the proofs involve the simplest properties 

of Fourier series and some standard limit arguments. Thus they are 

omitted. 

THEOREM 2. (i) H~ is a Hilbert space with inner product 

(18) 

(19) 

\ 2tA -A­
(u,v)t = L m u(m)v(m) 

(ii) If s < t then H6 -:; H~ and the inclusion is 

a compact map. 

(iii) The dual of H~ is H~t That is the functional 

u 1+ (u,v) is bounded on H~ if and only if v € H~t and 

(iv) If t = atl + (1-a)t2 , tl < t 2 , 0 $ a $ 1 

we have the interpolation inequality 

.1111 
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The relevance of these spaces can be seen when r is the unit circle 

c. writing (cos s, sin s) = cis s , and using VSC,VDC etc for the potentials 

in this special case 

(20) 
1 ~(m) 

U'27r- ~ i:I exp ims 

and 

+ l~lml !Iml 
(V- v) (-... cis s) '" -- 2 -- r exp ims 

sc - 2/2-IT Iml 

(These formulae may be obtained by contour integration, or by using the 

uniqueness of the exterior and interior Dirichlet problems and checking (7) 

holds. See [13J). Clearly 

(21) 

Thus is an isometry between and 

For general regions the simple formula (20) is no longer true. However 

we have the decomposition 

(!lsv) (y(s») =-2~rr r Q,nly(s)-y(allv(a)dCT 

-'ff 

That is 

(22) 

where 

r k(s, ·)v 

-'IT 

Note that the kernel function k 

Iy(sl-y(o) I l 
s - cis 0"1 + 9vn Icis s _ cis 01 _ v(O)dO 

Iy(s)-Y(IJ) I 
:= 9vn---------------

lcis s - cis 01 
k(s,a) 

is smooth. Therefore for any 

KSv has derivatives of all orders with 
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(23) 
cf -::--I (K v) (5) 

Cls S 

aJ/, 
(--JI, k(s, 0) ,V) 

as 

(Since v E the inner product on the rhs of (23) is defined. A simple 

argument shows that it is the derivat.ive of ) 

is bounded fer any J/" and by properly (ill K 
-1; H • 
0 

Therefore K:= 

S 

-It< is a compact operator en 
S 

decomposition (22) becemes 

(24) iJ s (I+ICl 

Hence K . 
,::' 

H-l:l->-tl,+l 
o 0 

->- is compact. 

and the 

(1 is the identity operator). Therefore 'che bie may be rewrit.ten as ·the 

operator equation en 

(25) f fl f =: 

(Pc is necessary to. check that f E H~1. Since "Ie assume 9 is smoo·th 

~g + !JDg is also smooth, and it suffices 'co shelll ·that (~g+VDg,l) = 0 • 

But by the definition of V~ and using (8) 

A direct calculation shollls \/V-l 
s 

required. ) 

o and hence o as 

The introduc·tion of the spaces has reduced the first kind bie 

to a second kind equation (24), and ·the standard Fredholm theory may be 

applied. If v E 
H-~2 solves (1+K) v ~ 0 , then v ·-Kv and the smooth-

0 

ness properties of K show v is smooth. (Le. v E 
HQ, for all integers 

s 0 

!I, 1 Then the arguments used in the proef of Proposition 1 show v = 0 • 

Hence the Fredholm alternative ([13J) shows (24} (or equivalently (16)) 

has a unique solution. 

Most numerical solutions ·to the bie' s are use piece<,;ise polynomial 

basis functions: - the boundary element method. Thus let 
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-'IT '" So < sl < < sn = 'IT be a subdivision of [-'IT;IT J with 

Isi+1-siIJ = h Define s11. to be "the set of piecewise polynomials 

of order r (degree r-l) , which have V continuous derivatives at the 

knot points {s. } (if V -1 the functions are allmved to be discontinuous.) 
J. 

Let 

o} 

We seek to approximate "the solution voy to the bie by an element of 

h So The ele.ll1ent may be selected in a variety of "ways, but the easiest "to 

analyse theoretically is the Galerkin method, Here 

by the GaZerkin equations 

(26) 

If a basis" {<fl.} 
1. 

is chosen for 
h 

So ' then 

(f,.p) 

v 
h 

is defined 

and the Galerkin 

equations reduce to a systerrt of linear equations for the vector [a. J 0 

1. 

These may in turn be solved by standard or non-s"tandard methods. 

"the procedure breaks dOvm if the linear equations become singular, and 

this possibility must be eliminated in a theoretical jus"tificationo 

Applying the decomposition (24) and using (21) shows that (26) is 

equivalent to 

Thus the Galerkin method for the first kind bie(16) is just the Galerkin 

method for the second kind equation (25) in the space Eu"t then 

the standard theory ([ 3J, [llJ) shows that the Galerkin equations are non-

singular for h sufficiently small and 

(27) Iv -vi, 0; C inf{I<fl-vl_l-..' h --~ -, 
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where here and elsewhere the constant C is independent of v and h 

This bound is the basis for the qualitative convergence theorem. 

THEOREM 3. (i) The Gale:rokin app:rooximate solution to (16!) satisfies 

(ii) If in addition the mesh satisfies the quasi-unifo:romity 

condition 

(29) maX{ls. I-s .I}/min{ls. 1-s.l} ~ cr 
1+ 1 J+ J 

fop some constant cr independent of h; then 

(30) 

Proof. The proof is the derivation of the required approximation 

theory. For any u E H~ let Pu E s~ be the orthogonal projection defined 

by 

(31) (Pu-u,<jl) o 

Then it is well known ([7J for example) that 

(If V is small, the proof of this result is fairly straight forward, 

depending only on a scaling argument.) r 
For any 0/ E HO ' (31) shows 

(Pu-u,o/) 

and hence (18) and (32) give 

Finally (19) with e 1/2r gives 
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(33) 

which combined with (27) gives (28). 

Because of the quasi-uniformity condition, any continuous piecewise 

polynomial satisfies 

(34) 

For any cP € s~ 

hence (34) shows 

O-lcp is a continuous piecewise polynomial, and 

Thus the interpolation inequality gives 

COmbined with (30) and (33) we have 

Ivh-vl o ~ IVh-Pvl o + Ipv-vl o 

~ ch-~Ivh-Pvl_~ + Ipv-vl o 

.1111 

The L2 estimate (30) is a more deep and meaningful estimate of the 

error in vh But (28) is also useful. Assuming Green's identity (16) 

for piecewise polynomials, 
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Thus (28) measures (in the "energy" norm) the difference between the solution 

U of the interior Dirichlet problem and its approximation by the potential 

The Galerkin method is of limited usefulness because of 

the integrations needed to set up the. Galerkin equations. Collocation 

methods are preferred in practice, and some of these can be treated in the 

above framework. For instance let sh be the space of Hermite cubics. o 
Then as V is an isometry H3/ 2 + H5/ 2 , the Galerkin equations 

~ 0 0 

o 

are equivalent to the collocation equations 

([2] or [20]). Thus the convergence of the collocation method (35) 

follows from the Galerkin theory. Indeed this particualr collocation method 

is used in the elastostatic software [19]. However not all collocation 

methods can be analysed in this way. The results and techniques of [8] 

cover some of the remaining cases; but the Fourier analysis there is 

restricted to uniform meshes. The techniques described here are more 

flexible, and can be more easily extended to more difficult problems. 

(When the boundary contains corners for example. See [17].) 

4. A MIXED PROBLEM 

The second advantage of the direct bim is that it can be readily 
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applied to mixed boundary conditions. Here the boundary r is divided 

into two segments fl and f2 and we need to solve 

(36) 

(37) 

L1u (xl 

ul r = 9 
1 

o , X E 

h 

"There we assume the boundary data 9 and h are given as smooth functions 

defined over the entire boundary with (h,l) = o. The direct bim again 

seeks u and v such that + 
V V;v - V~u satisfies the boundary 

conditions (37). That is IIle must satisfy 

so that :::::: U and 

v v - V u - ~u 0 
S D 

v , together with 

(u •• g)1 r = 0 , 
I 

Equivalently 'Ilriting- u = U o + 9 v Vo + h we need 

(38) 

and 

(39) 

v v - V u - ~uo SOD 0 
f , 

uolr = 0 , 
1 

f - tv h-V g-!:;g) 
S D 

For i 1,2 define COO (r. ) 
~ 

to be the smooth functions on the boundary 

r \vhich are zero outside 

satisfied iff 

(40) 

r 
i 

o 

Then (38) is 
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Let be the completion of in the I·I_~ norm. 

In fact 

H~~(rl) =' {vir: V € H~(r) & r v = o} 
1 ~l 

but this useful characterization is not necessary. HO(r2) = L2 (r2) is 

the space of square integrable functions defined on r 2 with norm 

ilull 2 = (u,u) • Then equations (39) are satisfied provided Uo € HO(r2) , 

° -~ ~ For Uo € H (r2) , Vo € HO (rl ) , $ € CO(rl ) 

and thus 

I (VSvO-VDUO,$) I~ c(lvol_~ + IluoU) I$I_~ 

-~ is a bounded functional on HO (rl ) Using 

the compactness of K and VD , there is a compact operator 

° -~ -~ Kl : H (r2) x HO (rl ) + HO (rl ) such that 

~ 

such that for all ~ € C (r2) 

Hence the equations (40) can be expressed as the operator equation on 

(41) + 

where are defined by 
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co 
V<jJ E C (r 2) : (fl'¢)_~ (f ,<P) 

-~ 
00 

V¢ E Co (r 11: (f2 ,1jJ) (f ,1jJ) 

Thus again a first kind bie has been expressed as a second kind equation on 

unfamiliar spaces. 

To solve the bie numerically introduce the spaces 

h {<p E S : <p (xl o x i; r.} 
]. 

Note because and 

The Galerkin solutions to the bie (38)-(39) are the piecewise polynomials 

h 
u h E S (r 2) , defined by 'i1<jJ E sh (r 2) , 

(42) (V U -V ~ -~u -f,¢) = (V v -V ~-f,W) = 0 
S h D n - h S h D h 

These are clearly equivalent to Galerkin's method for the second kind 

equation (41). \"e again conclude that, provided the bie has a unique 

solution, (42) uniquely de-termines and for h sufficiently 

small, and 

0; C inf{IIq:,-uoll + Iw-v I J: '" E Sh(f2l , o -';1 7 

But the proof that the bie has a unique solution depends on illliqueness 

results for mixed probl~ms. This in turn is complicated by the fact that 

u,v are not smooth even though g and h are. That is 

U E for t < 1 f but not for higher t Thus the 

jump formulae and Green's identities need to be proved for non-smooth 

functions. There is also the practical consequence that the piecewise 

pclynomial bases must be modified to produce higher order approximations 
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to u and v ([19], [21]). Nevertheless the abo've theory assures the 

convergence of the Galerkin method if it is applied to well posed problems. 
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