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NUMERICAL MOD-ELLING OF SOLIDIFICATION 

A. D. MilleX' 

§l. INTRODUCTION 

In this paper we shall report on some preliminary investigations 

into numerical schemes for the two phase Stefan problem in two space 

dimensions. Interest in this problem has arisen in the course of trying 

to model the cooling and solidification of foundry castings. In the 

foundry industry a major design objective is the avoidance of shrinkage 

cavities and other forms of porosity in castings. These kinds of flaws 

can seriously affect the mechanical strength of the casting. They can 

however largely be avoided by ensuring that the solidification of the 

molten casting takes place in such a way that at any time the regions of 

still molten material remain connected to the feed points. If this is 

the case, molten material is able to flow freely from a feed point 

throughout the still molten region and-make UP for any local shrinkage 

caused by contraction of the material as it solidifies. TWo of the 

most important design choices that are available to try to achieve this 

goal are the placement of the .feed points (called "risers" in foundry 

terminology), and the positioning of "chills". Chills are metal inserts 

placed in the mould to remove heat very quickly from the casting, thus 

increasing the speed of local solidification. 

A model casting arrangement is shown in Fig. 1. 

represent the cross section of a casting of an I-beam. 

This could 

The casting 

is being fed from the top. There is clearly the possibility that the 

narrow neck A could solidify before the lower part of the beam 

completely solidifies. If this were to occur, there would be an 

isolated still molten region in the lower part of the beam. No molten 

material could subsequently reach it from the feed point, and shrinkage 
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cavi ties would arise during later stages of the solidifica·tion. However, 

a chill placed against the lower part of the beam may hasten t:he local 

rate of solidification sufficien'c1y to ensure ·thatno such isolated 

mol ten region occurs. 

In addition to this connectivity aspec·c, there is extensive 

experimental evidence that o·ther features of t.he thermal history of the 

castinq (e.g. rate of solidification) may also have a significant 

solid. For further details of the metallurgical aspects of the problem 

see [2]. 

From wha·c has been said, the ability to predict the thermal 

history of a casting would seem a useful skill in foundry applications, 

particularly as a means of optimizing the design and placement of 

risers and chills. In setting up an initial mathematical model with 

this application in mind we have made a number of physical simplifica·cions, 

(a) The problem is spatially two-dimensional. It is posed on 

a bOl.Ll1ded domain 11 c JR2 11 is made up of subdomains 

N n. Q = U 
i=O J. 

These sl.:ibdomains represent the 

Further-

more we suppose that each of the 11. 
~ 

are rectilinear in shape with sides 

parallel to the coordinate axes. (see Fig.2) Typically this set-up 

represents the section of a "long" right-angled prism with end effects 

neglected. 

(b) Heat flow and phase changes are the only physical processes 

being considered. In particular, we do not consider any form of mass 

transfer. Although from what was said above some mass transfer effects 

such as the change of density after solidification (i.e. shrinkage) and 
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the resulting flow of the molten material are very important as far as 

the mechanical properties of the casting are concerned, it does not 

seem unreasonable to suppose that they only have minor influences on 

the thermal history of the casting. 

(c) Heat flow is governed by two processes. Firstly, in the 

interior of nj (j",o, .•• ,N) , the rate of heat flow vector is given by 

- k.17u 
J 

where u is the temperature and k. is the conductivity. Secondly, on 
J 

an interface between n. and n. (i,j=O, ... ,N;i#j) the rate of heat 
~ J 

flow from n. inton. is given by 
~ J 

where u(i) - u(j) is the temperature jump across the interface and 

is the interface conductance. 

(d) In the casting (nl ) solidification takes place at a fixed 

* temperature u and is accompanied by the liberation of specific latent 

heat L There are more sophisticated models of phase changes than 

this. They take account variously of nucleation, change in composition 

of alloys during solidification etc. (see [2]). The simple, classical 

description that we have chosen is thought to apply reasonably well,at 

least on a gross scale, in the case of some pure metals. 

(e) In each of n. (j=O,2, •.. ,N) the material thermal parameters 
J 

of density (p j ) , specific heat (c j ) and conductivity (k j ) are 

constant, that is, temperature independent. In the casting n l , PI 

and are cons'tant whereas is assumed to be a constant in each 

phase separately. In addition, the interface conductances are all 

assumed to be constants (i,j=O, ... ,N;i#j). 
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(f) On the boundary of n, an, we shall suppose that the 

temperature is fixed at "the ambien"t tempera"turewhich, without loss of 

generality, we take to be o. 

Some of these simplifications may seem rather severe. Ho;oJever 

it should be borne in mind that our objective can really be no more 

than to obtain a qualitative impression of the effects of different 

casting designs. The precision with which t:he -thermal properties of 

justify the use of more complica"ted models. 

In §2 we briefly describe two mathematical formulations of the 

phase change phenomenon. One of these formulations, the enthalpy 

formulation, is further considered in §3 where t\~O discretizations based 

upon it are introduced. One of these is explicit, the other implicit. 

We discuss some features of these two discretizations in §4 and §5 and 

prove some Ll stability resul-ts. 
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§2. r~ATHH1AnCAL FORMULATION OF THE PROBLB4 IN Q l (~10LTEN/SOLI[) REGION) 

In the mould region QO and the chill regions Q2, •.• ,QN our 

model is governed by the classical heat equation. However in the region 

nl we need to take account of the possible change of phase. A number 

of mathematical forraulations have been suggested for handling this 

phenomenon. We shall briefly mention <tN<O such methods. The second of 

these is the one \"e shall be concerned with in this paper. 

(a) Moving Boandary Formulation 

In this formulation it is supposed that at any time n1 can be 

partitioned into two (a priori unknown) subregions : corresponding 

to the mol'cen phase, and Q corresponding to the solid phase. Let s 

r denote the (unknown) inter-phase boundary an n 3Q (see Fig.3). In m s 

Q and n heat conduc<tion is the only physical process occurring, so 
s m 

au 
k V2u in n Plcl,s at 1 s 

dU 2 
in P l cl,m at klV u Q 

m 

are the appropriate heat balance equations where cl,s and 

are the specific heats in Qs ' Qm respectively. 

across r is expressed by the inter-phase condition 

condition 

,,, 

j",s,", lq 'n 

on r 

(m) ~ 
- ~ 'n on r , 

Heat balance 

'Nhere is the rate of heat flow vector in 

is the specific laten<t heat of solidification and v is the 

velocity of r (thought of as evolving along the unit normal i1) 

(2.1) 

Q ,L 
Cl 
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Physically this condition states that any imbalance in hea't flow across 

r must be accounted for by the liberation of latent heat and consequent 

movement of the inter-phase bouzldary. 

One point to note about -this formulation is that the existence 

of ~m' fls and a "smooth" inter-phase bou,.'ldary r (smooth, so that 

n ,v etc. can be defined in a reasonable way) is in fact a physical 

assump-tion. Indeed, it need not be true. Instances where a phase 

suddenly appears or disappears, or where an originally connected molten 

region breaks up into a nurriber of disconnected pieces are common 

occurrences in the physical process we are seeking to model. Admi-ttedly, 

away from such "singularities" it is often physically plausible that (2.1) 

should apply, while extra conditions can be added to (201) to deal vli-th the 

singularities. However,all this is certainly complicating the 

formulation of the problem. More critical is -the fact that even with 

these modifications the model may still not be physically realistic in 

some settings. If, for instance, there is a body heat source, (due, for 

example, to electric current passing through the nmterial or absorption 

of radiation) there may develop d, proper two-dimensional (in our setting) 

* region which is at the phase change temeprature u In such a reqion 

the heat balance relation will involve only the body heat source and the 

absorption of latent heat. To persevere with a moving boundary formulation 

in this setting would demand adding to ~rn and ~s this so called "mushy"' 

region together with conditions governing heat balance across all the 

possible bOQndary combinations for these regions. 

Apart from the above physical objections to a moving boundary 

formulation, from a computational viewpoint, working directly with (2.1) 

in any more than one space dimension does not appear easy. Even more 

so if it has to be supplemented with special conditions to handle the 

possible singularities etc. mentioned earlier. 



(b) Enthalpy Formulation 

This formulation is based upon treating the specific enthalpy 

as the primary quantity of interest. Heat flow is still driven by 

temperature gradients, but with temperature now being related to 

enthalpy by a non-linear relation. In the enthalpy formulation no 

explicit mention is made of the "inter-phase region" (in particular, 

no a priori assumptions concerning its character are made). Whatever 

conditions apply at the phase interface are "natural interface condi1lions" 

in the enthalpy formUlation. Since the enthalpy can be expected to be 

discontinuous at the phase interface one cannot expect a differential 

formulation to hold in a classical sense. Some kind of weak formulation 

needs to be considered. To motivate one such formulation consider the 

integral relation 

(2.2) 

expressing the heat balance in an arbitrary region A~ 01 • Here 

h is the (specific) enthalpy, n is the outward ~it normal to 3A, 

as usual is the rate of .heat flow vector, and Q is a body heat 

source term. proceeding in ~he usual (informal) way, we approximate 

any ~ E C~(Ol) by step functions. After making use of (2.2) we are 

led in the limit to 

( 

J ~. V~ 
o 

1 

(2.3) 

This is the basis of our weak enthalpy formulation together with the 

classical heatflow law 
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and the temperature-enthalpy relation 

u Tl (h) • 

In accord with our earlier assumptions, Tl is piecewise constant as 

* shown in Fig. 4a. The part of the curve where u < u corresponds 

* to the solid phase while u > u corresponds to the molten phase. 

(The slopes of Tl in these parts are simply and respectively. ) 

* The flat part of the curve at u u corresponds to the phase transition, 

with the (specific) latent heat L Later on we shall also need the 

"inverse" of Tl • Clearly this is not single-valued. We shall consider 

it as a set valued function El as illustrated in Fig. 4{b). 

In that (2.3) is posed on the fixed domain nl , it is referred to 

as a fixed domain formulation to contrast it with formulations like (a). 

There are other fixed domain formulations. One is based on 

defining a new quantity called the freezing index. For details 

see [4]. 

Let us mention that there is an even weaker formulation than (2.3), 

in which the test function ~ = ~(x,t) E c~(nlx(O,T». (2.3) is integrated 

over the time interval (O,T) , and a formal integrations by parts with 

respect to time is carried out on the left hand side. This gives 

a¢ 
ph at dxdt g.v ¢ dxdt + fT f Q¢ dxdt 

x 0 n 
1 

(2.4) 

This is the weak formulation that is often considered in theoretical 

discussions of the Stefan problem ([6],[7],[8]). 
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§3. THE DISCRETIZATION OF THE ENTHALPY FORMULATION 

To fur-ther simplify the exposition we shall suppose from nm" on that 

N = I that is there are only blO subdomains, flO ('ehe mould) and fll 

(the casting). This arrangement displays all the features of the more general 

problem. In the light of this simplification there is only one kind of 

interface, and we shall write 9 in place of gal'" g10 for th", interface 

conductance. 

An en~·halJ?Y formu],a.t:Jon is; t.1(ivially possible 

~10 where no phase change occurs. In ·this case the enthalpy-·tempera-ture 

relations are simply linear functions, u = T (h) = ~ 
o Co 

Introducing the interface conditions into the enthalpy formulation 

leads 'eo the following t.entative \'i'eak formulation of our problem : 

Find functions u and h defined on fI for all time t::': 0 which 

satisfy 

(i) u = 0, h = 0 on an 

(ii) 

(iii) (dh ') m 8t,q> 

on 

- a(u,¢) + t(Q,¢) 

for all test functions ¢ which are defined on fI, vanish on afl and 

are "smooth" on flO and fll . 

a(u,¢) I 
j 

L 
j 

Here we have used the notation 



(iv) u(x,t) = T.(h(x,t» 
J 
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for x E Q. , t::: ° . 
J 

This is the weak formulation of the problem upon which our discretization 

will be based. 

As a first step towards describing this discretization we place 

a uniform square finite element mesh on Q . Let a be the mesh size. 

(We suppose that QO and Ql consist of whole elements) 

the space of all functions v which satisfy 

Let Fa be 

(i) v is bilinear on each element of the mesh 

(ii) the restriction of v to Q. lies in CO(Q.) 
J J 

(j=O,l) 

Note that functions in Fa may be discontinuous across ano n anI. 

Let 

v ° on aQ} 

For any mesh point x with x E Qj let 1jJ (x,j) be the (unique) 

function in Fa which satisfies 

(i) 1jJ(x,j) = ° in 

(ii) if y is a mesh point, y E Qj' then 

-- { 0

1 
1jJ (x,j) (y) 

if Y = x 

otherwise • 

(The index j of the mesh point pair (x,j) only need be given if 

x is on the interface aQO n aQ l • otherwise, there is no ambiguity 

if it is dropped, and we shall often do so.) The set of all such 

1jJ(x,j) constitutes a local basis for Fa' while the set of all 

1jJ (x,j) where x ~ aQ forms a basis for If v lies in we 

shall denote its coordinates relative to these basis functions by v(x,j) , 

that is 
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v _L vCi,j)$,i,j) 
lx, j) 

We also need to discretize time. We shall break up [0,00) 

into equal time intervals of duration /'; 

Finally we define a quadrature operator II) in both one and t'VJO 

dimensions as follows For any sufficiently smooth function f 

(i) If Y is an edge Oi: an element of the mesh 

If r 

of the mesh 

(ii) If s 

f = % I 
z 

(z 

f(z) . 

an endpoint of Y) 

where the are (distinct) edges of elements 

N 

10 f L 10 f 
r j=l Yj 

is an element of the mesh 

10 f = ~ I fez) 
s z 

Iz a vertex of S) . 

where f(z) is the limit from within S . 

If A 

mesh 

N 
U 

i=l 
S. 
~ 

where the 

N 

I I/) f . 
i=l S. 

1 

S. 
1 

are (distinct) elements of the 

Associated with these quadrature operators are the discrete norms 

defined for v E Fo by 
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l:::p<oo 

We are now in a position to describe the two discretizations that 

we wish to consider: Find un,Hn E F~ n = 0,1,2, ••• such that 

(i) 

(ii-E) Explicit method 

v~ E F~, n = 1,2,... (3.1.E) 

(ii-I) Implicit method 

° V~ E Fo' n = 1,2, •.• (3.1.I) 

where 

1: 
j 

(iii) uO, HO are specified initial data (satisfying (i». 
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§4o THE EXPLICIT METHOD 

Existence and Uniqueness , 

Letting ¢ in (3oLE) run through the basis functions 1/1 (x,j) 

of FO we obtain o 

n+l -
H (x,j)mo (1/1 

which may be explicitly solved for 
n+l -

H (x, j) 

n -
(Q ,1/1 (x,j)) 

in terms of 
n n 

H ,U and 

This together with 
n+l - n+l -

U (x, j) = T. (H (x, j» 
J 

provides the (unique) 

solution of -the explicit discretizationo 

uniform Boundedness 

Theorem 4.1 3c > ° such that if Un, Hn are solutions of (3.1.E) 

then 

provided (4.2) 

where 
min(pO,P1)min(cO,c 1 ,c l ) 

_1m :'s 

and 4g 

Proof The proof of (4.1) follows by arguments similar to those found 

in [5] or [3], for instance. 
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The proof essentially tries to obtain a discrete analog in the 

stefan problem setting of the relation 

au ,,2u which holds for the classical heat conduction equation at = v + q . 

A crucial role is played in the proof by the monotonicity of Ej 

Remarks (i) The stability condition (4.1) bears obvious similarities 

to the stability condition for explicit methods for the heat conduction 

equation. 

(ii) Once uniform boundedness is established, compactness 

arguments can be used to show that the solutions of (3.1.E) converge 

in some sense as ~ and 0 approach zero. The limit may be identified 

as the (unique) solution of a weak formulation of the problem arising 

from (2.4). The convergence is in terms of norms such as L2 «O,T)XQ) 

For details of the method of proof see, 

for instance, [11, [31, [51 and the references therein. 

One would, of course, hope for a stronger convergence result than 

this. A reasonable first step towards this should be some form of 

continuous dependence with respect to data. Since the problem is non-

linear, continuous dependence does not follow directly from boundedness. 

Uniform Continuous Dependence 

Theorem 4.2 3c > 0 such that if and are solutions 

of (3.1.E) corresponding to data Qn , HO and Qn , HO respectively 

then 

n 1,2, .•. 

provided (4.2) is satisfied. 

III 
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Proof Let XI 
U and n 

q 
~n 

- Q . Clearly 

the rela"cion 

n '" 1,2, ... 

is satisfied. It follows from the form of E. 
J 

that for any mesh 

point pair (i,j) 

XI - (i,j) u lx, j) n 

where 0 n6i,j,n) maxr~ 1 J ::: ::: , -c-~ 
Co cl,B I,m , 

Rearranging (4.3) gives 

(hn +1 "" mo '''II E 

Nm. choose $ E FO 
I) 

defined by 

1 

1 if (i, j) > 0 

$ (x,j) 0 if hn+1 j) 0 

-1 if hn+l j) .: 0 

We then have 

n+l mo (h ,$ ) 

Next consider By a discrete integration by parts 

this may be written as 

'" form $ 

x, j 

j) = J oqx,j,y,i) <p(y,i) 
(y,i) 

to give details of the a(x,j,y,i) here). 

'" -where <P Ix,j) takes the 

(Space does not permit us 

Letting 6(x,j) denote the 

area of the support of ~(i,j) , we may write 

!4.3) 

14.4) 

(4.5) 

(4.6 ) 

(4.7) 
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It may be shown that (402) ensures that I [ 0'0 ] I < 1, and so 

we have 

From (405) we then have 

Iterating this estimate gives the result, III 

Remark, (i) Clearly we also have a related stability estimate for the 

(ii) The stability condition for this theorem is the same as the 

condition for boundedness in Theorem 4.1. The norms employed are 

however weaker than those dealt with in Theorem 4,10 Nonetheless, 

Ll-type norms of the enthalpy are in some sense physically natural as 

they represent the "energy" in this modeL 



§5. THE IMPLICIT METHOD 

Existance and uniqueness : 

Let some numbering of ·the mesh points (i{, j) be established, \"i·th 

the convention that the indices 1::: k ::: M correspond to non boundary 

mesh points. write 
n+l - n+l -

H ()[,j), U (x,j) , 

l/J j) etc. 

On let·ting q, in (3.1. Il run through the basis functions 

of we obtain a system of equations for 

We may write these in the form 

Mz Aw + D 

where (i) Iv. is -the M x M diagonal "mass" matrix 

Mkk rna (l/Jk,l/Jk ' 
> 0 

(ii) z is the M vector 

Zk 
n+l 

Hk 

(iii) A is the M x 1'1 "stiffness matrix" 

n+1 
Hk 

It follows almost immediately that A is symmetric and negative 

definite 

(iv) W is the M vector 

The components of Wand Z are related by 

(5.1) 
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where is either EO 

(v) D is a M vector involving only data and quantities 

known in terms of It The particular form of D need not concern 

liS here. 

'Eheorem 5.1 There exists a unique solution for Wand Z to (5.1), 

(5.2). This solution pair can be obtained as the limits of sequences 

and zl,z2, ... of Gauss-Seidel iterates which are 

constructed as follows : 

1) [or j=l, ••• ,M 

w~ arbitrary 
J -

2) for s 0,1,2, ... 

I for 

Find 

j 1, ••. ,M 

the solution 
8+1 w. 
J 

I A .. w~+l + A .. w~+l + 
i lJ 1 JJ J 

of the scalar equation 

I 
i 

i<j i>j 

Define 

z~+1 1 
J = r. 

JJ 

A .. w~+l + 
lJ 1 

s+l s+l 
(Zl , ••• 'ZM ) 

A .. w~ 
i lJ 1 

i>j 

(5.2) 

(5.3) 
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Proof Firstly note that the scalar equation (5.3) has a unique solution 

(the left hand side is a strictly decreasing function of W~+l , 
J 

with 

limits of as W~+l -+- ±oo , 
J 

while right hand side is a strictly . 

increasing set valued function with limits 

Consider the function A 

1 M 
A(W) = '2 l: 

i,j=l 
A .. W.W. -
~J ~ J 

"BM -+- "B , 

too as w~+l -+- ±oo) 
J 

M 

E(j) (s)ds + l: 
j=l 

D.W. 
J J 

which is easily seen to have the following properties 

(ii) A(W) -+- _00 as [wi -+- co 

(iii) A is strictly concave. 

* It follows that A attains its maximum value at a unique point, W say. 

* We shall show that (a) W satisfies (5.1), (5.2) iff W = W 

(b) s __ (Ws s) * W l' ••• 'WM -+- W as s -+- ClO • 

Let us note at this point the basic identity 

A (W+V) - A(W) 

If (5.1), (5.2) hold then 

A (W+V) -

+ I D.V. 
j J J 

(5.4) 

for some ~j E E(j) (Wj) . The monotonicity of EO and El guarantees.that the 

term in brackets is non-negative. Since A is negative definite, we 

conclude that A (w+v) ::: A (W) for all V E "BM. * Therefore W = W 
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" Conversely, if ,oj' = W and v = te 
k 

is a uni-t vector in the 

kth coordinate direction) then (5.4) gives 

for any t E lR. By the form of E(kl we know that as t -+ o± 

t -+ o± gives 

and 

'I< 

" Wk+t 

J E (slds 
;, k 

W 
k 

Thus, dividing (5.5) by t(~ 0) and letting 

L A~kW; - M i; + <: 0 
i ~ ~ kk + 

o . 

Since Ek (TrVk ) is either an interval or a point, it follows that 

for some 

Turning nm., to (b). 

;, 
That is W satisfies (5.11. (5.2). 

The Gauss-Seidel iteration is based upon 

successive maximizations in the coordinate directions. Consider a 

typical instance of (5.3). Define -W' and W" by 

( w~+l if i < j 
I 1. 

W~ 1 1. 

l W7 if 1. > j 
l 

(5.5) 



1 
5+1 

if W. 
], 

WI.~ 
:I. 

'VJ~ if 
], 

Employing the basic identity (5.4) gives 

A (W") - 1\ (W' ) 

- Moo 
JJ 

i < j 

i > j 

Wi for i"l j However (5.3) may be rewritten as 

where i;" E E(j) {Wjl • Multiplying this by 

into (5.6) gives 

(W"~-W!) 
J J 

and substituting 

A (W" ) - A (W' ) 

The monotonicity of E(j) this time ensures that the term in square 

brackets is non-positive. Thus by the negative definiteness of A 

A (W" ) - A (W' ) 

for some a > 0, independent of j and s Since 

w~ 
J 

after running through the indices j 

> \' I s+l s l2 a /., N. -w. 
j J J 

for some a > 0, independent of s. 

1, ••• ,M 

(5.6) 

(5.7) 
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Clearly, the sequence A(Ws ) is non-decreasing, and since 

where 

Now (5.3) may be rewritten as 

I A .. w~+l + D. 
i 1.):L J 

(8 ->- co) • 

L A .. (W7+1_W~) 
. :LJ:L L 
1. 

i<j 

Thus by (5.7) 

j 

Subtracting from each of these equations the corresponding component 

equation of (5.1) leads to 

(j 

(5.8) 

where However the mono·tonici ty of implies that 

" s+l " (1;.-1;.) (W. -W.l ~ 0 
J J J J 

Therefore multiplying through by 

s+l " (W. . -W.) , summing over j 
J J 

1, ... ,M and noting that A is 

negative definite gives 

I (w:+l_W~) 2 I (- s+l '" :s a € .) (tv. -tv. ) 
j J J j J J J 

:s c I (w:+l_W~)2 I (w:+l_W~)2)} 
j J J J J 

for CI., c depending only on A The result now follows from (5.8). HI 

Uniform Boundedness 

The estimate (4.1) holds for the implicit method without any 

condition on 0 and L such as (4.2). Again the proof follows the 

lines of that in [5J or [3]. 
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Uniform continuous Dependence , 

Theorem 5.3 Jc > 0 such that if Un, Hn and 
~n 

,H are 

solutions of (5.1), (5.2) corresponding to data Qn ,HO and Qn, ~IO 

respectively, then 

Proof 

Clearly the relation 

is satisfied. 

Rearranging (5.9) gives 

n 
u 

n ~n 

U - U and 
n 

q 

(5.9) 

(5.10) 

and proceeding much as in the proof of Theorem 4.2 choose 

by (4.6). It follows just as in (4.7) that 

II hn+lll 
P '1, /) 

We claim that 

n+l 
a cS (u , ~) ::: 0 

~ t 1'0 given 
h 

Accepting this for the moment, the right hand side of (5.10) can be 

estimated to give 
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Iterating this gives the desired result. 

Returning now to (5.11). Notice that the monotonicity properties 

of T. imply that 
J 

i) if un+l(x,j) > 0 then hn+l(x,j) > 0 and so 4>(x,j) 1 

ii) if n+l(- .) u x,J < 0 then hn+l(x,j) < 0 and so 4> (x,j) = -1 

By considering the possible signs of un+l (x,j) and un+l(y,i) , it 

follows that 

i) if n+lC .) u x,J n+l(- .) u y,~ > 0 then 4> (x,j) - 4> (y,i) "= 0 

ii) if n+l(- .) n+l(- .) 0 then 4> (x,j) 4> (y,i) 0 u X,J u y,~ < - ::: , 

and so in particular 

n+1 - n+l - - -(u (x,j) - u (y,i» (4)(x,j) - 4>(y,i» "= 0 • (5.12) 

Upon considering the form of it follows readily from (5.12) 

that (5.11) must hold. III 
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