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LATTICES FOR MULTIPLE INTEGRATION 

Ian E, Sloan and P. Kachoyan 

1. IN'I'RODUC'l'ION 

The subject of this paper is 'the numerical in'teg-ration of smoo'th, 

periodic functions over the unit cube in s dimensions. In one dimension 

the problem reduces to 

(1) I-a' f(x)dx , 

where f is a smoo'ch, periodic funat.ion \'lith period L In ,this situation 

the recommended me'thad {see for example [3, p. 106]) is usually the trap-

ezoidal rule, or equivalen'tly the rectangle rule 

(2) 

(3) 

1 n-l ('J - L f ~ . 
n j=a 

The s -dimensional analogue of (1) is 

I (f) 

f f(x)dx 

US 

where US is the s -dimens ional unit cube, 

{x E JRs: a:> x, < 1 
]. 

We shall always assume that f is periodic with period 1 with respect 



to each coordinate separa-tel y, L e • 

(4) f (x + ul f 

What, then, is the s -dimensional analogue of (2)? There is no unique 

answer to this question. Perhaps the most obvious generalization of (2 is 

the product rectangle rule 

1 
n-l 

1 \1 
(5) L f .. "~J , 

s n 
n jl=O js =0 

which we shall refer to hereafter simply as the rectangle rule. The total 

nUlllber of q-uadrature points in this rule is N = 
s 

n which for cons-tant 

rises very rapidly with s. Thus the rectangle rule suffers badly from 

-the 'curse of dimensionality' • 

n 

To see the extent of the problem, consider, for example, the function 

(6) 

where 

(7) 

f(x) 

F(X) 

J x2 (1_x)2 

l F(x+l) 

Because f is a product, the rectangle rule reduces in this case to a 

product of one-dimensional rules for the function F. Now the error in 

the one-dimensional rule for F' is known to be of order 0 (n -4) , and from 

this it follows that the error in the s-dimensional rule for f is also 

of order 
-4 

O(n ) The trouble is that in terms of 

o (N-4/ s ) , so the convergence is very slow indeed if 

N the order is merely 

s is large. 
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A second and quite different way of generalizing the rule (2) is the 

number--theoretic 'good-lattice' method of Korobov [9] and others [2, 4, 6, 

7, II, 14J. (For a lucid recent surnma.ry, see [5J .) In this method one 

first chooses the total nmnber of points N (with N often a prime, or a 

produc-t of t1tlO primes). Then an integer vector p E ZZS 

and the integral I(f) is approximated by 

(8) 
N-I 1 ~. 

N L 
j=O 

is determined, 

where the braces { } about a vee-tor indicates -that the fractional pari: 

of each componen-t is to be taken. (The braces can be omitted because of 

-the periodicity property (4), but it is convenient to think of all quadra-

ture points as lying in -the unit cube.) Wi thout loss of generality, we may 

assume -that the components of p satisfy 0 0; Pi < N We shall also 

assume -tha-t at least one component of 1? is relatively prime with N - in 

practice this is often achieved by set.ting PI = I 0 

If s = land N is set equal to n then -the rule (8) reduces to 

the (Jne-dimensional rectangle rule (2). In higher dimensions, hmvever ,the 

rule (8) is different from -the rectangle rule (5). As a simple illustration, 

we set s = 2 , N = 5 and f = (1,2) Then (8) yields a five-point rule 

in two dimensions, 

~ [f(O,O) 
:) 

Much of the literature on the number-theoretic good-Iat-tice method is 

concerned wi-th proving -that in a certain precise sense there exist i good 

lat-tices', corresponding to good choices of N and In Figure 1 we 

show the quadrature point_s corresponding to one such good choice in two 

dimensions. (The numbers 55 and 89 used in this construction are con·-
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secutive Fibonacci numbers. For the theory of the Fibonacci construction in 

two dimensions see [14].) In Figure 2 we show the quadrature points for the 

same value of N but a different (and rather arbitrary) choice of g. In 

both cases the points are seen to form slanting lattices, but the distri~ 

bution appears to'be more uniform in the first case than the second. (Later 

we shall give a numerical comparison of the corresponding quadrature rules, 

which will confirm that the second quadrature rule is indeed less good than 

the first.) 

1 • x x .. x x x x . x x x 
x x x x x x x x X JI X X X • X • • • x x x • • • x • x • • x • • x x 
" • • " • • • • , • • • • • • • • 
~ . x • • • x • • • • x • • • • • x 

x " • . " • .. 
1 

Fig. 1. Quadrature points for 

N = 89, g = (1,55). 

1 : • .w x : x • • • • • x x • x • • x x • x x x x • x x, x • x x x x x x x x x x x x • • • " • x • • • x • • x x • x • x • • • x • x • • • x 
" • .. x • x .. . • x x • !II 

1 

Fig. 2. Quadrature points for 

N = 89, g = (1,47). 

Korobov and Hlawka have shown that as N runs through the primes it 

is possible to choose a corresponding sequence of vectors g such that the 

quadrature error for the function f defined by (6) and (7) satisfies 

(log N) S 

N4 

where c and S depend only on s. Asymptotically that convergence is 

much faster than the order o (N-4/ s ) obtained for the rectangle rule. 

However, Haber [5] points out that S increases very rapidly with s, so 
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tha t -the curse of dimensionality is not entirely dispelled. 

There are perhaps blo main problems with the nu.-nber--theoretic method 

(apart, that is, from the practical problem of finding good lattices). The 

first is ... ~lBt the convergence as N + 00 is irregular, because there is no 

relation between t:11.e p vectors for one value of N and another. Thus 

there is no possibility of using Richardson extrapolation to improve the 

estima-te, nor any valid way of estima-ting the error by comparing the values 

fo:!:· different values of N. The other problem is that the set of quadrature 

poin-ts has very little symmetry, the only symmetry is inversion about the 

centre of -the cube 0 It: often happens that f has a-t least some of the 

symmetries of the cube for example, a standard way of producing periodic 

func-tions from non-periodic functions makes f symmetric about each of the 

mid·-planes perpendicular to an axis < wi th the number-theoretic method there 

is no -IVay of teJeing advantage of this syrm:netry to reduce the number of 

quadrature poin-ts (except for an approximate halving through the inversion 

symmetry). In contrast, the rectangle rule has all of the syrru:netries (a 

Vo.st_ number in high dimensions) of the s -dimensional Ct!be. 

We shall demonstro_te in this paper that both the rectangle rule (5) 

and the number-theoretic lWcthod (8) axe special cases of a much more general 

family of 'lattice me-thods", all of which can be thought of as genera1iz-

at ions of the one-dimensional rectangle rule, and all of which can be 

analysed within -the one simple framework. It seems certain that some other 

methods within this family will be of pract:ical interest. Indeed, one class 

of lattice methods introduced below (the cIa.ss W ) may already be a con
nn 

tender. Only a brief sketch of the lattice methods can be given here. A 

full exposition will appear elsewhere [12]. 

2. LATTICE METHODS 

Both the rectangle rule (5) and the number-theoretic rule (8) may be 
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written in the form 

(9) 
N-1 

~ L f(x.) 
i=O _1 

where ~O' .•• '~-l are points in the unit cube The point sets in 

the two cases are different, but they have in common that they are points of 

a 'lattice'. 

A lattice, in our definition, is an infinite set of points in lRs 

that form a group under addition, and that are such that some neighbourhood 

of 0 contains no point of the lattice other than 0 itself. The lattices 

that we want to use in (9) also have the additional property that they con

tain ~s as a sUb-lattice. (This ensures that the lattice has the same 

periodicity property as f.) We shall call a lattice with that additional 

property a 'multiple-integration lattice'. 

To each multiple-integration lattice there corresponds a 'lattice 

method' : it is the rule of the form (9) for which ~O' ••• '~N-I are the 

points of the lattice that lie in US Note that 0 is one of the 

quadrature points; so we write ~o o 

The rectangle rule (5) is, of course, the lattice method corresponding 

to the rectangular lattice 

(10) . E rn I _< l' _< s} J i .... , 

and the number-theoretic rule (8) corresponds to, the lattice 

(11) 

Of the vast number of other multiple-integration lattices, we shall, 

consider for purposes of illustration just one family: for positive 



integers 

(12) 

nand r , "cbe lattice W 
nr 
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is defined by 

kE zz} 

We may think of ill 
nr 

as consisting of cubes of side 1:., within each of which 
n 

there are r + 1 equally spaced poin"ts on the main diagonal. The lattice 

Vlnl is just the rectangulclr latticeo 'rhe lattice Wn2 has an additional 

poin'c a"t the cent:ce of each of the cubes of side 1:., and so n:laY reasonably 
n 

be called the "body·-centred cubic' lattice. r"t has all of the symmetries of 

the rectangular la"ttice itself. The lattices W with r > 2 have some
nr 

what less symmetry. (Nc doubt the definition of will seem J:"ather arbi--

trary at this stage. \ole shall return to the motivation later.) 

In Figures 3, 4 and 5 we 

show the lattices W4l , W42 and 

1iJ 44 (or more precisely, "the part 

of eacb lattice tha"t lies in Us), 

for the case s = 2. La ter ,'Ie 

shall give some numerical resul"cs 

for the corresponding in"tegration 

rules. 

Fig. 4. Quadrature points for "'42' 

Fig. .3. Quadrature points for W 41 ' 

the rec"tangle rule with n = 4 

Fig. 5. Quadrature points for W44 . 
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To assess the accuracy of the competing lattice methods, we need to 

know the error for the integration rule (9). That is the next step. 

3. ERROR ANALYSIS 

We may begin, as in all treatments of number-theoretic multiple inte-

gration, by assuming that f has an absolutely and uniformly convergent 

Fourier series representation 

(l3) 

where 

f(x} 
,,21fim·x 

a(m}e 

Given this representation of f, it is a natural first step to ask: 
21fim'x 

what does the rule (9) give for the function e ? Now in the special 

case of the number-theoretic method (8), this question has a very simple 
21fim'x 

answer: for this case, writing cf> (x) = e 
m 

N-l 21f~' (j£/N) 
IN (cf>m) ~ L e 

N j=O 

N-l [e21fi~'£/N)j ~ L 
N j=O 

otherwise • 

- - "we have 

Since ~'£/N is an integer if and only if ~'r - O(mod N} , we obtain from 

(l3) , 

(l4) L a(!.!!} 
~'£=O(mod N} 
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since 

I(f) a(O) 

it follows tha'c the error in applying the number-theoretic rule (8) to f is 

(15) I' a (m) 
m· p==O (mod Nl 

INhere the prime indicates 'that the term m ~ 0 is to be omitted from the 

sum. Equation (15) is a standard result in the nu.raber-theoretic li'terature. 

Note that the error expression has contribut.ions only from the integer 

vectors m (other than 0) that satisfy the congruence ~.J? == 0 (mod N) 

the reason being that for all other values of m the rule integrates 
21Tim·x 

e exactly. 

We now seek to analyse the general lattice method introduced in the 

previous section, thus we let S be a multiple-integration lattice, and 

let be the points of S that lie in 
2'TTim"'x 

Again we ask what 

the rule gives for the function e The answer is given by the 

following theorem, proved in [12] by a qroup-theoretical argument. 

~[121. If 
2'ITim~x 

<p (xl = e with 
m 

IN (<Pm) { 

denotes the lattice method defined above, and if 

mE :zzs " then 

1 if mE S.L , -
0 otherwise 

The set S.L appearing in the theorem is the 'dual' or 'reciprocal' 

of S, defined by 

rnexEz:; VxES} 
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and is itself a lattice. The dual lattice appears in coding theory [13] and 

geometric number theory [1], and in X-ray diffraction and solid-state physics 

[a], but as far as we know this is its first explicit appearance in multiple-

integration theory. Of course the dual of the number-theoretic lattice (11) 

is just the set of solutions of the congruence map = 0 (mod N). 

From the theorem we have the following corollary for the error in 

IN(f) , which generalizes the result (15) for the number-theoretic case. 

COROLLARY. If f has the absolutely and uniformly convergent Fourier series 

representation (13),· the error in the lattice method .. IN (f) is 

(16) IN(f) - I (f) ( a(m) 

me 5.1 

In Figures 6 to 10 we show the duals of the multiple-integration 

lattices in Figures 1 to 5. (We leave aside technical questions relating to 

how to find the. dual of a lattice - see [12] .) 

x 2D 

• • 
X X 

• 
X 

X 

-ill X 2D 
• 

X 
X X 

• • • -ill 

Fig. 6. Dual of the number-theoretic 

lattice for N = a9 , ~ = (1,55) 

., 
• X 

X • X 

• • X .. X 2D 
X 

X 
X 

• • X 
X 

-ill • 
Fig. 7. Dual of the number-theoretic 

lattice for N = a9 , ~ = (1,47) 

Figure 6 is the dual of the 'good' number-theoretic lattice in Figure 1. 

The goodness of that lattice can now be understood by observing that there are 

no non-zero elements of the dual close to the origin. Figure 7, on the other 
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hand, which is the dual of the less good number-theoretic lattice, has 

points relatively close to the origin, namely at ± (5,-2) • These may 

give a relatively large contribution to the error expression (16), if the 

Fourier coefficients a(m) behave in an ordinary way (see below). -' 
The dual of the rectangular lattice (10), illustrated for s = 2 and 

n = 4 in Figure 8, is itself a rec-

• • • • .. • • • • • tangular lattice, the ed<J.e length in • • • • • It • • • • 
this case being n The most danger- • • • • • • • • • • 

• • • • • • • • • • 
ous points in that dual, from the • • • • X • • • • • 
point of view of the error expression -P. • • • • • • • , 
(16) , are the innermost points on the • • • • • • • • • • 

• • • • • • • • • • axes, for example at (±n,O, ••• ,.0) • • • • • • • • • • 
The body-centred cubic lattice " • • • .. • • • • • 

in Figure 4, when compared with the 
Fig. 8. Dual of the rectangular 

rectangular lattice in Figure 3, has lattice W41 . 
additional points, whose effect is to 

remove the most dangerous points from the rectangular dual - compare 

Figure 9 with Figure 8. This removal of the most dangerous points is a 

general property of the body-centred cubic lattice, and may be considered a 

first example of the 'dual engineering' approach to lattice design. The 

lattice Wnr goes further in this direction, in that it removes from the 

rectangular dual the r - 1 most dangerous points on each semi-axis. The 

motivation for this is that the points of a dual that lie on the axes turn 

out to be particularly significant (see (21) below). The dual of W44 in 

two dimensions is shown in Figure 10. Note that the nearest dual-lattice 

points on the axes are now at a distance of n2 = 16 from the origin. 



n !il • II! Ii1: ~ )1 ~ liIl 

~ III 1IIl Ii! !it !II 

m !iI :Ii lI'i I!i! !oI m III il% 

:li! Z! ~ III Ii! :II 

l!I 2'! $I III llIl U !!I III :Il 

1!' !'i l! ~ III 
, ~<m 

~ !I! 

:!II ~ liI ~ 11 ~ 

:Ill Il! " SI! ~ 1l! !f, ill ~ 

l1! ~ !I! !C ::.1 :II 

lit ~ .. ~ IS ll: ill ~~ III It 

Fig. 9. Dual of W42 Fig. JO. Dual of W44 . 

To proceed further i-t is necessary to make some assumptions about the 

function f. A test function that has been much used in the literature of 

number-theoretic multiple integration is the func-tion 

where 

F 2 (xl 

221 
{ l+21T (x -X+g-) , 

F2 (X+I), 

o :;; x :;; 1 , 

It is easily shown that the Fourier series expansion of 

00 

F2 (xl 
\' 1 21Timx 
L -2 e 

m=-"" m 

where 

if ~ 1 , 
m = 

if m o 

from which it follows that 

F 
2 

defined by 

is 
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The Corollary above then tells us that the e:cror from applying the lattice 

method (9) to the function f2 is 

(17) I 
N 

( _...-.-:::.1_., 

mE S.l (mi ms) "" 

'l'he particular virtue of the function f2 is that it is in a sense 

the 'worst' fQQction in a certain class. Let ECi.(c) denote the class of 
s 

function s f for which 

c 
- Ci, 
m) 

s 

Then for f E ECi,(C) we have, from the Corollary, 
s 

(18) iIN(fl - I(f) I scI' 
.1 

mES 

In particular, for 
2 

fEE (0) 
s 

,ie have, 

(19) 

In a similar way we may define 

where 

1 
- Ci, 
In ) 

S 
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{ 

n4 2n4 2 2 
1 + 45 - -3- x (1 - x) , 

F4 (x + 1) , 
F4 (x) 

00 

\ 1 2nimx 
l. -4 e 

m=--oo m 

from which it follows that 

f4(~) L 
m € liZs (iiil 

Thus for f EE4 (C) 
s 

we .have the 

(20) 

1 
- 4 e 
ms) 

rigorous 

2nimo.x 

bound 

1 
- 4 m ) 

s 

Note that the largest terms in the error bound (18) are equal to 

c/p(J, , where 

(21) p iii) 
s 

~;o!2 

suggesting that to minimise the error one should try to make p as large 

as possible. (A Theorem giving some theoretical support to this idea is 

proved in [12].) In the case of the rectangular lattice (10), the dual 

lattice points at (±n,O, ••• ,0) ensure that p = n. For the lattice 

Wnr the 'worst' points in the dual are at (±nr,O, ••• ,0) if 1 $ r $ n , 

from which it follows that p = nr. For r = n the points in the dual 

at (n,-n,O, ••• ,0) etc. are equally 'bad'. This balancing act is the 

essential feature in the design of the lattice W , and leads to a 
nn 
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relatively favourable value for p, namely p 

4. NUMERICAL RESULTS 

2 
n 

In Table 1 we give results for the five two-dimensional lattices 

shown in Figures 1 to 5. The first lattice is the 'good' number-theoretic 

lattice of Figure 1. In this case p = 34. (Note that there are dual 

lattice points at ± (34,1) , since 34 x 1 + 1 x 55 ::: 0 (mod 89) .) The 

estimated value for I(f2) is reasonable, and that for I(f4 ) is excellent. 

(Remember that in all cases the exact integrals have the value 1.) 

Table 1. Results for s = 2 • 

N Lattice p I N(f2) I N(f4 ) 

89 p (1,55) 34 1.016 1.000 008 

89 !? (1,47) 10 1.032 1.000 2 

16 W4l 4 1.45 1.017 

32 W42 8 1.13 1.001 1 

64 W44 16 1.04 1.000 10 

64 W8l 8 1.11 1.001 

The less good number-theoretic lattice of Figure 2 has p = 10 (corre-

sponding to the dual lattice points at ±(5,-2) ), and so not surprisingly 

gives worse values for the two integrals. 

The rectangular lattice W4l has p = 4 , as noted in the previous 

section, and yields relatively poor values for I (f2) and I (f4 ) • The 

body-centred cubic lattice performs better in every respect, and the lattice 

W44 better still. For comparison we show also the result for the rectangu-

lar lattice W8l , which has the same number of points as W44 

The calculations in Table 1 are really only toy calculations, to 

establish the ideas. We turn now to some more significant calculations 
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in six dimensions. In Table 2 we compare, for s = 6 , the lattices 

and WS5 1tlith three number-theoretic good-lattices with similar 

numbers of poin-ts. (The nV_llIber-theoretic lattices and the corresponding 

values of p are taken from the tables of Maisonneuve [10].) For N near 

2000 the results for W33 seem to be better than the number-theoretic 

resul ts, whereas for N near 75000 the si tua-tion is largely reversed 

which is !'loot surprising, since -the number-theoretic me-thods certainly have 

a better asymptotic ra<te of convergence" Thai: is not, the only considerat_ion, 

An advantage of the sequence is that it permits Richardson 

extrapola-tion: from (17) and (20) and an examination of the dual of W 
nn 

it can be shown tha t 

I N (f2 ) 1 
-4 -6 - + c 2n + o •• , 

I N(f4 ) 1 dIn 
-8 

d 2n 
-12 - + + •• 0 

In the last line of Table 2 we show the values of the integrals deduced by 

Results for s = 6 

N Lattice p (f2 ) IN (f4 ) 

2129 (1,41, ... ) 4 3.0 1.019 

2187 W33 9 2.5 L007 

15 019 ,e=(1,8743, ' .. ) 8 1.2 1.000 7 

16 384 W44 16 1.3 LOOO 7 

71 053 E=(1,18010, ... ) 18 L033 1.000 03 

78 125 1iI155 25 1.11 1.000 1 

Richardson extrapolation from W33 , W44 , WSS' 1.011 1.000 001 
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applying Richardson ex-trapolation ·to W33 , W44 and w55 . It is clear 

that for these integrals Richardson extrapolation is working well 0 

Finally, in Table 3 we show some ten-dimensional results. Interesting-

1y, the lattice W33 predicts o. much better value of I (f4 ) ·than does a 

reasonably comparable number-t,heoretic lattice from [10], the error being 

about 2 9• for , compared ,'lith about 7% for the n1.l.mber-theoret:ic lattice. 

Of COUI'se it will still be the case 'chat for large enough N the number-

theoretic lattices will win, but in practice I asymptotia I rnay never be 

reached, because we are perhaps already close ·to the practical limit of N. 

Table 3. Results for s = 10 ----

N Lat·tice p IN (f4 ) 

155 093 (1,90485, •• oj 4 1.069 

177 147 W 33 9 1.020 

CONCLUSION 

We have shoir.TD. that the dual lattice is ·the key to ·the understanding 

of lOot·tice methods for mUltiple integ":r:ation. with this knowledge it should 

be possible to design lattices ",7ith desired properties (e.g. good extra-

polation properties, appropriat.e sYl111netries, good accuracy). The lat,tices 

{W } in·troduced above appear to be a useful first step in this directiono 
nn 
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