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BOUNDARY INTEGRAL METHODS APPLIED TO
CAVITATION BUBBLE DYNAMICS

Bachok Taib, G. Doherty and J.R. Blake

1. INTRODUCTION

Cavitation can occur in fast moving liquids whenever the local
pressure in the liquid falls below a certain critical value (the vapour
pressure) for a sufficient time. Bubbles form in a low pressure region
and are swept away to regions of higher pressure where they collapse
creating extremely high local velocities and pressure immediately adjacent
to the bubble. This leads to noise, vibration and physical damage if
the collapse occurs close to a solid boundary. Cavitation is a problem
that has continuously plagued engineers in a variety of disciplines ranging
from the aerospace engineer designing rocket pumps to the civil engineer
concerned with the service life of spillway structures and energy
dissipators. Cavitation can occur in fluid machinery: in all types of
centrifugal pumps, also in turbines, propellers, underwater missiles,
torpedoes and in piping systems near elbows, contractions and expansions

of the pipe (see Arndt [1] for expansion on the above discussion).

The main objectives of our research programme in Cavitation Bubble
Dynamics is to gain a better understanding of the potential mechanisms
for causing damage to turbomachinery and other hydraulic devices (e.g.
pitting, erosion). It is now thought that the damage mechanism is
primarily due to a very high speed liquid jet impacting against the
boundary. However, the direction and speed of the jet depends on the

properties of the boundary; for example a rigid boundary "attracts"
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bubbles with the jet directed towards the boundary, whereas a free
surface "repels" bubbles with the jet directed away from the boundary,
(see e.g. Benjamin and Ellis [2], Plesset and

Chapman [12], Blake and Gibson [5], Gibson and Blake [7]). The major
objective of our study is to determine the parameter space of the
physical properties of compliant boundaries which will just repel

collapsing cavitation bubbles.

In this paper we plan to illustrate one aspect of this study;
notably the application of boundary integral methods to the growth and
collapse of a cavitation bubble near a rigid boundary. We calculate the
shape of the bubble, pressure contours and particle paths as a function
of the bubble lifetime. Other aspects of the experimental and
theoretical research programme may be found in other publications of the
group (see e.g. Blake and Gibson [5], Gibson and Blake [7,8], Blake and

Cerone [4], Blake [3]).

To simulate the growth and collapse of a cavitation bubble near
a rigid boundary the fluid mechanics will be modelled
by an incompressible, inviscid and irrotational fluid flow. This yields
Laplace's equation for the velocity potential, thus enabling us to apply
the boundary integral method using the moving surface of the cavitation
bubble. In the next section we develop techniques for solving the boundary
integral equations for a bubble in an infinite fluid. These ideas are
extended in the succeeding section to that of a cavitation bubble near a
rigid boundary, in particular concentrating on the solution strategy where
the nonlinearities are incorporated into the updating of the boundary
conditions. A discussion of the physical significance and implications of

our calculations may be found in the final section.
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However before moving to the development of our solution technique
incorporating the boundary method we present the classic solution
of Lord Rayleigh [13] for a cavitation bubble in an infinite fluid.
This is particularly important when checking and comparing results from
our numerical procedure. Briefly if linear dimensions are scaled with
respect to the maximum bubble radius Rm and time scale of
R.m/[(pw—pc)/p]li (p_, pressure at infinity; P Vapour pressure;

p, density) are introduced, then the velocity and pressure field are

given by
2.
R R
v(r,t) = 5
(1 o
1 1-4R3 111 3
p(r) = 1 + =|—=—| = —|= R(1-R")
2 413
3R r

where R(t) (0 < R< 1) is the bubble radius and r is the radius in
spherical polar coordinates. The lifetime of a Rayleigh bubble is

T = 1.829. The maximum pressure is given by

1
3 63
p(r) : x, = 5_&1?_:1;_4 R < 0.6299
(2) p = 1-4R
max
1:at ©; R> 0.6299 .

As an illustration, when R = 0.1, the maximum pressure Pmax = 157.7030

occurs at rl = 0.1589. Thus for example, if p, - pC was 1 atmosphere,
the maximum pressure would be 157 atmospheres just outside the collapsing

bubble.

For non-spherically symmetric bubbles an alternative technique is
required: one approach will be described in the next section using a

boundary integral method.
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2. BOUNDARY INTEGRAL METHOD
2.1 Formulation.

For any sufficiently smooth function ¢ which satisfies Laplace's
equation with a domain § having piecewise smooth surface S, Green's

integral formula can be written (Jaswon and Symm [111])

af 1 3 1
3 nllp=al)® |, on =
(3)  c@ém + fscp(q) an(lp_qilds L, on $@ Tpqp ¥

where pe Q2+ S, gqesS, g%- is the normal derivative outward from S,
and
art  if p e Q

(4) c(p) =
2mr  if p e S.

Choosing p on S vyields an eguation for either ¢ or %ﬁ- on S if the
other is specified. Once both are known on S, equation (3) can be used
to generate ¢ at any interior point p. In axisymmetric problems, ¢
and %3- are independent of rotational angle and integration over this

variable can be performed analytically.

2.2 Axisymmetric form of the integrals.
Using cylindrical polar coordinates with p = (rO,O,zo) and

g = (r,0,z) respectively,

1‘= 1

(5) ’ - .
p=q [(r+ro)2+(z—zo)2—4rroc0529/2]%

If the surface S is parametrized by the arc length variable §

(6)

2 2]%
(o ol - @1
S

— = di 1
P2 o T @rg)? + (2(8)-2) %77

and
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1 Jldi 4x ()

)
(7 rdS— =
s on |p-q ) [(r(£)+r0]2 + (z(i)-zo)2]3/2

dz dr 2 dz E(k) 2 dz
x ——(r(£)+r ) - =(z(8) -2 ) -—==r + — r.K(k)
[}F’ o a8 L R T S GRS 13

where
4r(£)r0

(r(€)+ro)2 + (z(E)—zO)2

(8) K25 =

and K(k), E(k) aie the complete elliptic integrals of the first and
second kind. Approximations for these functions are available in Hastings

[10] in the form

K(k) =P(x) - 0(x) fn x,
(9)
E(k) = R(x) - S(x) n x,
where
2
(10) x=1-%k7(&,
and

P, Q, R, and 8 are tabulated polynomials.

2.3 Surface approximation.

To proceed with the computation, we need to choose a representation
for the surface of the bubble, and also for the potential and its normal
derivative on the surface. To some extent, these choices can be
independent, but as the movement of the surface is computed using the
potential and its derivative, the two should be considered together. In
the description which follows, a plane section through the axis of symmetry

of the bubble is taken, and rotational symmetry about the axis is understood.
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2.4 Linear surface - constant functions.
The surface is replaced by a set of N ~linear segments S.,
with the potential and its normal derivative constant on each segment.
The boundary integral equation is replaced by its collocation form using
the midpoint of each linear segment.
1
Pi“q

E ?
(11) 2md, + ¢.[ vy
i 521 g on

3

N
) ENTy e —
3=1°" 5 |P; =]

If we denote %%— by U, we can write (11) in matrix form (as for example

in Brebbia [6]) as

Il 12
oo
-
it

I ~12
@
=

(12) 2ﬁ¢i +
3
Defining H,, =H,. + 27 §,. (12) may be written as
ij ij ij

(13) HO = GY .

2.5 Linear surface - linear functions.
¢j and wj are assumed to be single valued at the end points of

the linear segments which approximate the surface. If the segment is

parametrized by & in the range (0,1) we can define

M, (8) =1-¢

€

(14)

MZ(E)
and use the isoparametric approximations for both the surface and the
functions. On segment Sj we have,

r(8) = ry ;M) (8) + rjMz(E)
2(8) = 2;_yMy (E) + 200, (8)
P(E) = ¢y ;M (B) + ¢ M, (E)
Y(g) = wj_lMl(E) + ijz(E) .

(15)
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The collocation points are moved to the end points of the interval,
yielding N+1 equations in the N+1 unknowns. The integrals on each

segment can be written

3 1
16 s L __p . U,
(16) J;. on !pi—qj[ blljwj-l * b213w3
where
1 2T 1
7 .. = S, ——ee

(17 by s:JOthMk(E)JO as P9, 0]

9 1 _
(18) L s ¢ n Tp;-qj 2113%5-1 ¥ 2213%

3

where

1 2 3 1
(19) akij = ijodEMk(E) Io ae Ty m‘r .

2.6 Numerical integration.

The evaluation of the elements of the matrices H and G is
performed numerically. Normally Gauss Legendre quadrature is adequate,
unless the collocation point p. is within the segment Sj, or is one of
its endpoints, in which case the integrand is singular and must be treated
specially. The singular integrals are evaluated by subtracting a logarithm
term to remove the singularity, then using a quadrature scheme incorporating

the logarithm to complete the integration.

As an example, consider the case where Py is at the midpoint

(E = %) of the interval Sj. A typical integral would be

(20) ag

o L@y’ + (2(®-2)1"

[ o ol ]
S

where p is the point (r ,z;) = (r(%)rz(%)] .
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Recalling
4r(E)r
(21) K2(E) = > 0 =
(r(g)+r0) + (z(g)—zo)
2 2
r(g)-r + (2(8) -z
(22) x=1- k() = ( o)+ ( o

(I(E)+ro)2 + (Z(F,)-zo)2

then around & =%,

2] y2 2
T Y - - L iR
4r0

so that the elliptic integral K(k) behaves like

K(k) ~ P(x) - 0(x)ala(E-%) 2T .

This allows the integral of equation (20) to be replaced by

o om0l - T

ag

[K(k) + 20(x)%n(|&E-%])]
o) [(r(£)+r0)2 + (z(E)—zo)ZJ%

2 2]%
a a
- i
E n !E_;E“Q(X) > 7L -
[(e@+ry)” + (2(B)-2,) 7]

(o]

The first integral contains no singularity, and can be integrated by
standard Gauss Legendre quadrature. The second integral contains an
explicit singularity of log type which can be integrated using the
quadrature scheme tabulated by Stroud and Secrest [14] for the integral
o .

[oe tafZzen .

b4

o)

similar techniques can be used to remove the singularities from the other

singular integrals.

An additional device which has proved helpful in increasing the

numerical accuracy of the computation has been to replace the diagonal
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elements of the matrix H by

(26) H,, =47 - ) H.. .
ii 71 ij

This property may be deduced from the fact that for the interior problem,
the matrix equation
H = GY

with ¢ constant at all points on the boundary (the Dirichlet problem)

on

points on the boundary (the Neumann problem) yields a solution for

should yield ¥ (= gg) zero at all points, while 1V specified at all

which contains an arbitrary additive constant. Thus, for the interior

problem,

(27) H,, =-) H..,
g

and consideration of the definition of H leads immediately to egquation

(26) for the exterior problem.

3. EQUATIONS OF MOTION

Assuming the f£luid to be incompressible and inviscid, and ignoring
surface tension and gravitational effects (Plesset and Chapman [121,
Blake and Gibson [5], and Guerri, Lucca and Prosperetti [9]), the velocity

in the fluid may be written

(28) u=Ve¢
where ¢ satisfies Laplace's equation

(29) Vo =0.

On the bubble surface the pressure p is given by

(30) P =P,

where P, is the saturated vapour pressure in the bubble. As fluid
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particles remain on the surface of the bubble we may simply equate the

velocity of the bubble surface ug to the fluid particle velocity

(31) ug(x) =u(x), res.

The boundary conditions at infinity are

v

u->0

(32)
P > B,

In the case of a bubble growing adjacent to a rigid boundary at z = 0,

no flow through the boundary requires

(33) %%-= 0 at z=0.

In terms of the potential, equation (31) for the movement of the

boundary r becomes

(34) —=Vé .
By using the Bernoulli equation on the bubble surface,

3 2
(35) P, =Py~ 0oL~k olul®,

we are able to obtain an expression for the rate of change of potential
on the bubble surface as follows,

PP

®© TC

o 21=

Db _ 29 JE
(36) bt ~5c T *"Ek

Equations (34) and (36) will be used during the computation to update both

the shape of the bubble and the potential on its surface.

Finally to specify a well-posed problem we require some initial
conditions. To do this we suppose the growth of the bubble is started from
a very small spherical bubble of radius R0 with the potential obtained
from the Rayleigh bubble solution in an infinite fluid (Blake and Gibson

[sh.
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3
bBP, R
o e (B

where R.m is the maximum bubble radius. In the next section we proceed

to obtain a numerical solution of the above equations.

4. COMPUTATIONAL RESULTS
4.1 Solution strategy.

The strategy of solution is as follows: since initially we know the
position of the bubble surface and the potential ¢ on the surface we can
solve the discretized form of the boundary integral equation (13) to yield
the value of the normal velocity %%’ on the bubble surface. With the
prior knowledge of ¢ on S we can calculate the tangential velocity
%g and hence, together with %%‘, V¢, the particle velocity on S.
Immediately we can update the bubble shape by using a simple Euler scheme

as follows

(38) r(t+ht) = £(t) + At Vg + 0(At?)

and as well by exploiting (36), the updated surface potential
= i} 2

(39) ¢ (x(erdt)  4dt) = ¢(x(e),t) + bt SF + 0(AED)

with a time step chosen to limit the change in the potential ¢. This
procedure is repeated throughout the growth and collapse phases of the
bubble until just prior to the bubble becoming multiply connected.
Experiments with more elaborate time integration techniques will be

reported in Taib [15].

4.2 Rayleigh bubble.
The first problem studied is the Rayleigh bubble, a single spherical

bubble growing and collapsing in an infinite fluid. Instability started
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to occur in our calculation for a dimensionless bubble radius of

1.5142 x 10.2 at dimensionless time T = 1.825, in reasonable agreement
with the exact lifetime of 1.829. These results were obtained with the
bubble surface divided into 16 linear segments, with a linear approximation

of the potential and its derivative on each segment.

4.3 Rigid boundary.

The second problem, for which more detailed results are presented,
is the growth and collapse of a cavitation bubble near to a rigid boundary.
The condition of no flow through the boundary is incorporated into the
calculation by the use of an image bubble in the computation of potential
and its normal derivative. In these calculations 28 linear segments were

used to represent the boundary with closer spacing near to the axis of

symmetry.

4.4 Dimensionless variables.
The reduction to dimensionless variables is made with respect to
the maximum bubble radius Rm.

(40) z=2, r=X, y=2

R

where h is the initial distance between the bubble centroid and the rigid

boundary. The other variables are made dimensionless by the following

transformations
' -5 1=
PP
t ® TC
41 T = — |——
(e Rm[ : ]
p-p
(42) P = —
PP,
5
(43) q>=i( e ]
Rn PPy

Calculations are reported in terms of the above dimensionless quantities.
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5. BUBBLE SHAPE, PARTICLE PATHS AND PRESSURE CONTOURS

With the strategy of solution outlined in the previous section we are
able to calculate and plot the bubble shape, particle paths and pressure
contours as functions of time for different values of 7Y, the initial
location of the bubble centroid relative to the rigid boundary. In this
paper we have chosen two values of <y £for discussion; namely Y = 1.0
and 1.5. Gibson (see e.g. Gibson and Blake [7]) has conducted a series of
experiments over a range of values of Y and we find that our theoretically

predicted bubble shapes compare very favourably with his experiments.

5.1 mmMesmm&

The bubble shapes at selected dimensionless times T are shown in
figures 1 and 2 for Y = 1.5 and 1.0 respectively. It can be seen that
the lifetime of the bubble is extended when the growth begins nearer to

the boundary (i.e. smaller values of Y).

For the case Y = 1.5, the bubble shapes we obtained are in general
agreement with those obtained by Plesset and Chapman [12], and those
obtained by Guerri, Lucca and Prosperetti [9]. However in our model the
collapse occurred much nearer to the rigid boundary, indicating the importance

of explicitly considering the growth phase.

For Y = 1.0, Plesset and Chapman [12] obtained bubble shapes which
are more elongated than those we obtained here, again indicating the
importance of the growth phase. We have separately modelled the case
Y = 0.96 where we obtain very good agreement with the experimental results
reported in Gibson and Blake [7], hence confirming our views on the

importance of the growth phase.
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04 — 04 -
2 - 2 -
(a) = (b) -3
RIGIO BOUNDARRY RIGID BOUNDARY

Figure 1. Bubble shapes for Y = 1.5 during (a) expansion phase at
dimensionless times A) 0.001553 B) 0.024138 C) 0.090953 D) 0.214281
E) 0.466561 F) 0.973926 and (b) collapse phase at dimensionless times
A) 0.973926 B} 1.729799 () 1.881328 D) 1.988787 E) 2.024132

F) 2.044900 G) 2.063839 H) 2.093078.
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B
RIGID BOUNDARRY

Figure 2. Bubble shapes for <Y = 1.0 during (a) expansion phase at
dimensionless times A) 0.001553 B) 0.009084 C) 0.053140 D) 0.142416
E) 0.312960 F) 0.975561 and (b) collapse phase at dimensionless times
A) 0.975561 B) 1.849750 C) 2.023160 D) 2.048726 E) 2.097308

F) 2.121807 G) 2.144854 H) 2.162422.



5.2 Particle paths.

Figure 3 shows the pathlines of selected particles on the bubble
surface, together with three shapes of bubble, the initial, the maximum
and the final. We notice that the particles move radially during the
growth phase, however dﬁ;ing thelcollapse phase, the particles migrate
towards the axis qf symmetry except when in the liquid jet where they

move almost parallel to the axis of symmetry.

5.3 Pressure contours.
Pressure at any point in the fluid can be calculated using the

Bernoulli condition

3¢ 2
P=p, - Py - selul”.
. . . . . EL)
In our calculation we use the following difference approximation of 3t

2 2 2 2
a2~ (e % o - [e % - e ) T6 - (A )%,
ot At At (At + At )
n n-1 n n-1
where At =t - t . With our prior knowledge of u we can now
n n+l n =

calculate the dynamic pressure p anywhere in the fluid.

In figure 4 we illustrate the pressure contours at several times late
in the collapse phase for the Yy = 1.0 example. From the Rayleigh bubble
solution we might anticipate a maximum pressure occurring close to the
bubble surface and, because of the loss of spherical symmetry in the rigid
boundary example, the point of maximum pressure occurs on the axis of
symmetry. A physical explanation of the above phenomena is as follows.

At the start of the collapse phase the maximum pressure occurs at infinity
(equal to 1 in our dimensionless terms) causing the fluid to accelerate
towards the bubble (i.e. the bubble is acting as a sink). However as the
collapse continues mass conservation demands that the bulk of the fluid
some distance away from the bubble must decelerate (we do not have a black

hole!) creating a point of maximum pressure close to the collapsing bubble
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Figure 3. Pathlines of selected fluid particles on the bubble surface

for the case a) Yy = 1.5 and b) 7Y = 1.0. The bubbles shown are the

initial, maximum and the final shape respectively.
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surface. In other words the acceleration of the fluid is zerb at this
point (i.e. Vp = 0). Conversely the small volume of fluid between the
point of maximum pressure and the bubble is being continually accelerated
creating the very high speed liquid jet so clearly evident in figures 1, 2

and 3.

6. CONCLUSIONS

This paper has been primarily concerned with the development of a
boundary integral method to model the growth and collapse of a cavitation
bubble near a_rigid boundary. The method allows us to calculate in fine
detail, and to high accuracy, the relevant physical quantities such as jet
speed, pressure field and particle trajectories. These calculations
together with further work to be reported in Taib [15] will lead to a much
enhanced understanding of the physical mechanisms responsible for

cavitation damage.
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