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THE METHOD OF LINES - THEORY, SOFTWARE AND SOME APPLICATIONS

N.G. Barton

In a recent review of software for the numerical solution of partial
differential equations (PDEs), Machura & Sweet [11] assert that the method
of lines (MOL) is the most popular technique for solving systems of time-
dependent PDEs. The MOL is a direct and practical consequence of extensive
research on the numerical solution of ordinary diffential equations. A
number of robust and user—friendly software interfaces are now available to
implement the method, and this note describes the application of one such
interface (PDEONE, Sincovec & Madsen, [15]) to three consulting problems.
The results confirm that the MOL is a valuable consequence of past

mathematical development.

1. INTRODUCTION

The numerical solution of partial differential equations (PDEs) is a
bread—and-butter issue in applied mathematics and most branches of the phy-
sical and engineering sciences. Many of the PDEs which require a numerical
solution are (possibly systems of) parabolic PDEs for which the method of
lines (MOL) is ideally suited. The MOL is based on semi-discretization:
the conversion of PDEs into a set of ordinary differential eguations
(ODEs). There are many ways available for this, and the utility of all the
methods derives from highly developed and robust software for the numerical

solution of ODEs. Thus the MOL - a widely used and obviocusly practical
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technique — is a direct product of mathematical research in two areas: the
formalism underlying the semi-discretization, and the theoretical and prac-
tical development of ODE integrators. This marriage of results from past
research leads to an approach which is quite different to numerical schemes
based on traditional finite differences. More recently, numerical analysts
have provided some direct theoretical support for users of the MOL by exa-
mining the truncation error associated with wvarious forms of semi-

discretization (see, for example, [3,4,8,9,17]).

Machura & Sweet ([11], Section 12) give a list of 9 packages which
have been developed since the mid 1970s to act as an interface between the
PDE requiring solution and the ODE integrators. The application of PDEONE,
one of the earliest of these software interfaces, to three consulting prob -
lems is described in the present contribution. The three problems investi-
gated are quite representative of parabolic PDEs: the first is posed by a
standard one—dimensional non-—linear PDE with a non-linear boundary condi-
tion, the second problem is also non—linear and involves a system of one-
dimensional PDEs, whilst the third invelves a two-dimensional PDE. The
results for the third problem also show that the MOL can be used as a
building block in solving more complicated problems. In summary, the MOL
ag implemented using PDEONE and GEARB (a standard ODE integrator modified
for systems with a banded Jacobian) is highly successful and deserving a

place in every applied mathematician’s tool-bag.

2, THE METHOD OF LINES

For the purposes of exposition, consider the application of the HOL to

the gingle guasi-linear parabolic PDE

{2.1a) u, = f(x,t,u,ux,uxx), 0<x <1, t >0
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under boundary conditions

(2.1b) @u + Bu =7 at x=0,1

and the initial condition

(2.1c¢) u(x,0) = g(x).

This problem may be discretized on the mesh

X, = ih, i=20,1,2,...,N+1, h = 1/(N+1)

so that if v_ (t) is an approximation to u(xi,t) and the spatial derivatives
h R
in (2.l1a) are replaced by second order central difference approximations,

the vi(t) satisfy the system of ODEs

V.. -V, V. -2V 4V,
(2.2a) dvi = flx t.v i+l i-1 i-1 z i v:L+1
. N dt = il ’ i' zh L hz
AR TETRFEAFPRD

for i = 1,2,...,N. ODEs for vo(t) and vN+l(t) may be obtained by using
(2.1b) and, if necessary, one-sided difference approximations for ux. u
at the boundaries x=0,1. This gives the additional ODEs

av d

v,
2.2b 2. N+1 _
(2.20) gt = Fol®Vprvyr¥y)e at - Feaf S eea e Ve )

The system of ODEs (2.2a,2.2b) has a banded structure and can be effi.-

ciently solved subject to the initial condition

(2.2¢c) v, () = g(xi)

using a standard ODE integrator modified for banded systems. The usual ODE
package for this task appears to be GEARB (Hindmarsh, [10]1). There are, of
course, many embellishments on the above theme. For example, higher oxder
or upwind differencing could be used. Also, the spatial variation could be

described by writing
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N+l
(2.3) w(x,t) = L ci(t)bi(x)
i=0

N+l
where the (bi(x)}i=

0 form a suitable basis (e.g. Fouriexr series, orthogonal

N+1 .
polynomials or B-splines). ODEs for the {ci(t))i=0 are then obtained by
arithmetizing the spatial variation using some form of the method of
weighted residuals (e.g. by collocation, or the Galerkin oxr least squares

methods).

A survey of nine software interfaces written since 1975 for the method
of lines is given by Machura & Sweet ([11], section 12). The present work
is concerned with one of the earliest and possibly the best known of these
—~ PDEONE (Sincovec & Madsen [15]). PDEONE follows the basic structure for
discretization outlined in this section as applied to the system of NPDE

coupled parabolic PDEs

au du du
k ~ -cd _C ~
(2.42) T - SlEeEMegeex R D))
(a ¢ x <b, t > to, k=1,2, ...,NPDE),
T
u = [ul u2 ces U DE] ’

subject to boundary conditions
auk
(2.4b) akuk + ﬁk]ﬁ? = Ty at x = a,b, t » to, k=1,2,...,NPDE,

and initial condition

(2.4c) u(x,0) = g(x), a € x € b,

The constant ¢ in (2.4a) is 0,1 or 2 depending on whether the problem is
posed in Cartesian, cylindrical or spherical co-ordinates respectively. 2
complete algorithm for PDEONE consisting of only 153 lines of code is

freely available [15]. The user merely has to write a driver program and
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three subroutines defining the boundary conditions (2.4b), the diffusion

coefficients D

- and the function £ in (2.4a). PDEONE then performs the

discretization - on a variable mesh if desired - and GEARB solves the
resulting ODE initial wvalue problem with automatic timestep control to
achieve a specified accuracy. Both PDEONE and GEARB are written in FORTRAN
and the computations described subsequently in this note were performed in

single precision on a VAX 11/750.

3. TRANSMISSION LINE PROBLEM

. The first problem discussed is the quasi-linear parabolic PDE

i3

ae
s MO)T3) + o(x,0)

a6
(3.1&) 7(e)c(9)a—t =

for the temperature 6(r,t) in a solid metal conductor carrying an electric
current. Here the temperature dependent coefficients are given by

-1 -
A(G)Y = )‘0(1 + KO) (thermal conductivity, Wm K l’
-3
(3.1b) Y(0) = Voll + 50) (density, kg m ).

-1
c(0) = co(l + B6) (specific heat, J kg K),

and the problem is to be solved subject to the initial and boundary condi-—

tions
(3'1(:) e(rlo) = 0,
(3.1d) er(o,t) = 0, er(a..t) = *h(e(a,t)}q.

The heating function Q(r,0) is defined by (Dwight, (7], P.159)
2
(.1e) oz, 0) = |3z, 0 “pre)

where

Im ber mr + i bei mr
2ma bei® ma - i ber' ma

(3.1£) Jxr,0) =
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and I is the total current (A), a is the outer radius {m),
Y2, -1 3 .
m = (2ﬂfuuo/p(9)) (m ), £ is the frequency (Hz), pP(8) = Pl + a8y is
the temperature dependent resistivity (fim), £ is the relative permeability
of the conductor (dimensionless), by ig the permeability of free space (N
sec url), and {ber, bei} are the Kelvin functions (Abramowitz & Stegun,

[1], section 9.9).

The problem (3.1) reguired a numerical solution for a number of dif-
ferent conductors for various values of the parameters h and q in the boun-
dary condition (3.1d). (This boundary condition is an empirical model of
heat dissipation by convection under various ambient wind conditions as in
Morgan, [14]). A geparation of variables solution of problem (3.1) is pos—
gible if the temperature dependence is neglected in the coefficients (3.1b)
and the heating (3.1c) and if the index q in (3.1d) is unity. This ana-
lytic solution served as one check on the program. A further check on the
complete program with all temperature dependent terms retained was that the
heat input should balance the surface dissipation in the ultimate steady

state. In all applications, this balance was accurate to within 0.2%.

Once the heating function Q(0,t) was understood and coded, it toock
less than a day to design and implement a numerical solution of problem
(3.1) using PDEONE. As expected, the execution speed of the program
depended on the method chosen in the ODE integrator GEARB : with the best
setting for the method flag (MP), the MOL solution computed the initial
temperature rise 40 times faster than a forward time centre space (FTCS)
solution of comparable accuracy; whilst the worst setting for MP gave an

execution speed about 4 times slower than the PTCS solution.

The execution speeds are summarized in Table 1, and typical values of



125

the surface temperature are plotted in Figure 1 for various values of the
index g in the boundary condition (3.1d). It should be noted that the exe-
cution speed of the MOL solution for a given accuracy depends on the
automatic timestep control available in GEARB, and the timesteps become
bigger once the initial heating is over. This feature is not available in

the FTCS solution.

Table 1. Comparison of c.p.u. time for the numerical solution of problem
(3.1) for the first 60 seconds heating in an aluminium conductor. Proper-
ties and constants as in the legend for Figure 1; € is the error control

getting on GEARB, MF denotes the method flag in GEARB.

method c¢.p.u. time (8) timestep € comments

FTCS 126.5 0.01 timestep for stability

MP=10 510.2 0.006—-0.032 10'_l less accurate than FTCS
—6

MP=12 12.0 0.287-3.20 10 superior accuracy to FTCS
-4 )

MF=12 3.0 3.98-16.9 10 superior accuracy to FTCS
-5

MPF=13 53.4 0.114-1.01 10 comparable accuracy to FTCS

MP=20 502.0 0.005-0.034 10—l less accurate than FTCS
] 3

MP=22 3.5 3.99-9.83 10 superior accuracy to FTCS
-5

MF=23 24.4 0.037-4.32 10 comparable accuracy to FPTCS
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Figure 1. The surface temperature as a function of time in an aluminium
conductor of radius 0.0lm carrying a current of 500 A; number of radial

‘ -3
points = 7; the constants (mksA units) are )‘o = 236, K = 0.17x10 .

3

-4 -3 -2
'YO = 2.7x10 , 6 = 0.72x10 . CO = 860, B = 0.38x10 , @ = 0.445x10 .

Po = 0.263x10 ', h = 20; the dashed lines show the results for temperature
independent coefficients (K = 86 = 8 = a = 0); (a) g = 1.00, (b) g = 1.05,

(e) g =1.10, (d) g = 1.15, (e) g = 1.20 (£f) g = 1.25.

4. SOLUTE TRANSPORT PROBLEM

The second problem discussed is posed by the coupled dimensionless
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guasi—linear parabolic PDES

as. ac as_ac
o4 o136 85,96 ¢
(4.1a) ( pacl 3t paczat
3s_ac as. ac
21 2 2

3 Cl _ 6C1
axz ax
2
5 a3 C2 B acz
2 axz Jx

which describe the concentration of two species of ions in a column of

reactive soil through which water is flowing at a steady rate.

equations,

In the

® and Dz are constants characteristic of the process, and

psl(cl,cz) and psz(cl,cz) are instantaneous adsorption isotherms describing

the amount of the ions adsorbed onto soil particles as a function of con—

centration.

A description of the process is given by Charbeneau [6] and

Barnes & Aylmore [2] reduce the general problem to the form given by

(4.1a,b).

In the present application, the adsorption isotherms are taken to be

(4.2a)

(4.2b) ps, ==0.1C (1 ~¢C

1

the boundary conditions are set to be

(4.2¢) c,(0,t) = 0.25,
C1 (%m.t) = 0, C2
x X

(4.2d)

= 0.1 +c, -
PSy ¢, +c

1.25
+
cl c2

e

1.25

+
cl CZ

o

Cz(O,t) = 0.75,

(x ,t) = 0
co

(where the subscript x denotes a partial derivative), and the PDEs are to

be solved subject to the initial conditions

(4.2e) Cl(x,O) = 0.25,

Cz(x,O) = 0.25.

Equations (4.la,b) need to be cast in the form of (2.4a) prior to using

PDEONE, and this is achieved by forming suitable linear combinations of

(4.1a,b). Thus,

the PDEs to be solved are found to be
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c
a 1 . ac ac, lac ac ac2 ac
3t~ |e 9150 Y 9T |— + —= 212
' a 11 “ii8x 12 3x |3x €12 * 912 3 t 9135x 3%
(4.2£) a ac, - ac,
o e -2
ax|d1: 3% * 9y, 3x
a8C,
2 acl aCz ac
2. ac ac
e + g  —— + —= 1 2|8¢
at 21 21 3x 92273% 3= T ey, * 9,5 * %3 Ix a_xz
(4.2g) a ac, ac,
+ — P —_—
ax |9, ax ' 922 ax |

where the coefficient functions e, g, 4 involve lengthy but straightforward

derivatives of s1 and S2 and the details are omitted.

The problem posed by equations (4.2) was solved numerically using PDE—
ONE and GEARB. It took about two days to perform the preliminary analysis
to arrive at equations (4.2f,g), and then another couple of days to write,
test and debug the program. A test on the program was afforded by consid-
ering the associated problem for Co = cl + c2 under the definitions

(4.2a,b) for the adsorption isotherms: if D2 is unity, C0 satisfies

2

ac acC ac
0 O (]
(4.3a) oz = > " Tax (@ constant, 0 < x < x_, t » 0),
Jx
with
(4.3b) Co(O.t) = 1,0, C0 (%m.t) = 0,
(4.3¢) Co(x,O) = 0.5,

This problem for C0 possesses an analytic solution (van Genuchten & Alves,

[18]) which was used to check the numerical method.

Experimentally, measurements of Cl and C2 would be made at various
times at fixed x =1L € x_ in the belief that the results are not sensitive
to the choice of x, in (4.2d). These measurements are called breakthrough

curves. The computer program is reguired to simulate the experiments, in
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particular to examine the effects of varying the adsorption isotherms and
the boundary and initial conditions. In practice, it was found the results
were guite insensitive to the value chosen for x_ and breakthrough curves
for x = 1.6L are shown in PFigure 2. The execution speed of the program

again depended on the choice of the method flag in GEARB as shown in Table

o

2.

Figure 2. Caption on p.12.
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Figure 2. Breakthrough curves for Cl' C2 and co = cl + c2 at x = L for the

-6
solutions of problem (4.1) subject to conditions (4.2a-e), € = 10 .

C .

® =0.25, D, = 1.0, L = 150, xm=240: sseeos C ) _____Cz, e G

2 1
Top left, NPTS=61, c.p.u. time 179 sec; top right, NPTS=61, first deriva-
tive in PDEONE calculated using upwind differences, c.p.u. time 206 sec:;

bottom left, NPTS=121, c¢.p.u. time 565 sec; bottom right, NPTS=241L, c.p.u.

time 1623 sec.

Table 2. Comparison of c.p.u. time taken for the first 5 seconds of a test
numerical solution of problem (4.1) using 16 points and with x_ = L = 7.5,
€ (error tolerance in GEARB) is 10_3, e = 0.25, D, =1, MF denotes the
method flag in GEARB.

non-gtiff options stiff options
MP c.p.u. time (sec) timestep MP c.p.u. time (8sec) tignestep
10 112.6 0.006—-0.009 20 117.9 0.006~0.055
12 15.8 0.,110-0.323 22 21.5 0.101-0.368
13 76.9 0.005-0.12%9 23 124.7 0.012-0.041

5, COMPUTATIONAL SHEAR DISPERSION

The final problem investigated is the parabolic PDE in time and two

space dimensions

2 2
C 1 2 .3C -2 C ac
(5.1a) %‘E + ‘2'(1—12Y )‘a_x =P —'—2" + _2 3
ax ay
subject to the boundary conditions
ac
— = 0 at
(5.1b) Fr at y=tlz,
c, x . 0 as I:J - e

(5.1c) ax



131

and the initial condition

(5.1d) C(x,¥,0) = 8(x).

These non-—dimensional equations describe the dispersion of a passive con-
taminant instantaneously injected into laminar flow between two flat plates
at y=+¥2. The co-ordinate x is measured in a frame moving at the discharge
speed of the flow, and P is the Péclet number of the flow. This problem is
a well known one in fluid mechanics and further references and the large

time asymptotic behaviour have been given by Smith [16].

Problem (5.1) cannot be solved by PDEONE as it stands. Rather the

Pourier transform

X

~ y had .x
c(n,y. ) = (zmy 2 [ &M ¥erx,y,trax

—Go

is taken, and the symmetry of the solution about y=0 is used to derive cou-

pled PDEs for the real and imaginary parts of C-CR+icI in O<y<¥2, that is,

“ 2n
ac 2 a’c
R A 2 - AT R
(5.2a) — = -=(1-12y )C_ — —C_ + —— ,
at 2 I 2R aYz
- 2-
ac . 2, a’c
(5.2b) L. 1—12y2 o — e 4 :
at 2 R 21 ay2
subject to
ac
(5.2¢) i 0 at y=0, 2,
" ~ ¥
(5.2d) C(A,y,0) = (2m) % for all A.

This problem (5.2) was solved numerically NLAM times for A values between O
and xmax inclusive, and the solution C(x,y,t) was obtained by a numerical
inversion of the Fourier transform. It was an easy matter to implement the

numerical procedures and results for low values of the Péclet number were
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available on the day the project was started. The high Péclet number cases
were more difficult computationally since (5.2) then had to be solved for
ever—larger values of A. Nevertheless, the quality of results available
can be seen from Pigure 3 which is a plot of the cross-sectional average c

for P=1000 and at various times after injection of contaminant.

90 .
70 L
50 b

-0.1 -).05 0 ﬂ,.fﬁs BB

Figure 3. Plots of C for £=0.025(0.025)0.25 for the problem (5.1) with
P=1000. Settings for GEARB and PDEONE: MF=12, €-10‘6. NPTS=21, NPDE=2;
also NLAM=301 and )‘max=4500 (except for t=0.025 for which NLAM=501 and

xmax=7500 were used). The dashed line shows the (Gaussian) asymptotic pro-

file at t=0.025.
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The results displayed in Figure 3 required about three héurs c.p.u,
time on the VAX 11/750, and this is not inordinately large given the nature
of the computation and the quality of the results., Two checks were per—
formed on the numerical solutions. First, the mass of con£aminant was con—
served to bettér than 0.1% during the compu£ation; and second, the numeri—
cal solution agreed well with an asymptotic solution [16]. Moreover, the
numerical solutions do not suffer obviously from discretization errors or

Gibbs ripples.

6. DISCUSSION

Sincovec & Madsen [15] begin their general comments on PDEONE with "We
have been using the numerical method of lines approach for solving PDEs for
some time and in general have found the method to be quite powerful, rea-
sonably efficient from a computer time point of view, and extremely versa-—
tile and easy to implement for most problems. ... When our interface is
used with one of the recently developed stiff ODE integrators, we feel that
one has a reasonably robust piece of software for obtaining numerical solu-
tions for fairly broad classes of problems." My experiences with PDEONE

supports these claims.

The number of packages available for the MOL has increased greatly
since 1975 when Sincovec & Madsen wrote "Measuring the efficiency and
effectiveness of general purpose software is extremely difficult if not
imposgsible... Comparable software against which comparisons could be made
is not readily (if at all) available”. Since then, a number of packages
based on the MOL have been introduced. These have been summarized by
Machura & Sweet [11] who rank PDEONE as the second lowest in complexity and

power of the nine mentioned. Other packages include PDETWO (Melgaard &
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Sincovec, [13]) for problems with two space dimensions, PDECOL (Madscn &
Sincovec, [12]) where the spatial approximation is by B-splines, and FORSIM
VI (Carver et al., [5]) with options for more sophisticated (e.g. upwind)
differencing. These packages are designed to so;ve a different class of
problems from PDEONE and a detailed comparison of their relative efficiency

has not been attempted.

Por computing efficiency, it is essential to exploit the structure of
the system of ODEs by using an ODE integrator designed for banded systems.
Por robustness, it is also essential that the ODE integrator has a stiff
option (even though the fastest execution speeds for the problems described
above were obtained using non—-stiff methods). On the efficiency of PDEONE,
Sincovec & Madsen remark that "General purpose software such as PDEONE is
typically aimed at reducing the ‘human time® spent rather than computer
time. Obviously, for any specific problem, one could write a more effi-
cient program for its solution.” Based on the author's experience with the
transmission line problem, numerical solutions using PDEONE/GEARB are to be
strongly preferred over explicit FTCS solutions. Moreover, in the
transmission line problem, as with many problems, it was impractical to
develop an implicit method of solution which would permit longer timesteps.
Por such cases, it is hardly worthwhile trying to develop a better method
of solution than PDEONE/GEARB. Finally, the hybrid approach to the shear
dispersion example discussed in Section $ shows again the flexibility of
the MOL and the possibility of using it as a building block in solving com -

plicated problems.

The author would like to thank Dr J.H. Knight for his generous assis-

tance with many aspects of this work.



135

REFERENCES

(1]

f21]

(31

(81

(61

(81l

M. Abramowitz and I.A. Stegun, Handbook of mathematical functions,

Dover, New York, 1965.

C.J. Barnes and L.A.G. Aylmore, A theoretical treatment of the
effects of ionic and non—ionic competitive adsorption during solute

transport in soils, Aust. J. Soil. Res. to appear.

M. Bieterman and I. Babuska, The finite element method for parabolic
equations, I. A posteriori error estimation, Numer. Math. 40 (1982a)

339-371.

M. Bieterman and I. Babuska, The finite element method for parabolic
equations, II. A posteriori error estimation and adaptive approach,

Numer. Math. 40 (1982b) 373-406.

M. Carver et al., The PORSIM VI simulation package for the automated
solution of arbitrarily defined partial differential and/or ordinary
differential equation systems. Rep. AECL 5821, Chalk River Nuclear

Laboratories, Ontario, Canada, 1978.

R.J. Charbeneau, Groundwater contaminant transport with adsorpton and
ion exchange chemistry: method of characteristics for the case

without dispersion, Water Resources Res. 17 (1981) 705-713.

H.B. Dwight, Electrical coils and conductors, McGraw-Hill, New York,

1945.

G. Fairweather and A.V. Saylor, On the application of extrapolation,
deferred correction and defect correction to discrete-time Galerkin

methods for parabolic problems, IMA J. Num. Anal. 3 (1983) 173-192.



(21

f10]

[11]

f12]

[13]

[14]

[15]

[16]

{173

136

D. Gottlieb and S.A. Orszag, Numerical analysis of spectral methods,

SIAM, Philaelphia, 1977.

A.C. Hindmarsh, GEARB : solution of ordinary differential equations
having banded Jacobian, Rep. UCID-30059, Lawrence Livermore Lab.,

Livermore, Calif., 1977.

M. Machura and R.A. Sweet, A survey of software for partial differen-

tial eguations, ACM Trans. Math. Software 6 (1980) 461-488.

N.K. Madsen and R.F. Sincovec, PDECOL, general software for partial

differential equations, ACM Trans Math Software 5 (1979) 326—351.

D.K. Melgaard and R.F. Sincovec, General software for two-dimensional
nonlinear partial differential eqguations, ACM Trans Math Software 7

(1981) 106—-125.

V.T. Morgan, Rating of bare overhead conductors for continuous

currents, Proc. IEE 114 (1967) 1473-1482.

R.,F. Sincovec and N.K. Madsen, Software for nonlinear partial dif-
ferential equations, ACM Trans Math. Software 3 (1975) 232 -260; PDE-
ONE, solutions of systems of partial differential cquations, ACM

Trans Math. Software 3 (1975) 261-263.

R. Smith, A delay—diffusion description for contaminant dispersion,

J. Fluid Mech. 105 (1981) 469-486.

V. Thomée and L. B. Wahlbin, Maximum-norm stability and exrror esti-
mates in Galerkin methods for parabolic equations in one space vari-

able, Numer., Math. 41 (1983) 345-371.



137

f18] M. Th. van Genuchten and W.J. Alves, Analytical solutions of the
one—dimensional convective-dispersive solute transport equation,

Tech. Bull. 1661, U.S. Dept. Agric. Res. Service, 1981.

Division of Mathematics and Statistics
C.8.I.R.0.

PO Box 218

LINDFIELD NSW 2070



