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THE BOUNDARY INTEGRAL METHOD FOR PDE's.

G.A. Chandler

The last ten years have seen the development of the boundary integral
method as an important tool in practical engineering computations The early
work in aeronautical fluid flow (see Hess [1975]) elastostatics (see Brebbia
[1978], Cruse and Rizzo [1968]) and potential theory (see Jaswon and Symm
[1977]) has lead to the sophisticated techniques and varied applications
reported more recently in Brebbia, Futagami, and Tanaka [1983], Brebbia, Telles
and Wrobel [1983], Liggett and Liu [1983], and Butter et al [1983]1 . Here

we give an introduction to these ideas.

1. POTENTIAL PROBLEMS

The easiest application of the boundary integral method is to the two
dimensional problems of classical potential theory (Kellog [1929], Mikhlin
[1970]). We are given an open bounded region § ¢ R? whose boundary T
is smooth except for a finite number of corners. We need the solution U

of the partial differential equation

2 2 :
(1) Au(x) = §§§ + %;g =0 ; X = (X1,%X2)e Q

with the boundary conditions

(2.1) U(x) = g(x) , x e Iy

(2.2) Uv(x) = h(x) , xe I

Here for any x € I' (except a corner point) V(x) is the outward normal and
Uv(x) = VU(x).v(x) is the normal derivative. To and T'; are the disjoint
components of the boundary on which Dirichlet data g and Neumann data h
are given. (For the Neumann problem with I'; = ' we need Jrh = 0 and impose
the extra condition JPU = 0 , on the solution). These are the simplest

models used in heat transfer and fluid flow calculations.
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To apply the boundary integral method the fundamental solution (or

Green's Function) must be known : in this case

1

i gL
2T ]x-E °

(3) G(x,8) =

Using the notation
Gv(x,E) = VEG(x,E).v(E), Eel,

Greens third identity states that for any harmonic function U (i.e. any

function satisfying (1)),

(4.1) = U(x) x €
- - ° = 0
(4.2) JPG(X, )Uv G, (x, YU LU (%) x el

(4.3) . =0 x ¢ R\Q

(Kellog [1929]. I'° denotes I 1less the exceptional points. The
exceptional points are the corners of [ together with the points on T

at which Ty and T; join). However we need a converse to this identity.

If wu,v : T = R satisfy the identity

(5) f G(x,*)v = G (x,-)u = %u(x) , xel",
r v

then the potential U defined by

(6) U(x) = f G(x,°)v - G (x,°)u ’ xef ,
r

satisfies
(7.1) Au(x) =0 x e
(7.2) U(x) =u x eI

= 0

(7.2) Uv(x) =V xel .

This can be immediately applied to the Dirichlet problem (when (2) becomes
U(x) =g(x) , xe). Suppose we can find a function v to satisfy

(8) IFG(X,')V = hg(x) + JFGv(x,-)g ’ % e I ;
then the potential

U(x) = J G(x,°)v - G (x,°)g , x e
T V
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satisfies
Au(x) =0, x e 8

Ux) = g(x) , U, &) = vix) xe
That is, U is the required solution to the original differential equation
and as a bonus v is the unknown Uv (which is often the quantity required).
Similarly the integral equation for the Neumann problem is
(8.1) Lu(x) + J G (x%,.)u = I G(x,)h x eI

rV r

The same idea works for the general mixed problem (1) - (2). We need u

and v so that

(9.1) J G(x,)Vv = G (x,-)u = %u(x), x e I'?
T v

and

(9.2) u(x) = g(x) xeTly

(9.3) vi(x) = h(x) x e I

BEquivalently using (9.2) and (9.3), (9.1) become the system of integral equations.

(10.1) L’G(x,-)v - J Gy(x,-)u = Bg(x) - J
0 I}

G(X,.)h+J G\)(x,-)g, x e [N T0
F; I|0

G(x,‘)v—%u(x)—J

G (x,')u=-f
r Vv

G(x,-)h+J G (x,0)9 , X ¢ nNr’
I

(10.2) J
T To

with unknowns v]rl and u|1-.0 .

]

This exposition makes light of some difficulties. The purely mathematical
ones are the conditions to be imposed on u and v for (7) to be valid.
This must be settled before the converse Greens identity can be proved. A
problem of practical concern is that the integral equations may not determine

the unknowns uniguely. For example the unknown in (8) is Uv and hence we

expect Irv = 0, For most regions § this property can be derived from (8)

and there is a unique solution to the equation (i.e. the reformulation is

well posed.). For special regions, the [' - contours (see Jaswon and Symm [1977]
p.52), this derivation will fail, and (8) may have multiple solutions. However

only one of these will satisfy the additional constraint.
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(11) J v =20

T
Thus (8) + (11) (or more generally (10) + (11)) will always have a unique
solution. In practice numerical solutions of (10) alone may appear to fail.
This can be corrected by adding (11), (see Christiansen [1983]) or by rescaling
the problem so that I is no longer a [' contour. The second procedure is
more convenient but imposing (11) on the numerical solution is a necessary
technique for exterior problems, (See Christiansen [1983]) andNeumann problems
(8.1).

To beconcise the boundary integral equations can be written in the

form
(12) p(x) = Lw(x) - £(x) =0 ’
where w is the unknown, and £ is calculated from the given data. We assume

that the boundary is parameterized as
I = {y(s) : 0<s=sL} |,
with the function 7Y smooth except at corners. We occasionally write w(s)

for w(y(s)).

2.  NUMERICAL SOLUTIONS

Integral equation reformulations of potential problems have been known
gince Green in 1828 (See Elliott [1980] and the references there). They first
became important in Fredholm's proof of the existence of solutions for the
Dirichlet and Neumann problems. However interest declined when more general
proofs were provided using the differential equations themselves. The recent
revival has come because the finite element methods developed for differential
equations were found to give competative solutions when applied to the integral
equations: giving the boundary element method.

To construct the finite elements choose a sequence of mesh points {xi:i=l,...n}
®; = Y(si)e ', and let Ti =‘{Y(s):si_l < g < si} denote the segment of T

between X 1 and X . The set '{xi} should include all the exceptional points.
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The unknown w is to be approximated by wn € Sn ; where Sn, the set of
basis functions, is the set of functions ¢n satisfying
(1) on each segment Ti v ¢n(s) is a polynomial of degree
r , and

(2) if vi > 0, ¢n(s) is continuous at 850 and the tangential

W, o

n

derivatives ¢n are continuous.
The degree r and continuities'ﬁ)i} may be varied to give different classes

of basis functions. (If vi = -1, ¢n is allowed to be discontinuous at x5

It is usual to impose fewer continuity restrictions if X, is an exceptional
point.) As the segments become smaller more accurate approximations become
possible. This approximation is usually also used for the given data when
calculating the right hand side f£.
As the approximation to w we choose the basis function which satisfies
the integral equation most nearly. There are two main methods:-

(1) the Galerkin method, where wn satisfies

(13) JF(Lwn—f)¢ =0 ) €8 .
(2) the collocation method, where wn satisfies
(14) (Lwn—f)(xij) =0 , inj

where xij € Ti are collocation points carefully chosen.
Both (13) and (14) reduce to a system of linear equations. This
will usually be too large to be solved by the standard LU decomposition methods.
A combination of direct and iterative methods may be needed using multi-grid

ideas (Atkinson [1976], Hackbusch [1981], Schippers [19841).
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Fig. 1

Returning to the simplest example of the Dirichlet problem (8) , let Sn
be the piecewise constant functions and choose the collocation points

x %(xi_l+xi) (Fig. 1). Then writing Vn,i for Vn(xi—%)’ the collo-

i-%

cation equations become

A[vn,i] =b ;
where
1 1
A, == a ,
ij 2T r Kﬂlxi—%_a £
j
and

(x; 1)V (8)

1
b, = . =5 . .
g = E L) Zﬂj i —r———r—xi-%_g 3 g(xj_%)di
J

We can now foresee the advantages and disadvantages of the boundary integral
equation reformulation, compared to a finite element or difference solution
of the original differential equation. The advantages are:-

Al) A two dimensional problem has been replaced by a one dimensional problem.
This reduces overheads, simplifies programming and mesh generation, and
reduces storage.

A2) If the region is intricate (e.g. thin or having reentrant corners) an
appropriately graded mesh is easily constructed to give better approxim-

ations where the solution is rapidly varying.
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Exterior problems are as easy as interior problems; no special technigues
are needed.

The physically interesting gquantities UIF and ler are directly
available.

Vu is found more accurately in the interor.

Empirical evidence suggests coarser meshes can be used.

disadvantages are:-

Not all problems have a known fundamental solution; non-homogeneous
media or non-linear equations severely complicate any integral equation
reformulation.

Repeated evaluation of the potential (6) is expensive if U is
required throughout the interior.

It is difficult to solve a problem with source terms. If equation

(1) is replaced by the Poisson equation

Au(x) = £(x) B x e
the solution can be expressed as
U=Ug +F , F(x) = J G(x,°)f .

Ug 48 found as the solution of

AUO =0
and
Up (x) = g(x) - F(x) x e g
UON(X) = h(x) - Fv(x) xel, .

But the multiple integral for F must be repeatedly evaluated (Brebbia

et al [1984]).

Setting up the collocation equations requires many integrations, which
are often performed numerically (and must be performed numerically in

3 dimensional problems). Because of the singularities in the Green's
function this is more difficult than for domain methods. It is unclear

just how accurately this need be done.
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It is important minimize D3. Whenever non-linear problems are solved
the non-linearities are included as a source term. Presently the domain is
divided into elements in order to calculate the multiple integrals; which
is undesireble. Recently Young et al [1983] have applied capacitance matrix
techniques to D2 - D3. Capacitance matrix methods (Proskurowski and
Windlund [1976]) use the derivation of the boundary integral equations as an
analogy to derive fast methods for solving the matrix equations in domain
methods. They depend on the use of regular grids, and by themselves cannot
cope well with non-smooth boundaries.

Disadvantage D4 is particularly acute if Galerkin methods are used, as

these require double integrations

n

IT JF G(x,8)¢ (x)y (E)ax dg b b €8
to set up the matrix. They do have the advantage of a more extensive theoretical
justification, and when basis functions with high continuity are used produce
a more favourable distribution of the error within each element. This has lead
Lamp et al [1982] to a careful investigation of the practical problems involved.

Since [' is generally curved it will usually be necessary to approximate its
parameterization by a more manageable function. Thus I = {y(s):0ss<L} is
replaced by [ = {¥(s) :0<s<L} where the components ?1, ?2 of ¥ are piecewise
polynomials on the mesh fsi}. For example, if ?1, ?2 are continuous piecewise
linear functions with 7(si) =% . then I is the polygonal approximation to T

illustrated in Fig 2. The boundary integral equation
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Fig. 2

is solved on f rather than T. The effect of this approximation has been
analysed mathematically in Nedelec [1976], McLean [1984], and in the finite
element literature (Ciarlet [1977]). Although for some two dimensional
problems the exact boundarf could be used, the approximate boundary can be
specified usging only data at the mesh points (in the above example only the
coordinates of x; are required) . It is also necessary if free or moving
boundary problems are to be solved (Liggett and Liu [1983]1, Taib et al [1984]).
There is little convergence theory to justify the practically successful
numerical methods outlined above. If the integral equation is a second kind
Fredholm operator (e.g. (8.1)) and the boundary is smooth, the theory is
fairly complete (Atkinson [1976]). But if the boundary contains corners or
if the equations are of the first kind results are usually available only for
Galerkin methods (Wendland [1983] Chandler [1984a,b] and the references given
there) or for collocation methods with uniform grids (Atkinson and de Hoog
[1984], Wwendland [1983], and the references there). Because they are incomplete

these results have had no influence in practical computations.
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3.  ELASTOSTATICS
The main application of the boundary integral method is elastostatics.
This section outlines the solution of plane strain elastostatic problems

(seeHartman[1982] for a thorough review).

X2 4

Let U(x) = (Ul(x),Uz(x))T denote the displacement of the point x when
an elastic body § is deformed by external forces (Fig.3). Then U may be

sensibly modelled by the Cauchy-Navier equation

1
(16) AU + 1_2\)V(V.U) =0 .
where V 1is Poisson's ratio for the medium. For x e€ I' the traction is
defined by

U_(0) = 2(V0) () V() + o5, (VD) G)V(x) + Vix) X VX UG
Physically UT is the force per unit length experienced by a small segment of
the boundary of § due to internal stresses. Mathematically UT behaves

like a normal derivative. Boundary conditions for (16) are of the form

(17) U(x)

g(x) x e Ty

h(x) xe y

UT(x)
where g and h are the prescribed (vector valued) data (more general
boundary data are also possible). The fundamental solution for this system

is the Kelvin solution
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- - 2
S(x,8) = G(x,8&) Y 0 | + Y2 L ¥y
0 Yz |

where r

dr
|X"£| 12 xr, e
%
j oy
3-4v 1
Yi=gy 0 Y2 T smaey ’

The role of Green's identity is taken by the Somigliana identity.

= U(x) x € §
(18) f S(x,-)U_ -8 (x,-)TU = LU (x) x e I'°
r T T
=0 x ¢ RA\Q

The strategy for converting the identity (18) to an integral equation
is the same one used for potential problems. For the example of the assumed
displacement problem with boundary conditions U(x) = g(x) , x € I' , the
integral equation to be solved is

(19) J S(x,-)v = 5g(x) + J ST(x,-)Tg x e I?
T

T
The solution to the differential equation is then

T

U(x) = f S(x,°)v - J S (x,°) g x € 8
T
T r

The numerical solution of (19) is in principle no different than in the case
of potential theory; the unknown is a vector valued function and its two

components will be approximated by finite element functions. The additional

difficulty comes from ST.

For _ _
T 1 0 Y3
Sp{x,8)" = G (x,8)M(x,8) + T xr, ) . ;
Yg _
where fO is the tangential derivative
ry = r5(x,8) = Vgr(x,i) .0 (&)

and 0(£) is the unit tangent vector at & , where Yy = (1-2v)/4m(1-v),

and where M is the matrix
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1 (1-2v)+2 1, z 2ryx,

MEx,8) = )

2r,r, (1-2v) +213 |

(rj now denotes rj = %% ), If the curve ' is smooth, then GV and M

are also smooth functions of x and &. But using the parameterization
I'={y(s)} of T

1 1 y ]
T (Y(8),Y(6) = o= ’:lws)lw([s-cl)_[ :

and hence the off diagonal terms of ST(x,E) are Cauchy principal value
kernels. Thus in equation (18) the right hand side is now more difficult

to calculate than in the analagous equation (8) of potential theory. Moreover,
when the assumed traction problem is reformulated (i.e. when the boundary
conditions are UT(x) = h(x),xsFO) we obtain a second kind equation with

a Cauchy principal value kernel

(20) Lu(x) + J sT(x,-)Tu = J S(x,)h x e I° .
r

T
(The analagous Neuman problem of potential theory produced a second kind
equation with a smooth kernel.) Again this difficulty restricts the convergence

results available (See Wendland [1983], Elliott [1983]).

4.  REFINED NUMERICAL METHODS

The methods outlined in section 2 have been applied successfully to a range
of elastostatic problems; for example the codes of Brebbia [1978] and their
subsequent development are based on polygonal approximations to the boundary
and piecewise constant approximation of the unknowns. ‘But- the stresses
(i.e. gradients) in elastostatic problems are known to be singular near reentrant
corners and cracks, and excessive grid refinement is needed to maintain accuracy.
However the precise form of the singularities is known. By specifically
including them amongst the basis functions, the nﬁmerical approximations are
able to model more closely the true solution. This approach is well known in
domain finite element methods (Strang and Fix [1973]). In solutions to boundary

integral equations it has appeared in Jaswon and Symm [1977], Fairweather et al
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[1979], Lamp et al [1982], and in the free surface problems of Liggett and
1iu [1983]. Here we describe work of Watson [1982], which aims to combine
the addition of singularities with high order piecewise polynomial represent-
ation in developing general software.

The basis functions are the Hermite cubic splines, the continuous
piecewise cubic functions with continuous derivatives at the mesh points.
Given the mesh x, = Y(si) on T = {y(s)}, the approximate boundary
= {(§1(s),¥2(s))} is given by Hermite cubics ?k (which are however
allowed to have discontinuous derivatives at corners) satisfying Y(si) = ?(si)
and Y(si) = %(si) (or Y(sii) = %(sii) if s, is a cornexr). For smooth T
the components of boundary functions u and v are also approximated by Sn
For the assumed displacement problem (equation (19)) the known data g is
approximated by gn € Sn satisfying ¥i

9g dg
(21) n n
gn(si) = g(si) and 7§;(Si) = j;;(si) '

To specify the approximation to the unknown v we impose conditions analagous

to (21) on the residual. That is we require

Bﬁn
(22) Dn(si) =0 and -55“(Si) =0 '
for the residual vector
P (x) = | _S(x,°)v. = %g (x) + | S.(x ‘)T
n T ’ n In 7 i’ 9n ‘

The calculation of the tangential derivatives of p in (22) will require
the evaluation of Hadamard principal value integrals when £he off diagonal
functions of ST are differentiated. But since 9, itself has continuous
derivatives, this may be done unambiguously.

The equations (22) are an extension of the collocation equations (14).
Indeed, this particular collocation method has been provided with a complete
convergence theory in Arnold and Wendland [1983]: for the eguations (22)
may be shown to be equivalent to a Galerkin method for which a full analysis

is available.
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Suppose that the boundary is now allowed to contain corners. For
example suppose that near xi = Y(si) the boundary is a corner with an

interior angle of 2xm, X > % (Fig.4).

Q gcisfx

b

A -

X7

Fig. &

Then establishing polar coordinates about X0 X - xi =gcis Op so that
is the region
020, =X <0<y ;

it is known from Williams [1952] that in the neighbourhood of X
(23) U(Ccis 06m) = K10A1¢1(6) + KZOAZQZ(G) + "smoother terms”.
Here ®; and @, are respectively symmetric and anti-symmetric functions
of 0; A;,X, e (4,1) are known from X and the material properties of the
medium ; and X;,Ks are unknown numbers (the stress <intemsity factors)
which will only be known when the solution is found. The"smoother terms"
denotes functions whose gradients at x, are bounded. Therefore the
boundary functions are of the form.
(24) u(o) = K1|01A1¢1 + K2!0|A2¢2 + "smoother terms"

v(g) = Kllclkl_lwl + K2|0[A2_1¢2 + "smoother terms"

where ¢k and wk are vectors depending only on the sign of 0 and the

given data.
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But it is easy to see that |<J|>\k cannot be approximated well by
polynomials. Thus functions of this form are added to the set of basis
functions. For example, again in the case of the assumed displacement

problem (equation (19)), define for k = 1,2

. A
Xik(s) = |s—si| ki - m(s) s € FiL,Fi+l
=0 , otherwise
where ﬂk is a piecewise polynomial with ﬂk(si) = ﬂk(v)(si) = 0 selected

so that iy (5,) =Xi(1i)‘sj.) =0, j=di-1,4i+1.
The set of basis functions is now taken as S, t {Xi1+Xip}, where i
runs through the exceptional points. At each exceptional point two extra
degrees of freedom have been added to the approximation. Hence the
collocation equations (22) are modified at exceptional points by imposing
additional constraints on the normal derivatives of p. (see Watson [19821])
Variants of this idea are possible (see the references already cited),
and problems could be expected as the grid is refined. The explicit inclusion
of singlarities increases overheads and makes any numerical integrations required
to set up the collocation eqguations more difficult. Nevertheless Watson [1982]
reports "engineering accuracy" for a number of test problems with a
number of test problems with a small number of boundary elements. This reduces
storage and simplifies input. We can also remark that since the collocation
matrices for the boundary element method are not sparse, the explicit inclusion

of singular functions will not make the linear algebra more difficult.

5. CONCLUSION

The main contribution of mathematics to the boundary integral method is
the classical mathematics used inreformulation of the problem. More recently
there is the description of the singularities of the solution. Numerical
analysis can take credit for the numerical linear algebra and various quadrature
technigues; although new methods have been developed (by practitioners) to

utilise the special features of the problem. The theoretical analysis of the
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solution of the integral equations themselves has had little impact. In
this respect the development of boundary integral methods parallels the

development of the finite element method.
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