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THE BOUNDARY INTEGRAl METHOD FOR POE's. 

The last ten years have seen the development of the boundary integral 

method as an important tool in practical engineering computations The early 

work in aeronautical fluid flow (see Hess [1975]) elastos1:a·tics (see Brebbia 

[1978], Cruse and Rizzo [1968]) and p.o'cen·tial theory (see JasvJon and Symm 

[1977]) has lead ·to the sophisticated techniques and varied applica'cions 

reported more recently in Brebbia, Futagami, and Tanaka [1983], Brebbia, Telles 

and ~vrobel [1983], LiggeU a.nd Liu [1983], and Butt:·er et al [1983] . Here 

w12: give an introduction to these ideas. 

L POTENTIAl PROBU::li1S 

The easiest :ipplication of 'che boundary in"to"gral me·thod is to the two 

dimensional problems of classical potential ·theory (Kellog [ 1929], Mikhlin 

[1970]). lrie are gi yren an open bounded region Q c whose boundary r 

is smooth except for a finite number of corners. We need the solution U 

of the par'cial different:ial equation 

(l) /1U(x) 0 " X 

>vi·th the boundary 

~ l) U (l;;) "" g(x) , 

(2.2) (l<) ~ h(x) , 

Here for any x € r (except a corner point) \l (x) is ·the outward normal and 

(x) "' V'U (x) • V (x) is ·the n01:1:nal deri va·tive" r 0 and r 1 are 1the disjoin·t 

compon,ents of ·the boundary on which Dirichl,at data g and Neumann data h 

are given. (Por ·the Neum.ann problem 1r1ith 
f 

·the extra condi·tion J = 0 ' on the solu·tion) • 

f and impose 

These are the simples·t 

models u.sed in heat transfe:e and fluid flow calculationso 
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To apply the boundal:"l.f in·tegral method the soZu·tion (or 

Green's Function) must be knm-m : in this case 

(3) 

Using the notation 

i; E: r ' 

Greens third identity s·tates tha'c for any haJcmonic function U (i.e. any 

fllicction satisfying (l)), 

(4 .1) U(x) X E: n 

(4 .2) G(x, ·) uv - GV (x, · J U r~u (x) ;g; E ro 

(4. 3) 0 X E JR\IT 

(Kellog [ 1929]. I' 0 denotes r less the eJtcep·tional points. The 

exaeptoionaZ points are the corners of r together v?ith the points on r 

at which r 0 atld r l join) • However we need a converse to this identH:y. 

(5) 

(6) 

(7.2) 

If u,v f + IR satisfy the identity 

then the 

sati,s f'ies 

r I G(x, ·)v - G,)x, ·)u 

·r 
pot;ential u defined 

r 
U(x) = JrG(x,·)v- G (x,·)u 

LU(x) 0 

U(x) = "!1 

(x) "~w"" 

E £'1 

X E 
r-0 
" 

;g: E ro 

~'his can be immediately applied ·to the Dirichlet problem (vJhen (2) becomes 

U(x) = g(:x) , X E f). Suppose ·we can find a function v ·to s2d:isfy 

(8) 
f I G(x, • v ~ l:;g·(x) 
Jr 

(x, ") g " 

·then the poten·i:ial 

(x, ·) 9 
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sa·tisfies 

flu (x) 0 ' 

U(:c) "" g(x) , (x) = v(x) 

Tha·t is, U is ·the required solution to the original differential equa·tion 

and as a bonus v is ·the 1lnknown Uv (which is often the quantity required) . 

Similarly 

(8.1) 

the integral 

l..!u(x) + f 
r 

equation for the Neu:mann problem is 

(x, . ) u = Jf G (x, ·) h 
r 

The same idea works for the general :mixed problem (l) - (2) . We need u 

and v so that 

(9.1) l:;u(x), 

and 

(9. 2) u(x) g(x) 

(9. 3) v(x) h(x) 

Equivalen-tly using (9.2) 

(10.1) G(x,·)v ~ J 
r1 

and (9.3), (9.1) bec:ome the system of in;:egral equa·tions. 

(10.2) 

with unknowrlS v 1 r 1 and u[ r 
- 0 

This e~~posi·tion mal!::es light of some difficulties" The purely mat.hema·tical 

ones are the condi-t:i..ons ·to be imposed on u and v for (7) ·to be valid" 

'.rh.is mt1st be set·tled before the converse Greens identi·ty can be proved., ,A 

problem of prac-l:ica1 concern is that t:he integral equa:tions may not determin,e 

t:he 1~Ull\:nowns uniquely~ For ex.;:unple t:he unJm.o1,,m in (8) is U and hence we v 

expect For most regions S1 this proper-ty can be derived from (8) 

and t.here is a unique solution to t:he equat.ion (Le. i:he refor:mula:tion is 

tvell posed") . For special regions, the r - contours (see JaS\•IOn an.d Symm [1977] 

p" 52), this derivation t'lill fail, and (8) may have mul ti.ple solutions. Ho1trever 

on.ly on·e of ·these "Nill satisfy ·the addi~tional cons·traint .. 
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(11) 

Thus (8) + (lli (or more generally (10) + (ll)) will ah~ays have a unique 

solu·tion, In prac'cice numerical solu'cions of (10) alone may appear ·to fail. 

This can be corrected by adding (11), (see Christiansen [1983]) or by rescaling 

the problem so that r is no longer a r contour, The second procedure is 

more convenient but. imposing (ll) on the numerical solution is a necessary 

·technique for exterior problems f! (See Christiansen [1983]) andNe\c1m;;mn problems 

'I'o be concise U'!e boundary integral equa·tions can be v<ri·tten in the 

fOYTI1 

(12) p(x) = Lw(x)- f(x) = 0 

'"here ;,v is ·the unkno~m, and f J.s calcula·ted from the g·iven data. !rile ass1.1me 

tha·t the boundary is parameterized as 

]' = {y(s) 

>llit.h the function y smooth except at corners. We occasionally \¥rite w(s) 

for wJ(Y (s) l " 

2. NIJI'~ERI CAL SOLUTIONS 

In-teg+."a:l equation reformulations of po·tential problems have been kno'ir''in 

since G:r:een in 1828 (See Ellio·t·t [ 1980] and ·the references there) " They first. 

became .impor-tant in Fredholm's proof of ·the existence of solutions for ·the 

Dirichlet and Neumann problems. Hov;ever int:erest. declined \'Then more general 

proofs >'Jere provided using the differential equations themselves. 

re·viva.l has come because the finite element methods developed for differential 

equations ~.;ere fo1.111.d to give competat.ive solu:tions v .. rhen applied to ·the ilYte!;Jra.J~ 

equations~ gi vin(J 'G1.e boundary element me-thod .. 

To construc-t the finite elements choose a sequence of mesh points 

y 1 E r and le·t r = i 
deno·te the segmen·c of 

: i=l, ... n} 

r 

and The se·t {x,} 
l 

should include all ·the excep-"cioi1al points~ 
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The unknown w is to be approximated by 

basis funations 3 is the set of functions satisfying 

(l) 

(2) 

on each segment ( s) is a polynomial of degree 

r , and 

if ;:;: 0, 

derivatives 

¢ ( s) is continuous at 
n 

and the tangential 

(l) 
are continuous. 

The degree r and continuities {v . } 
]. 

:ma.y be varied to give different classes 

of basis functions, (If ~1, 4>11 is allowed ·i:o be discon·tinuous at xi. 

It is usual to impose fe1"aer continuity .restrictions if X, 
:1. 

is an exceptional 

point.) As the segments become small•er :more accurate approximations become 

possibleo This approximation is usually also used for t.he given data when 

calcula:ti.ng the right hand side f, 

As the approximation 'to '~ we choose ·the basis function which sa'cisfies 

the integral equation most nearly. There are t:.'Ji/O main methods:-

(13) 

(14) 

(1) the Galerkin me·thod, >'There sa:tisfies 

(2) 

Both 

( 
Jr 

-f)(jl "'0 s 
n 

the collocat:l.on method, where w satisfies 
n 

where 

(13) 

-f) (JL . ) = 0 
:lJ 

E r. are collocation point.s carefully chosen. 
l. 

and (14} reduce ·to a syst:em of linear equat:ions. 

vJill usually be too large to be solved by 'the standard LU decomposition methods, 

A combination of direct and iterative m.e·thods may be needed using mul·ti-grid 

ideas (Atkinson [1976], Hackbusch [1981], Schippers [1984]). 
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~~r~~~x:.-...7-."' 

;r 
X· 

/' J-1 
~ 

Returning to the simplest exrunple of the Dirichlet problem (8) let 

be the piece11Jise constan·t func·tions and choose the collocation points 

(Fig. 1). 'I'hen vlriting 
i 

cation equations become 

where 

and 

b. 
1 

1 
~(x. ,)--,~' l-""5 &,Ill, 

- j 

1 r 1 

2'rr I in.Tx-:- ,_-~I d~ 
J r 1. --, 

j 

L 
j 

for v 
n 

the collo-

We can now foresee the advantages and disadvantages of Lhe boundary integral 

equa·tion reformulation, compared to a fini·te element or difference solution 

of the original differential equation. The advantages are:-

Al) lA ·tvJO dimensional problem has been replaced by a one dimensional problem. 

This reduces overheads, simplifies programming and mesh generation, and 

reduces storage .. 

A2) If the region is intrica:te (e.g. thin or having reen·trant corners) an 

appropriately graded mesh .is easily constructed to give bett-er approxim-

a·tions ,,,here ·the solution is rapidly va:Lxing. 
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A3) Exterior problems are as easy as interior problems; no special techniques 

are needed. 

A4) The physically interesting quantities and are directly 

available. 

A5) Vu is found more accurately in the interor. 

A6) Empirical evidence suggests coarser meshes can be used. 

The disadvantages are:-

Ol) Not all problems have a known fundamental solution; non-homogeneous 

media or non-linear equations severely complicate any integral equation 

reformulation. 

02) Repeated evaluation of the potential (6) is expensive if U is 

required throughout the interior. 

03) It is difficult to solve a problem with source terms. If equation 

(1) is replaced by the Poisson equation 

l.lu(x) = f(x) x € n 

the solution can be expressed as 

(15) U = Uo + F F(x) 

Uo is found as the solution of 

l.luo 0 

and 

Uo (x) g(x) - F(x) X € fo 

U (x) 
O}J 

h(x) - Fv(x) 

But the multiple integral for F must be repeatedly evaluated (Brebbia 

et al [1984]). 

04) S.etting up the collocation equations requires many integrations, which 

are often performed numerically (and must be performed numerically in 

3 dimensional problems). Because of the singularities in the Green's 

function this is more difficult than for domain methods. It is unclear 

just how accurately this need be done. 
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It is important minimize D3. Whenever non-linear problems are solved 

the non-linearities are included as a source term. Presently the domain is 

divided into elements in order to calculate the multiple integrals; which 

is undesirable. Recently Young et al [1983] have applied capacitance matrix 

techniques to D2 - D3. Capacitance matrix methods (Proskurowski and 

Windlund [1976]) use the derivation of the boundary integral equations as an 

analogy to derive fast methods for solving the matrix equations in domain 

methods. They depend on the use of regular grids, and by themselves cannot 

cope well with non-smooth boundaries. 

Disadvantage D4 is particularly acute if Galerkin methods are used, as 

these require double integrations 

J J G(x,~)~ (x)~ (~)dx d~ 
r r n n 

to set up the matrix. They do have the advantage of a more extensive theoretical 

justification, and when basis functions with high continuity are used produce 

a more favourable distribution of the error within each element. This has lead 

Lamp et al [1982] to a careful investigation of the practical problems involved. 

Since r is generally curved it will usually be necessary to approximate its 

parameterization by a more manageable function. Thus f {y(s) :O$SL} is 

replaced by r {y(s):OSs:<;;L} where the components y 1 , y 2 of y are piecewise 

polynomials on the mesh {s.}. 
1. 

linear functions with y(s.) 
1. 

For example, if y , y are continuous piecewise 
1 2 

xi , then r is the polygonal approximation to r 

illustrated in Fig 2. The boundary integral equation 



is solved on r ra:ther than r 0 
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r. ~ 
1+1 

Fig. 2 

The effec·t of this approximation has been 

analysed mathematically in Nedelec [1976], McLean [ 1984], and in the finite 

element literature (Ciarlet [1977]). .IH though for some two dimensional 

problems the exact boundary could be used, the approxima·te boundary can be 

specified using only data at: the mesh points (in the above example only the 

coordinates of xi are required) o It is also necessary if free or moving 

boundary problems are to be solved (Ligget:t and Liu [1983], Taib et al [1984]). 

There is li·t·tle convergence theory to justify the practically successful 

nUXllerical me·thods outlined above. If the integral equation is a second kind 

Fredholm operator (e.g. (8.1) l and the boundary is smooth, the theory is 

fairly complete (Atkinson [1976]). But if the boundary con·tains corners or 

if the equations are of the first kind results are usually available only for 

Galerkin me·thods (Wendland [1983] Chandler [1984a,b] and the refere:nces given 

there) or for collocation methods wit:h uniform grids (Atkinson and de Hoog 

[ l98'U, liiendland [ 1983], and the references there) " Because they are incomplete 

tr1ese results have had no influence in practical computations. 
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3. ELASTOSTATICS 

The main application of the boundary integral method is elastostatics. 

This section outlines the solution of plane strain elastostatic problems 

(seeHartman[l982]for a thorough review). 

, , , 

J(':f 

,/ U(x} , , , , Fig, 3 

x, 

Let 
T U(x) = (U 1 (x),U2 (x)) denote the displacement of the point x when 

an elastic body n is deformed by external forces (Fig.3). Then u may.be 

sensibly modelled by the Cauchy-Navier equation 

(16) 1 t.u + I=2V \7(\7. u> = o 

where v is Poisson's ratio for the medium. For X € f the traction is 

defined by 

1 2(\i'U) (x) .V(x) + l-2V('il.U) (x)V(x) + V(x) X \7 X U{x). 

Physically u, is the force per unit length experienced by a small segment of 

the boundary of n due to internal stresses. Mathematically u, behaves 

like a normal derivative. Boundary conditions for (16) are of the form 

(17) U(x) g(x} X € fo 

h{x) 

where g and h are the prescribed (vector valued) data {more general 

boundary data are also possible) • The fundamental solution for this system 

is the Kelvin solution 
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[ :1 0-, [ 2 S{x 1 /;) G{x 1 !;) + Y2 rl rlr2 J 
Y2 j rlr2 r2 -

where I x-i; I Clr and r = r·. = Clx. J 
J 

3-4V 
Yl = 4{1-V) I Y2 

1 
87T{l-V) 

The role of Green's identity is taken by the Somigliana identity. 

U(x) X E S1 

{18) ~U{x) 

0 X E JR2 \IT 

The strategy for converting the identity {18) to an integral equation 

is the same one used for potential problems. For the example of the assumed 

displacement problem with boundary conditions U(x) = g(x) 1 X E f , the 

integral equation to be solved is 

{19) JrS{x,·)v = ~g{x) + J s {x,.)Tg 
r ' . 

The solution to the differential equation is then 

U{x) = J S{x,·)v- J s {x,·)Tg 
r r ' 

X E S1 

The numerical solution of {19) is in principle no different than in the case 

of potential theory; the unknown is a vector valued function and its two 

components will be approximated by finite element functions. The additional 

difficulty comes from s,. 

For 

where is the tangential derivative 

1 
+-r r o [ o Y3 -~ 

-Ys o -

r 0 = r 0 (x,!;) = V!;r(x,!;).o{/;) 

and 0.(/;) is the unit tangent vector at !; 1 where y 3 

and where M is the matrix 

(l-2V)/47r(l-V), 
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deno·tes dr 
) ' If now r. = 3( J 

the curve r is smooth, then Gv and M 

J 

are also smooth functions of X 

r = {y(sl} of r 

lr (y(S),y(6)) 
r a 

and !;. But using the parameterization 

and hence the off diagonal terms of s,(x,i;) are Cauchy principal value 

kernels., Thus in equation (18) the right hand side is nm11 more difficult 

to calculate than in the analagous equation (8) of potential theory. Moreover, 

when the assumed traction problem is reformulated (i.e. 1,rhen the boundary 

conditions are U (x) = h(x) ,xEf 0) \V"e obtain a second kind equation with T ~ 

a Cauchy principal value kernel 

~u(x) + J S (x,·)Tu 
r T 

(20) I S(x, ·)h 
r 

(The ana.lagous Neuman problem of potential theo:ty produced a second kind 

equation vd th a smoo·th kernel.) Again this difficulty restricts the convergence 

results available (See Wendland [1983], Elliott [1983]). 

4. REFINED NUMERICAL METHODS 

'rhe methods outlined in section 2 have been applied successfully to a range 

of elastostatic problems; for example the codes of Brebbia [1978] and t_heir 

subsequent development are based on polygonal approximations to the boundary 

and piecevvise constant approxima·tion of the unknowns. But the stresses 

(i.e. gradien·ts) in elastostatic problems are kno11m to be singular near reentrant 

corners and cracks, and excessive grid refinement is needed to maintain accuracy. 

However the precise form of the singularities is known. By specifically 

including them amongst the basis functions, the numerical approximations are 

able to model more closely the 'crue solution. This approach is well known in 

domain finite element methods (Strang and Fix [1973]). In solut:ions to boundary 

integral equations it has appeared in Jaswon and Syum [1977], Fairweather et aZ 
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[1979], Lamp et aZ [1982], and in the free surface problems of Liggett and 

Liu [1983]. Here we describe work of Watson [1982], which aims to combine 

the addition of singularities with high order piecewise polynomial represent-

ation in developing general software. 

The basis functions are the Hermite cubic splines, the continuous 

piecewise cubic functions with continuous derivatives at the mesh points. 

Given ·the mesh y(si) on r = {y(s)}, the approximate boundary 

(s) ,y2(s))} is given by Hermite cubics yk (which are however 

allowed to have discontinuous deriva·tives at corners) sa·tisfying 

and t (or ')'(s.±) ""y 
~ 

if s. 
~ 

is a corner) . 

y (s.) 
~ 

For smooth 

·the componen'cs of boundary func·tions u and v are also approxima·ted by 

For the assumed displacement problem (equation (19)) the known data g is 

approximated by gn E Sn satisfying Vi 

(21) 
()g 

and ~(s.) 
CIS J. 

s 
n 

r 

To specify the approximation to t.ile unkno11>m v we impose conditions analagous 

to (21) on the residual. That is we require 

(22) 0 and 0 

for the residual vector 

The calcula·tion of the tangential derivatives of p in (22) will require 

·the evaluation of Hadamard principal value in·tegrals \'\l'hen the off diagonal 

functions of s, are differentiatedo But since it:self has continuous 

derivatives, ·this may be done unambiguously. 

The equations (22) are an extension of the collocation equations (14). 

Indeed, this particular collocation method has been provided with a complete 

convergence theory in Arnold and Wendland [1983]: for the equations (22) 

may be shown to be equivalent to a Galerkin method for which a full analysis 

is available" 
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Suppose that the boundary· is now allowed to contain corners. For 

example suppose that near: :1\ "' y(si) the boundacy is a corner 'Vlith an 

interior angle of 2xrr, X>~ (Fig.4). 

O'(IS 

'I'hen establishing polar: coordinates about x - x. = a cis 6rr 
~ 

so that 

is the region 

cr <: o, -x s e s x 

it is known from Williams [1952] that in the neighbourhood of 

(23) U(Ocis 61T) = K1aA 1 \!>1 (6) + K20A 2 <P:~. (6) + "smoother terms". 

Here \!> 1 and \!>2. are respectively symmetric and anti-synLmetric f~~ctions 

of 6; /... 1 , /.. 2 e (~·, l} are known from X and the material properties of the 

medium a~d K1,K2 are unknown nur~ers (the stress intensity factors) 

v1hich will only be known \</hen the solution is found. 

denotes functions whose gradients at are bounded. 

boundary functions are of the form. 

(24) u(o) = K1\uiA 1¢1 + Kzlcr!A 2 ¢z 

v(d) =KlJoi'-1- 11/Jx +Kzlol/..2- 11/!2 

The"smoother terms" 

Therefore the 

+ nsmoo·ther terms~i 

+ "smoother tei."lliS" 

are vectors depending only on the sign of cr and the 

given data. 
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But i·t is easy to see that I o I Ak cannot be approximated \veil by 

polynomials. Thus functions of ·this for:m are added to the set of basis 

functions. For example, again in the case of ·the assumed displacement 

problem (equai:ion (19)) 0 define for k = 1,2 

X· (s) =Is-s JAk1jJk- 1T (s) 
·~k i . k 

= 0 

where is a piecewise polynomial wi·th 1Tk 
(\J) 

'ITk 

so that: = X~ 1 ) (s . = 0 , j 
~k J 

i -1 ! i + 1 0 

The set of basis functions is now t.aken as S + 
n 

otherwise 

runs ·through the exceptional points. At each exceptional point tv1o extra 

degrees of freedom have been added to the approximation. Hence 'che 

colloca-tion equations (22) are modified at exceptional point.s by imposing 

additional constraints on the nox:mal derivatives of p, (see Watson [1982]1 

Vad .. an·ts of this idea are possible (see the references already ciiced) , 

and problems could be expec'ced a.s the grid is refined. The explicit inclusion 

of singlari ties increases overheads and makes any numerical in·tegrat.ion.s required 

·to set: up the collocation equations more difficult. NeverthelEms wa-tson [ 1982] 

reports "engineering accuracy" for a number of test problems wi·th a 

nurnber of test problems w]:th a small nu111.ber of boundary elemen·ts. 

storage and simplifies input. life can also remark ·that since the colloca·tion 

ma-trices for "l:he boundary element me·thod are no·t sparse, the explicit inclusion 

of singular func·tions ,.Jill not make the linear algebra more difficult. 

5. CONCLUSION 

The main contribution of ma·thematics to the boundary integral method is 

the classical ma'chematics used in refonnulation of the problem. ~lore recently 

there is the description of i:he singularities of the solub.on. Numerical 

analysis can take credit for ·the numerical linear algebra and vaJ~ious quadrature 

techniques; although new methods have been developed (by practitioners) to 

utilise the special features of the problem. The theore·tical analysis of ·the 
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solution of the integral equations themselves has had li·ttle impact. In 

t.'lis respect the development of boundary integral methods parallels the 

developmen·t of the fini·te element me·thod. 
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