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SINC 14ETI-IODS OF APPROXIMATE SOLUTION OF 

PARTIAL DIFFERENTIAL EQUATIONS 

Frank S-tenger 

1. INTRODUCTION AND SUM~Y 

In the au·thor's experience, nearly all solutions of 

PDE (partial differential equations) encountered in 

applications are piecewise in each variable. 

Except in the case of L•ver:se problems, we can predict 

a priori the regions of analytic of the solutions of 

POE. The solutions of linear PDE are analytic whenever 

the coefficients of the PDE are analytic, although 

singularitJ..es may also occur on the boundary of t.'"te 

:region. 

In this paper we derive two families of methods for 

solving second order !?DE, Each. ,of these families is 

based on the Whittaker cardinal function, or sine 

function expans i.on of a function f d1ef ined on the real 

line R , This expansion t:aJ(es the form 

c ( f' 

where h > 0 , 2Z 

function S(k,h) 

\ 
!.. 

kE2Z 
f 

{O,:tl,±2,,. ,} 

is defined 

S(k,h)o(x)"" 

~Pihile formulas for approxima 

s (k' h) ( 1.1) 

and ~.>1here the sine 

, k E zz . ( L 2) 

derivatives of function 

defined on R are ilxmH"'dia tely obtainable from ( L 1), we 
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obtain formulas over other intervals (or contours) r 
via the use of a function cp , where cp is a one-to­

one transformation of f onto R . Using Np points in 

p dimensions, the resulting approximate solutions con­

verge at the rate O(N 3P12exp(-yN!)) where the constant 

y > 0 is the largest possible in the case when the 

{Lipo.} n {analytic} class housing the solution is 

explicitly known, i.e., in that case there does not 

exist a method which converges at a faster rate [1). 

The paper is organized as follows. In Sec. 2 we 

briefly review the relevant properties of the cardinal 

function (1.1). These formulas are then extended in 

Sec. 3, to the derivation of two classes of methods for 

reducing PDE to the solution of a system of algebraic 

equations. One of these, which we refer to as formulas 

of type I, has been derived elsewhere [51, while the 

other, the class of formulas of type II, is new. Both 

classes of formulas have the same order of convergence. 

The type I formulas have been tested on model problems, 

while the type II formulas have not. The two classes of 

formulas are considerably different except in the case 

when r'"' R although at this stage the advantage of 

one type over the other are not clear. Both types lead 

to full matrices, as opposed to sparse matrices for the 

case of finite difference and finite element methods, 

although the rate of convergence of the methods of this 

paper is considerably faster than that of finite differ­

ence and finite element methods. In Sec. 4 we consider 

some special regions, and we show that within these 

regions the formulas of type I and II converge at the 

same rate. In Sec. 5 we describe some function spaces 
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for solving POE in :Rn • In Sec. 6 we illustrate the 

solution of some ODE and POE boundary value problems via 

methods of this paper. 

2. SOME PROPERTIES OF THE CARDINAL FUNCTION 

The results of this section, taken from (6}, con­

sist of certain identities of the Whittaker cardinal 

function which we shall use to derive the formulas of 

Sec. 3. 

Definition 2.1: Let h> b , and let B(h) denote the 

family of all functions f that are analytic in the 

entire complex plane ~ , such that 

lf(z) I ~ C eTIIzl/h, 

and such that fE L2 (R) • Let C(f,h) and 

defined by ( 1.1) and ( 1. 2) respectively, and 

In 

6 (n) (!) 
n .. s ( j , l ) (X) I X"' k. jk. 

particular, we have 

0 (0) :: 
jh 

6 ( 1) "' 
jh 

0 (2) = 
jk. 

{: 
if j- k. 

if j ~ h 

{
0 if . f- k. 

(-l)k.-J if 
k.-j 

j ~ h 

j = k. 

if j~h 

( 2 .1) 

S(k,h) be 

let us set 

3 

~2. 3) 
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Theorem 2.2: Let fE B(h) . Then 

(a) 

(b) 

(c) 

(d) 

f ( z) "" C(f,h,z) for all z E cr:; 

JR f(x)dx ~ h I f(kh) 
kE2Z 

I f(t)S(k,h).,(t)dt = hf(khl 'kE zz 
:lR 

f" E B(hl 

( 2 .4} 

2.5) 

( 2. 6) 

( 2 • 7) 

3. FOR.."'!ULAS FOR DISCRE'l'IZING DIFFERENTIAL EQUATIONS 

The definitions, notations and results of this 

sect ion a.r"' import.an t t.o the rest. of the paper. Two 

families of formulas are derived for a general contour 

r These two families reduce to a single family for 

t.he case when f "" R , 

3.1TheDomain Vd and ima ting Functions on R • 

Definition 3. 1: Let R denote the real line, 

let r£ 

k=O,±l,:J::2,, •• } 

rnunbers and set 

{z:=x+iy: xE:R, y ER} , and let 

Let d and h be positive 

(3 .1) 
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id 

0 

-id 
I 
I 

Fig. 3" 1. 

The Reg ion of Eq. ( 3 . l) . 

DefLnition 3.2: I,,et "() be a simply connected domai..n w 

the e.l'l': plane cr. ' a.n.d denote av tl1e b(lUJada. ry 

of D Let a and b be t <' '"' of D 
' 

and let <P be a confor.111al map of v onto 0 ' sw::h 
.-1 

d 
that rp ( -00 

' cj)'(b) .. '"" Let lji "' q? denote the 

i..nverse map, and set 

r "' (~J{xl ( J. 2) 

z "" l}!(kh) k E 2Z 
k 

( 3 • J) 

Let B denote the of a.ll functions F that 

are in 0 and such that 

J' I F ( z) dz I < ""' . ( 3 . .:.\) 
c 
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3.3 Formulas of Type I. 

Theorem 3. 3 [4]: Let FE B (V) 1 and let S (k 1 h) be 

defined as in ( 1. 2) • Then 

(a) For all x E f 

F(x) 
¢' (x) 

(b) 

sin [n¢ (x) /h] 
2n i J 

F(z)dz 
[¢(z)-¢(x)]sin[n¢(z)/h] 

av 

Jr F(x)dx-h L 
kE zz; 

i J F(z)exp[(in<l>(z)/h)sgnimcjl(z))dz 
= 2 aV sin[n¢(z)/h) 

(c) 

f . ~(~) 

r F(x)S(k,h)o¢(x)dx- ¢'(~) 

(-l)kih J F(z)exp[(inp(z)/h)sgnimp(z)] dz 
2n . ()0 ¢(z)-kh 

( 3. 5) 

(3.6) 

( 3. 7) 

Moreover, if the left hand sides of (3.5), (3.6) and 

(3.7) are denoted by n1 (X) 1 n 2 and n3 respectively, 

we have 

N(F,Ol 
I 11 1 (x) I ~ 2nd sinh (nd/hl ' x E r 

e-nd/~(F,Vl 
ln2l ~ 2sinh(nd/h) <3 · 8 > 

h -rrd/h In I $ 2nd e N(F,V) . ''3 
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Assumption "3. 4: In addition to FE B ) , let us assume 

that for all X E r ' 

(3.9) 

where C and a are positive numbers. 

Theorem 3.5 [6]: Let a. " denote the left hand side 
J.' ·~ 

of . (2.6+il, i"' 1,2,3 , for the case when the 

infinite sums !kE~ are replaced by finite sums, 

Let FEB satisfy (3.9) on f If h is selected 

the formula 

(J .10) 

then there exist constants C. \<Jhich are independent of 
l. 

N such that 
q 

lc. I ;:; c 
.t.,N 

~ l· 
· axp { ~ ( rr da.N) " } , i"" 1, 2, 3 . 

If h.. is selected by the fm:mula 

h "' ( 

then there exists a constant C such t.ha t 
2 

!f h is selected the f orrnu.la 

h "' y 

where y is a positi~e constant, then there exist 

positive constants C' and 6 such that 

* I A I < c ' "'-ON . 1 " 3 \,)i,N ~-"' I l."',,.,,_. 

(:L 13) 

(3.14) 

(3.15) 
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We remark that the bounds (3.11) and 3.15) apply 

uniformly for all X E r, in the case vJhen 

depends on :x: 

Theorem 3.6 [5]: (a) If ¢'FE B ) , then 

I I F'(x)S(k,h)o<jJ(x)dx + 
r 

L o.(l) F(zJ.) I 
:Z K) 

n. " ~, .. 

(3.16) 

J 1 
;i l2d tanh (Tid/h) 

+ _h} e 
2Tid2 

(.P'F,D) . 
' 

(b) If Q:>'F E B ) , F(x)/[$(x)q)'(x)J "+ 0 as x-+ a 

and Cl.S X ~,. b along f 1 then 

F" (x) 
--'--""' S (k, h) oQ:> (X) dx ¢I (X) 

( 1) 

j 

h + -:----
rp'(z) 

J 

(1/ cj) I ) " ( z . ) ( ~ >] F ( z ) I 
J J J 

(3.17) 

l + 2~d ~ h3 I N(~'F,D) + 
tan.h(JTd/h) Tid 

[ 1 h J + + --
2dtanh(1id/h) 2Trd2 

' ,0) 

h " , 
+- N 1 ·(J/"'" F V·) ~ 

2nd \ - "' 1 ' J • 

Mm::eGver, if 

, x E r , ( 3 • 9) I 
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taking h "' (aN) l i , then 

sums L:jE:iZ in (3.18) and (3.19) 

then the hand sides of the 

Cl' .,& "'-(T!d!Y..N)t 
(3.19) become " ... 

respectively, where 

independent of N • 

Corollary 3 > 7: (a l 

then 

~~·(~)+ 
4l • ( ) I 

C' 
1 

If 

0 ( 1) 
l . :;:z .1:] 

and 

F' 

C' 
2 

and 

' 
F(zjl\ 

the infinite 

f . "N .. inl.te sums '" 
J""-N 

resulting (3.18) and 

-{rrda.N) ~ 
and C 2 N e 

are contants which are 

4J'F are in B ) 
' 

-Tid/h 
~ cl (3 • 18) e 

(b) If F and !jl'F are i.n B ) , and if 

F' (x) 1[4> ) $' (x) l -+ 0 as x + a. and as x + b along 

r 1 then 

I hF" (~} 

cp I ( 2 

0 ) 01 ,., ... • 'j] F { T ' II ~J -\c•jJ 

In (3.18) and (3.19) c 1 and c 2 are constants 

t of h "l 

TheOJ:em ) . 8: Let F E B Then 
~--~~-~~ 

I ,r~. 
I j F ( t) dt ~· h L [ ~ + 

a jEZl. 

2hN(F,V) 
~~~ 

Trd sinh (Tid/h) 

(3 '19) 

3 0 20) 
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v.nere the int.egral on the left hand side is taken along 

r and v!here is d~fined as in Eq. (2.16) of [6] 

Proof: Using the formula (2.16) of [6], w•e get 

S(j,h)oql(t:)¢' (t)dt"' h[~ + 

,jh 

l 
-] 

sin (rrt/hl dt 
t-~:l:id J sin (nt/h) 

(j-l)h 

Hence, by taJ<:ing the largest term of each alte1:na 

( 3. 21) 

( 3. 22) 

secies on the t hand side, we find that the left 

hand side of (3.22) is bounded by 4h/d . By combining 

t.hese results v1ii:J1 (3.5), we get 3.20). 

f' inally, '"e rerna.rk t.ha t if F /<jl' satisfies ( 3. 9), 

choosing h "' [rrd/ (ou'IT) J 2 and replacing the 

infinite sum •,;·e may replace 

the .r: t hand side of the re sul (3 .20) 

wnere C"' is a constant. 

3. 4 Formulas of T:zpe I~ 

\lfnereas t.'i<a formulas of the previous section are 

based on the interpolating function S(k,hl o(p , the new 

formulcs of tJu::,; p:cesent section are based on the inter~ 

poL0ct func·tions is def il1.ed 

(x) (3.23) 
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If ~'F E B(V) , then we may write (3.5) in the 

form 

IF(x)- ~ F(~)S(k,h)o~(x)l 
kE?Z 

~ N(p'F,V) 
2nd sinh(1Td/h) ' 

(3.24) 

i.e., the sum in (3.24) converges uniformly for all 

X E r This will also be the case for the interpola­

tion formulas derived in this section. However, the 

formulas of this section will also converge, although 

not necessarily uniformly, even if only F E B (0) • We 

are thUs led to interpolation in the sense of a relative 

error. 

Let FE B(V) , and let us set 

N(F/(•-x) ,0) ,. fa I Fz~X:. dzl I X E r . 
If sup(xEf)N(F/(•-x),0) <oo, we set 

M(F,V) =sup N(F/(•-x),V) 
xEf 

Theorem 3.9: Let F E 8(0) . Then for X E r I 

F (zk) 

( 3. 25) 

(3.26) 

n1 (x) : F(x) - krZl ~· (~) Sk(x) 

(3.27) 

= __ 1 __ f ?(z)sin[np(x)/h]dz 
21Ti av (z-x)sin[1T~(z)/h) . 

Moreover, 

I I <N(F/(•-x),0) 
nl (x) - 2nsinh (nd/h) · 

Proof: We omit the proof, which is similar to 

previously obtained results above. 

Theorem 3 .10: Let F E B (0) . Then 

(3. 28) 



r 
112 - J 
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(3. 29) 

J 
F(z)exp{[inp(z)/h]sgnimp(z)}dz 

av z-

In particular, 

Theorem 3.11: (a) 

hF' ( 

h{-ll = rp ' ( + 3 -

In particular, 

I nJI ::; 1 e -rrd/h{N ( 

h +- N 
rr 

If F and F' ljl' are in B (V) 
' then 

rp(2) lz) (-l)j-kF(z.)} 
' k l F{ ) + ( -"');,)~' (zj) 

$'("');,) jF'k 

d 1 j' - dz 
dz ¢»' (z) {z~~) J 

' 
(3.32) 

[¢'' (·-~>l ',OJ} 
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If F'' ' 2 and F are in B then 

(3,33) 

In 

)},Dl + 

+ N (Fq~ ( 2) I ,2, ).] 1JI 
\ () =-,~ I! ll<' ~ 

+ {Tr/h)N 

y 

+ h/TI N(F[l/ 16 (' 
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4. APPLICATIONS FOR SPECIAL TRJi.NSFORVIATIONS 

Various transformations <P and their relationships 

with formulas of type I have been dealt \>Ji·th in [6]. We 

now illustrate some of these transformations, and then 

discuss tha role of these transformations with respect. 

to the formulas of type II. In addition to having F 

analytic in D , we shall assume that for some constants 

C > 0 and a> 0 

, x E r . (<L 1) 

As for formulas of type I, if c~l-ae function to be approxi-

mated does not go to zero at. end~points of r , we first 

subtract off a linear part (see [6,p.l88]), 

~.1: r = [0,1]. In this case ~"e take 

D = {zE a:: larg[z/ 1-z)J l<d} , 0< d< 1T 

~(z) log(.z/(l~z)] (4.2) 

kh - kh. 
~ e I ( l +e J , k E 2Z • 

The inequality (4.1) is satisfied if for all z E D , 

IF(zll :£.cjz(l-z) Ia (4.3) 

Ex. 4.2: f"' [-1,1]. In this case we take 

D"' {zE 0::: jarg[(l+z /(1-z)JJ<d}, O<d<rr 

cp (z) "" [ (l+z) I ( 1-z)] (4 .4) 

. kh , ) . I kh 
~ "" i,e -.;. 1 ,e +l , k E 2Z 

The inequality (4.1) is satisfied if for all z E 0 , 

IF ( z) I 
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Ex. 4. 3: r "' [0 ,ro] • In this case we take 

v "" {z E cr: : I a.rgz I <d} 

q; ( z) "' z {<L 6) 

zk ' k E 22: 

The inequal (4. 1) is satisf :i,ed if for all z E V , 

l(<L 7) 

E::-L 4.4: f "' (O,oo]. In t:his case we take 

D "" {z E cr:: jarg sinh(z) I 

<jl(z) "' sinh (z) (4.8) 

"" log [ (l+e 

The wequality (4.1) i.s s.'.'l.tisfied if for all zED, 

I , , .. ~ziC! 
F(z)l;;; Clz e 

J I 

Lemma 4.:,: For each t.ra.nsforrna.tion of 

4.4, we have 

Is k 
I h 

:i e I s x E r G 

( c~ • 9) 

s 4.1 to 

( 4. 10) 

Since [<jl(x)-kh] ll S ~[~(x)-kh) we have, 

where ~ lies between and x . Now for each of 

the above wa have for x 0 _ 1 S x S 
l 

(4 .12) 
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By considering each of the four cases separately, (4.10) 

follows from ( 4 .11) and (4 .12) if zk_1 S x ~ zk+1 

Next, if X E r but X i (zk-1'zk+1] I we use the 

inequality 

I sin ( (TI/h) (ljl (x) -khl} I S 1 , 

to get 

( 4. 13) 

Once again, by considering each of the four cases 

separately, we find that (4 .10) is satisfied for x E r I 

X i (zk-1' zk+1] For example, for the case of 

ljl(x) = log x I we have 

(h/TI) S (h/TI) = 
ljl' ( zk) I x- zk I cp ' ( ~) I zk± 1-zk I 

We omit the other cases, which are dealt with similarly. 

Lemma 4.5 enables us to prove 

Theorem 4.6: Let cp be defined by one of Ex.4.1 to 4.4 

above. Let F be analytic in v and let F satisfy 

(4. 9) on r Let N be a positive integer, and select 

h by the formula h "" (lTd/ (CLN) ] i Let lli be defined 

by any one of Eqs. (3.27) I (3 .31) or (3.33), and let 

n. N 
~, 

·obtained by replacing 

denote the left hand sides of these 
N 

EjE7L by Ej=--N • 

equations 

Then 

I I ~ C. Ni - (1Tda.N) i 
ni,N - ~ e I 

where C. are constants independent of N 
~ 
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5. FUNCTION SPACES FOR REGIONS IN Rn 

The types of regions V in Rn which we shall 

consider are a union of regions of the form 

K = { (E~ l, •.• , f.;n) E R n: u 1 !I E.; 1 !I v 1 , u 2 ( E; 1) S E; 2 !I v 2 ( E; l) , 
n 

( 5 .1) 
n 1 n-1 n n 1 n-1 ... ,u (€; , ••• ,; ) s €; s v (€; , ••• ,£; ) 

where it is assumed that the i 
u and 

i 
v are either 

identically infinite or else they are bounded a.e. on 

their domain of definition. The sine approximation 

methods of the previous section are best suited for 

product-type approximations over rectangular regions 0~ 

the form 

{ ( 1 n E Rn .. V = X 1 •• , ,X ) 
n 

i< i<" i . 1 2 } u • x .a v , ~::a , , ••• , n , ( 5. 2) 

where in (5.2), (ui,vi) is any one of (0,1), (-1,1), 

(-Q,a>) or (-GO,a>) 

Let us first consider a suitable function space on 

v 
n To this end, let and d be positive constants. 

Let ~i be a conformal map of the region V. c a; onto 
l. -1 vd (Eq. (3.1)) I let tjJ. = </>. 

~ l. l. 
denote the inverse map, 

such that f.• [u.,v.J,.. {tjJ.(w) :wER}. 
l. l. l. l. 

Let 

1 i-1 i+1 n 
(x, ... ,x , x , ... ,x) be a fixed point in the 

region and denote by F. =F. (z) the function 
l. l. 

1 i-1 i+l n 
F (x , ... ,x ,z,x , ... ,x ) • Let Ba. (Vn) denote the 

family of all functions F defined on v 
n such that 

for i•1,2, ... ,n I F. is 
l. 

analytic in analytic in V. 
l. 

and such that G. defined by 
l. 



G. 
l.. 

+e 

satisfies 

for all z in 

are independent 

V. 
l 

of (X 
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<j) /2 ,+. i/" F i ( 
1. -'t' '" e +e 

and such that , o., 

1 i-1 i+l 
; """,~X ,x ! ~ G <l ~ 

c 

+F. 
:L 

and 

E IT 
jt!i 

V. 
l. 

r. 
J 

In this case the function F and its derivatives 

may be accurately approximated on V via products of 
n 

the one-dimensional formulas derived in this paper, and 

[7] the error of approxu~ation is that of one­

dimensional formulas. 

Given a plboblem over the region l( 
n 

defined 

(5.1), we first transform K 
n 

into the region v 
n 

of 

the fo1..-m (5. 2) • This can always be accomplished via 

simple linear transformations. For axample, if 

i i i i i 
~ au + (v -u )x 

u 
i 

and 

(5. 5) 

so that, if e.g. this is the case for i=L2,.o.,n the 

new region in the variables i 
X is nm"' the cube 

n 
IT [0' l] . "' co we do not make a trans-

i"'l 
format.ion, unless some other advantages may be gained. 

If 
i 

u 

and if 

is a function a~d 
i v ~ 00 we set 

"i - i 
'> - u + 

i i 
u :; - 00 and v is a function, we set 
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i 
a V 

i 
- X { 5. 7) 

The transformed function under {5.5), {5.6) or 
i n (5.7) in the variables x will belong to B {V) a 

the i 
u 

belong to 

trivial) . 

and vi appearing in these transformations 

B (Vi-l) { i > 1 ; the case of i .. l is 
a 

We reconunend care in the selection of the sub­

regions V of V such that these conditions are 
n 

if 

satisfied, for if so, then the resulting sine approxi-

mations of this paper are accurate, while if not, the 

accuracy is apt to be very poor. Corresponding to a 

given problem, we also recommend keeping small the 

number oi V whose union is V in order to keep small n 
the order of the system o1 equations derived via the 

sine formulas of this paper. Fina}ly, if the numb~r of 

regions V 
n 

whose union is v is greater than 1 , we 

must take care in identifying the common unknownson the 

common boundary of such regions. 

6. EXAMPLES OF APPLICATIONS 

In this section we illustrate the application of 

the methods of type I to the solution of some ordinary 

and partial differential equation boundary value prob­

lems. We have selected relatively simple boundary 

conditions in order to keep the examples simple; more 

complicated boundary conditions are discussed in [4). 

Ex. 6.1: The solution f to the boundary value 

problem 

£ 2f" (X) - f {X) + l "' 0 1 0 <X< 1 
x{l-x) 

f(O) = f(l) =- 0 

{6 .1) 



59 

is approximated by 

N 

fN(x) "" I fkS(k,h)o<fl(x); <fl(x) ""log[x/(1-x)]. 
k=-N 

(6. 2) 

By taking N = 16, h"" . 75/Ni , and using the approxima­

tions (3.18) and (3.19) we get a linear system of order 

33 for the fk , whose solution yields 5 places of 

accuracy if e: • l/5 and 3 places if E:,. l/lO The 

best dependence of h on £ and N has not been 

investigated. 

Ex. 6.2: We consider the nonlinear ordinary differen­

tial equation boundary value problem 

f" (r) • f (r) - f 3 (r) ;r2 O<r<co (6.3) 

f(O) • f(co) • 0 (6.4) 

which is a steady-state radially symmetric version of 

the Klein-Gordon equation 

2 au 3 
'i/u--=u-u at (6 .5) 

It may be shown that the bounded solutions of (6.3)-(6.4) 

are analytic and bounded in the region V of Eq. (4.8), 

and they satisfy (4.9), with a,. l . Hence, making the 

substitution 

N 

fN(r) ,. I fkS(k,h)olog sinh r 
k=-N 

(6. 6) 

and taking i N = 16, h = . 75/N I we get a 5 decimal in 

the approximation to the positive solution of (6.3)­

(6.4). 
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Ex. 6.) [2]: We next consider the Poisson problem 

u "' ~ yy 

on as . 

Here we use the approximation 

N N 

~(x, I L li .. S(i, 
i""~N j=-N :lJ 

o¢\ (X) S (j ,h) o<j> 

where <jl(t) = (1-t)]. In this case we get a· 

system of equations 

BIJ + IJBT = W 

in which U = and B and W are square matrices 

solution to (6 .10) which, '"'ith h "" . 7 

yields 5 dec. accuracy in (6.9). 

Ex. 6.4 [21: The initial value 

B 

! 

O<x<l, O<t<oo 

and N"" 16 

(6 .11) 

u (x, 0) "' sin , u(O,t) u(l,t) "' 0 (6 .12) 

has b'l.e exact solution 

1.1 (X, t) 

2 
-TI 

~ e in (TIX) 

We attempt to solve (6.11)-{6.12) via a 

Setting 

-4 
U m v-;· e i.n(TIX) , 

the resulting fu.nct.ion v now satisfies 

value 

(6.14) 

v(x,O) ""0 , v(O,t) '"'v(l,t) "'0 , v(x,t)-+ 0 as t-tcoo , 
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We can thus approximate the solution to (6 .11)- (6. 12) by 

-4t 
~(x,t) "" e sin(1Tx) + 

N N 

+ I L 

where ¢(x) = log[x/(1-x)] 

S(i,h oc(l(x)S(j,h*)o 
J 

-
( t) "" log t 

In this case we again take N:z16, h"".7 

h* . 5/N !I to ge·t the system of equation 

BV + VC "" 'i'l 

(6 .15} 

(t). 

of order (2N+l) where B is the same as i•• (6 .10) . 

Diagonalizing both B and C , wa get. 4 dec. accuracy 

in the approximation (6.15) 

Ex. 6. 5: l<le illustrate yet another met.hod of solving 

Fig. 6.1 

Poisson's equation over a 

planar region with boundary 

consisting of a finite 

nlli~er of analytic arcs. For 

II example, we consider the 

problem 

The Reg ion D of Ex. 6. 5. 

+ "" -f ,y} (x,y) E P 

hrher'e D is t.t,,, region in F'ig. 6.1, '"'hich consists of 

5:ubject to boundary conditions 
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1+y 2 the arc u = on I 

u = 2 e8+n/2 
I _1!.~e~n 

2 
on the arc II (6 .18) 

u .. (l+x) - 2x e 31T/2 on the arc III 

and for f we take f(x,y) "" exy . 

We now approximate the solution to (6.17)-(6.18) by 

u(z) i!l ~(z) • v(z) + p 2 (z) 

3 
+ I 

n=1 

in[~ (z)-jh]/h 1 

Im{e 1T[~n(z)-jh)/h-} 
. n 

In (6.19) z= (x,y) (- z=- x+iy) v(z) is any solution 

to the non-homogeneous problem. One such solution is 

given by 

v (z) -; Jr (6.20) 

Also, p2(z) is a polynomial of degree 2 in zax+iy I 

which is harmonic in. V • Finally the functions ~n in 

·(6.19) are determined so that ~n maps the n'th 

boundary arc (defined in a "counterclockwise sense) of 

Fig. 6.1 conformal1y onto :R, and such that <Pn is 

analytic in V The resulting double sum in (6.19) is 

harmonic in V (see Eq. (2.32) of [6)). 

The polynomial p 2 

determined by iteration. 

and the unknowns )J . may be 
n) 

we first determine p 2 such 

that p - p 0 
2 2 

interpolates u-v at the corner points 

of V The solution for the )Jnj then takes the form 

c1 )J 0 = b 0 where cl is a block diagonal matrix, 
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~~ 
Ji• :1 cl "' I 

LE F I I 
..J 

in which each of the 9 square blocks is of order 2N+l 

and the matrices I are unit matrices, and the entry 

of b" is the function u~ v- 1?2 
<> evaluated at 

z "' z ' <J>~ith ( z . ) "" jh Once ~ "' 1:!0 has been 
nj riJ (1) 

dete.J..-mined, ~Je compute a new "" p2 which inter-

the valu.es of u- v- w at the corner points of 

V , where w denotes the double sum in (6" 19) in ~•hich 

by 

t'lle then det.emtine a new set of values 

1 bl 
cl ~ "'. where the entry b . 

is the function u-v-
'1) . nJ 
( evaluated at the corner 

of V . 

For example, if we take N"" 8 , hz 

significant figures of accuracy. Notice that we are 

able to ignore the effect of the singularities at the 

corners. 

Finally, ~;recite two a.dditional ·where sine 

methods of type I have been used successful on differ-

ential equations" In [3] a sine method was used to 

compute eigenvalues of a second order ordinary differ-

ent.ial equation over (0,"") , and in [4], a sine method 

"Jas used to reconstruct a surface. This latter procedure 

involved con an approximate solution to a 

system of 3 nonlinear second order partial differential 

equations related to the given Gaussian curvature of the 

surface. 
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