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SINC METHODS OF APPROXIMATE SOLUTION OF
PARTIAL DIFFERENTIAL EQUATIONS

Frank Stenger

1. INTRODUCTION AND SUMMARY

In the author's experience, nearly all solutions of
PDE (partial differential equations) encountered in
applications are piecewise analytic in each variable.
Except in the case of inverse problems, we can predict
a priori the regions of analyticity of the solutions of
PDE. The solutions of linear PDE are analytic whenever
the coefficients of the PDE are analytic, although
singularities may also occur on the boundary of the

region.

In this paper we derive two families of methods for
solving second order PDE. Each of these families is
based on the Whittaker cardinal function, or sinc

function expansion of a function f defined on the real

line R . This expansion takes the form
C(f,h) = ) £(kh)S(k,h) (1.1)
k€Z
where h>0 , z = {0,£1,%2,...} , and where the sinc

function S(k,h) is defined by

sin{g(x-kh)}
S(k,h)e(x) =

p , k€& . (1.2)
K(x-kh)

While formulas for approximating derivatives of function

defined on R are immediately obtainable from (1.1), we
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abtain formulas over other intervals (or contours) T
via the use of a function ¢ , where ¢ 1is a cne-to-
one transformation of T onto R . Using NP points in
p dimensions, the resulting approximate solutions con-
verge at the rate O(N3p/2exp(-yN§)) where the constant
Y>0 is the largest possible in the case when the
{Lipa}rl{analytic} class housing the solution is

explicitly known, i.e., in that case there does not

exist a method which converges at a faster rate [1l].

The paper is organized as follows. 1In Sec. 2 we
briefly review the relevant properties of the cardinal
function (1.1). These formulas are then extended in
Sec. 3, to the derivation of two classes of methods for
reducing PDE to the solution of a system of algebraic
equations. One of these, which we refer to as formulas
of type I, has been derived elsewhere [5], while the
other, the class of formulas of type II, is new. Both
classes of formulas have the same order of convergence.
The type I formulas have been tested on model problems,
while the type II formulas have not. The two classes of
formulas are considerably different except in the case
when ' = R , although at this stage the advantage of
one type over the other are not clear. Both types lead
to full matrices, as opposed to sparse matrices for the
case of finite difference and finite element methods,
although the rate of convergence of the methods of this
paper is considerably faster than that of finite differ-
ence and finite element methods. In Sec. 4 we consider
some special regions, and we show that within these
regions the formulas of type I And II converge at the

same rate. In Sec. 5 we describe some function spaces
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for solving PDE in R . 1In Sec. 6 we illustrate the
solution of some ODE and PDE boundary value problems via

methods of this paper.

2. SOME PROPERTIES OF THE CARDINAL FUNCTION

The results of this section, taken from (6], con-
sist of certain identities of the Whittaker cardinal
function which we shall use to derive the formulas of
Sec. 3.

Definition 2.1: Let h>0 , and let B(h) denote the

family of all functions £ that are analytic in the
entire complex plane € , such that

l€(2)] s ¢ lzlm (2.1)

and such that £f¢€ LZ(R) . Let C(f,h) and 8(k,h) be

defined by (1.1) and (1.2) respectively, and let us set

() _ 4" oo
Sk = (=) s(3,1)(x)

dx x=k
In particular, we have
: .k
510 _ 1 it 3
-h -
) 0 if j#h .
3
: 0 if f=k
1 s;i’ Y (-1)k-d (2.3)
=t if j#h A
L k=3 J
-m%/3 if 3=k
6(2)

LS5 = 1-2(-1)}"j

if j#h
(k-3)°
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Theorem 2.2: Let £€ B(h) . Then
(a) £(z) = C(£,h,z) for all z€C ; (2.4)
(b) J £(x)dx = h ] E£(kh) ; (2.5)
R k€Z
(c) J f£(t)S(k,h)e(t)dt = hf(kh) , k€ Z ; (2.@)
R
(ay - £' € B(h) ; (2.7)

3. FORMULAS FOR DISCRETIZING DIFFERENTIAL EQUATIONS

The definitions, notations and results of this
section are important to the rest of the paper. Two
families of formulas are derived for a general contour
[ . These two families reduce to a single family for

the case when [ = R .

3.1 The Domain D4 and Approximating Functions on R .

Definition 3.1: Let R denote the real line,

R= (=~o,@) , let € = {z=x+iy: x€R,y€R}, and let
Z= {k:k=0,t1,t2,...} . Let d and h be positive

numbers and set

D, = {zec: |1m z| <d} (3.1)
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Fig. 3.1.

The Region D of Eq. (3.1).

d

3.2 The More General Domain U and Approximation on T,

Definition 3.2: Let 0 be a simply connected domain 1in

the complex plane € , and denote by 30 the boundary
of U . Let a and b (b#a) be boundary points of D,
and let ¢ be a conformal map of DU onto Dd , such
that ¢(a) = -, ¢(b)= ©. Let § = © denote the

inverse map, and set
T o= {g(x) : x€ R} ; (3.2)
z), = Y(kh) , k € Z . (3.3)

Let B(D) denote the family of all functions F that

are analytic in D , and such that

i inf
N(F,D) = J |F(z)dz| = c+3D,ccD J |F(z)dz| <= . (3.4)
D C
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3.3 Formulas of Type I.

Theorem 3.3 (4): Let F€B(D) , and let sS(k,h) be
defined as in (1.2). Then

(a) For all x € T

F(z )
k€z ¥ ‘%
(3.5)
_ 5in(m$(x)/h] J F(z)dz ,
2mi [¢(2z)-d(x)]sin(md(z)/h] '
oD
(b)
F(z, )
| rmomen 15
r k€Z % .
(3.6)
_ i F(z)exp((imd(z)/h) sgnIm ¢(z)]dz
2 sin(md (z)/h) ’
oD
(c)
. ‘ hf‘(g{)
J F(x)S (k/h) o (x) dX = s
r x
(3.7)

dz

- (—l)kih F(z)exp[(in¢(z)/h)sgnIm ¢(z)]
2T 50 ¢ (z) -kh

Moreover, if the left hand sides of (3.5), (3.6) and
(3.7) are denoted by nl(x) , n2 and n3 respectively,

we have

N(F,D)
27d sinh(nd/h)

[n oo s , X €T

In,| s ol TR0 (3.8
) Nyl 3 35inh(md/n)  ° -8)

-nd/h

In,| s 3505 e N(F,D)
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Assumption“3.4: 1In addition to F€ B(D), let us assume
that for all x € T »

2

lreal . _<lowm)]
——— S 3.9
o7 (x) Ce (3.9)

where C and o are positive numbers.

Theorem 3.5 [6]: Let 5i N denote the left hand side

¢

of Eq. (2.6+i), i=1,2,3 , for the case when the

e o N
infinite sums Zkéz are replaced by finite sums, [ K=-N.

Let F€B(D) satisfy (3.9) on I . If h 1is selected
by the formula

ho= (19 (3.10)

then there exist constants Ci which are independent of

N such that -
q

i

| 6 SCN exp{-(ndau)*}, i=1,2,3 . (3.11)

il

If h. is selected by the formula

h = (2ﬂd/aN)* (3.12)
then there exists a constant C2 such that
¥
< -
|62,N| s ¢, exp{-(2mdon)*} . (3.13)

If h 1is selected by the formula

h = Y/Ni (3.14)

where Y is a positive constant, then there exist

positive constants C' and § such that

4 .
e L (3.15)
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We remark that the bounds (3.11) and (3.15) apply

uniformly for all x € ', in the case when n

i,N
depends on x .
Theorem 3.6 (S5): (a) If o'F € B(D) , then
. (1) '
F'(x)S(k,h)od(x)dx + ) 8.5 Flz) (3.16)
r J J

i€z

1 h -md/h
s { + } e N(p'F,D)
2d tanh(md/h) 2Trd2

(b) If ¢'F € B(D) , F(x)/[$p(x)d'(x)] 0 as x + a

and as x b along [ , then

} J P2 5k, h) o (x)ax (3.17)
r ¢ (X)
0¥ (2
. [; 502) _ 3T (L)
jeglh k3 (), y2 k3

J

h \ " (0)
* 677;;; (1/¢") (zj)<5kj }F(Zj)l

< e'”d/h{l L + 2;de + h3 | N($'F,D) +

dztanh(nd/h) nd

1 h (2)_,. .,
+’:2dtanh(nd/h) * 2nd2] N( “F/¢',D)

h \ [1]
+ mN((lM ) F.D)} .
Moreever, if

lFeo] s o ele] ,x €T, (3.9)"
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taking h = [‘ﬂ’d/(aN)]* , then replacing the infinite

. L. N
sums ZjEZ in (3.18) and (3.19) by finite sums Zj=—N
then the right hand sides of the resulting (3.18) and

§ §
(3.19) become C! nt o (Mg ciN e (TdoN)

respectively, where Ci and Cé are contants which are

independent of N

Corollary 3.7: (a). If F' and ¢'F are in B(D) ,

. then
hF'(z ) -
_.__.l + ) 6)((1.) F(z;)| SC, e md/h (3.18)
(0 (z,) séz K3 j
(b) If F"/¢' and ¢'F are in B(D) , and if

F'(x)/($(x)$'(x)] 0 as x +a and as x * b along
[, then ‘

hF"(z ) ¢ " (z.)
Zk2 -1 [Yl{ 6(? T () 2 5;;)
¢ (z.k.) j€z (zj) ’
b (1/61) " (2 )]E‘(z ) (3.19)
¢'(zj) J 3 :
< C_2 o Td/h
h .
In (3.18) and (3.19) Cl and C2 are constants
independent of h .
Theorem 3.8: Let F € B(D) . Then
F(t)dt - h (d+0__.1
(3.20)
2hN (F, D)

md sinh(md/h) '
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where the integral on the left hand side is taken along
' and whers O is defined as in Eg.(2.16) of [6].

k
Proof: Using the formula (2.16) of (6], we get
z,
J S(i,h)ed (L)’ (t)dt = h[§+ok_j1 . (3.21)
a

Also, we have for £ € R,

ih
th sin(mt/h)de _ E JJ sin(ﬂt/h){'“—glé““"

3 2
t-E£xid (j-1)h (t-£)2+d"

ja—oo

, (3.22)
s -——39————} dt .

(t—§)2+d2

Hence, by‘taking the largest term of each alternating
series on the right hand side, we find that the left
hand side of (3.22) is bounded by 4h/d . By combining
these results with (3.5), we get (3.20).

Finally, we remark that if F/¢' satisfies (3.9),
then by choosing h = [Trd/(aN)]i and replacing the

infinite sum Zjez (3.20) by Zg_ we may replace

=-N '’
the right hand side of the resulting (3.20) by

-(ndaN)i
e

c" , where C" 1s a constant.

3.4 Formulas of Type II

Whereas the formulas of the previous section are
based on the interpolating function S(k,h)ed , the new
formulas of the present section are based on the inter-

polating functions where Sk is defined S§

Sk/

sin{m (¢ (x)~kh])/h}
"

h
sk(x) = -TT_ _, k €z . (3.23)
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1f ¢'F € B(D) , then we may write (3.5) in the

form

N(¢'F,D)
27d sinh(md/h) ’

[F(x) - ] F(z)s(k,h)ep(x)| S
KEZ

(3.24)

i.e., the sum in (3.24) converges uniformly for all

x € T . This will also be the case for the interpola-
tion formulas derived in this section. However, the
formulas of this section will also converge, although
not necessarily uniformly, evén if only F € B(D) . We

are thus led to interpolation in the sense of a relative

error.

Let F € B(D) , and let us set

Z=X

N(F/(°-x),D) = J [E—(—"l dz| , x €T . (3.25)
3
If sup(xér)N(F/(--x),D)<<” , we set

M(F,D) = sup N(F/(*=x),D) . (3.26)
x€l

Theorem 3.9: Let F € B(D) . Then for x € T

1

F(zk)
n,(x) = F(x) - S, (x)
1 L, ®'(z ) Tk
K€z 2 (3.27)
- 1 P(z)sin(mp(x)/hldz
2mi ) (z-x)sin[nd (z) /h]
Moreover,
N(F/ (°=x),D)
In )| s ErreprveEy sl (3.28)

Proof: We omit the proof, which is similar to

previously obtained results above.

Theorem 3.10: Let F € B(D) . Then
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2

n, = J F(x)s, (x)dx - hF(z)
r . B (3.29)

- (-1)%in { F(z)exp{ [ind (z) /h]lsgnIimd (z) }dz
2m aD 27

In particular,

In,| s %% N(F/(-—zk),v)e'“d/h . (3.30)

Theorem 3.11: (a) If F and F'/¢' are in B(D), then
hE' (z,) . h{_ 92 (z,) (-l)j'kF(zj) }

— ————F(z) + | s
30t (n) 6 (z)° T g (257080 (2]

n

’E‘J exp{[iﬂ¢(z)/h]sgn1m¢(z)}{F'(Z)(-l)ksin[W¢(z)/h]
2
3

¢! (2) (z-27,)
k
+ F(z)[(-l) cos(mp(z)/h] | oo
z-z “
k
(-1)*n . d :
P LU g (2 /m) g;ar-“mt;;]}dz ‘

In particular,

"T[d/h{ N(F/("‘Zk),v)

NCIF'/9'1/ (=2 ) /D) + — g

1
Injls5 e
(3.32)

h LI . ! o
* N(F/ (" ( z, )] ,D)} ;
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(b) If F"/¢'? and F are in B(D) , then

2 . 2

“h F"(z) h2 2 5 ¢ (z) 6¢ (z) ]

Ny = 2° ST 273 * 7 |Fix)
¢'(zk)

(2)
3¢ (z.) .
_ i 2 - ] yik
2]( 1) E‘(zj)}

. , 3 , 2,
i#k~ ¢ (zj) (zj z) ¢ (zj) (zj z,)

<+

(3.33)

exp{ [iTd (2)/h]) sgnIimd (2) }[F" (z)sin(md (z)/h]

_(-1"%in {
2 9D sin(m¢ (z)/hl

¢'(z)2(z-zk)

+

(2)
F(z)[{ ¢ (z) >+ 2¢'(z)£L[ = 2}}cos[ﬂ¢(z)/h]

(z-2, )6 (2) dz (z-2,)9" (2)
(m/h) d2 1
+ { - :—- + (h/m) > > }Siﬂ[ﬂ‘fb(z)/h] }dz .
2 dz” ¢ (2) “(z-2,)

In particular,

< h -md/h Wi 2
Ingl S5 e {[N(F /e S -2 01,00 +

+nEe P /1902 -201.0)

\ . ' ] ______l____
+ 2N FIL/{(-2,)0") 'D} tanh(md/h)

+ (ﬂ/h)N(F/('-zk),D)

+ h/m N(F[l/{¢'2(‘-zk)}"],0)} )
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4. APPLICATIONS FOR SPECIAL TRANSFORMATIONS

Various transformations ¢ and their relationships
with formulas of type I have been dealt with in [6]. We
now illustrate some of these transformations, and then
discuss the role of these transformations with respect
to the formulas of type II. In addition to having F
analytic in 0 , we shall assume that for some constants

C>0 and a>0

—a | (x) |

|F(xy| sce x €T . (4.1)

As for formulas of type I, if the function to be approxi-
mated does not go to zero at end-pointsof [, we first

subtract off a linear part (see [6,p.188]).

Ex. 4.1: [ = [0,1). 1In this case we take
D ={zec: |arg(z/(1-2)1|<a} , o<d<nm
d(2)

Zk

loglz/ (1-2)] (4.2)

ekh/(l+ekh)

[

, k € &.
The inequality (4.1) is satisfied if for all 2z € D

¢

[F(z)| s.clz(i-2)|% . (4.3)
Ex. 4.2: r= (-1,11. In this case we take
D= {z€¢c: |argl(l+z)/(l-2)]|<a} , o<d<m
®(z) = log((l+z)/(1l-2)] (4.4)

zk = (ekh-l)/(ekh+1) , k€ Z .

The inequality (4.1) is satisfied if for all z € D

7

IF(2)] s c](1-2% % . (4.5)
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Ex. 4.3: ['= (0,%]. In this case we take
D= {z€c: |argz|<d}

$(z) = logz (4.6)

2, = ekh , ke 2z .

The inequality (4.1) is satisfied if for all =z ¢ D

q

|F(2)] s c|z/(1+2)2

| . (4.7)
Ex. 4.4: T = [0,»]. 1In this case we take
D = {z€c: |arg sinh(z)|<d} , 0<d<m
¢(z) = log sinh(z) (4.8)
z, = loq[ekh+(l+e2kh)*] . k€ @,

The inequality (4.1) is satisfied if for all =z ¢ D

v

|F(z)] s clz e %% (4.9)

Lemma 4.5: For each transformation of Examples 4.1 to
4.4, we have
h
ls, (x)| s e , xeT . (4.10)
, . m m
Proof: Since ]sxn{g[¢(x)—kh]}| s R[¢(x)-kh] we have,

lo (x)-kn| __9¢' (&)
¢! (z) [x=2 | ¢'(z))

ls, ()] s (4.11)

where £ lies between zk and x . Now for each of

the above examples we have for X 1 S x S X1

[0 €)] S maxg'(z ) . . (4.12)
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By considering each of the four cases separately, (4.10)

follows from (4.11) and (4.12) if =z _lS xS z

k k+1

Next, if x € ' but x ¢ [zk-l'zk+1] ;. we use the
inequality
|sin((m/h) (¢ (x)-kh]l}| S 1,
to get

(h/m
¢ (z,) [x-7, |

|s, x)] s (4.13)

Once again, by considering each of the four cases
separately, we find that (4.10) is satisfied for x€ [ ,

x ¢ [zk-l’zk+l] . For example, for the case of

¢(x) = log x , we have

(h/m) (h)ﬂ) - h/m
N N B N N e L Tt

S eh/n

We omit the other cases, which are dealt with similarly.

Lemma 4.5 enables us to prove

Theorem 4.6: Let ¢ Dbe defined by one of Ex.4.1 to 4.4
above. Let F be analytic in D and let F satisfy
(4.9) on ' . Let N be a positive integer, and select
h by the formula h = [nd/(aN)]* . Let ni be defined
by any one of Egs. (3.27), (3.31) or (3.33), and let

NN
‘obtained by replacing I

denote the left hand sides of these equations

by Z?a_ . Then

jez N

$
- (TdaN)
Ini'NI scy e .

where Ci are constants independent of N
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n
5. FUNCTION SPACES FOR REGIONS IN R

. n .
The types of regions V in R which we shall
consider are a union of regions of the form

2 1
k= (€. eherMatsetset, WPieh sefsvieh

(5.1)

T N P L

where it is assumed that the ui and vi are either
identically infinite or else they are bounded a.e. on
their domain of definition. The sinc approximation
methods of the previous section are best suited for

product-type approximations over rectangular regions of

the form

v = (et o™ e R utsxts ol is1,2, 00000, (5.2)
where in (5.2), (u',v') is any one of (0,1), (-1,1),
(0,=) or (=2, =)

Let us first consider a suitable function space on
Vn . To this end, let o and d be positive constants.
Let ¢i be a conformal map of the region Di C € onto
Dd (Eq.(3.1)), let wi=<¢;1 denote the inverse map,
h th .=‘. = : .
suc at Fl [ul,vi] {wi(w) wER}. Let

1 i~ i+l
(X, o, xt l, x* ,...,xn) be a fixed point in the

region M T. , and denote by F.=F.(z) the function
jAi B
F(xl,...,xi-l,z,xi+l,...,xn) . Let Ba(vn) denote the
family of all functions F defined on Vn such that
for i-l,i,...,n , Fi is analytic in analytic in Di

and such that Gi defined by
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i i
S WL RN o

e +e e +e

E‘i(vi)i-Fi (5.3)

satisfies

. i
lc*(z)| s ¢ e-a|¢ (2) |

for all =z in Di , and such that ¢i, a,C and Ui
are independent of (xl,...,xi-l,xi+l,...,xn) en r. .
J#i
In this case the function F and its derivatives
may be accurately approximated on Vn via products of
the one-dimensional formulas derived in this paper, and
by [7] the error of approximation is that of one-

dimensional formulas.

Given a problem over the region Kn defined by
(5.1), we first transform Kn into the region Vn of

the form (5.2). This can always be accomplished via
simple linear transformations. For example, if ul and
i

v are finite everywhere, we set
i i i i i
E" = u + (v -u)x (5.5)
so that, if e.g. this is the case for i=1,2,...,n the

) , , i
new region in the variables x is now the cube
o i i
M (0,1}, If u =-=, v == we do not make a trans-
i=]
formation, unless some other advantages may be gained.
i , - i
If u is a function and v = , we set
i i i
£ = u” + x7 , (5.6)

. i ) .
and if 4y = -® and v is a function, we set
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SRV (5.7)

The transformed function under (5.5), (5.6) or
(5.7) in the variables x- will belong to aa(v“> if

i i . . .
the u and v appearing in these transformations

belong to Ba(Vl-l) (i>1 ; the case of i=1 |is

trivial) .

We recommend care in the selection of the sub-
regions Vn of V such that thgse conditions are
satisfied, for if so, then the resulting sinc approxi-
mations of this paper are accurate, while if ;ot, the
accuracy is apt to be very poor. Corresponding to a
given problem, we also recommend keeping small the
number of Vn whose union is V in order to keep small
the order of the system of equations derived via the
sinc formulas of this paper. Finally, if the number of
regions Vn whose union is V is greater than 1 , we
must take care in identifying the common unknowns on the

common boundary of such regions.

6. EXAMPLES OF APPLICATIONS

In this section we illustrate the application of
the methods of type I to the solution of some ordinary
and partial differential equation boundary value prob-
lems. We have selected relatively simple boundary
conditions in order to keep the examples simple; more

complicated boundary conditions are discussed in [4].

Ex. 6.1: The solution f to the boundary value
problem

2 1
" - B e e N 3 <
€ E"(x) - £(x) + x(1-%) 0, 0<x<1

(6.1)
£(0) = £(1) =0
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is approximated by

N

£,00 = [ £50,h)ed(x) 5 ¢(x) = loglx/(1-x)] .  (6.2)
k==N

By taking N=16, h= .75/Ni , and using the approxima-

tions (3.18) and (3.19) we get a linear system of order
33 fof the fk , whose solution yields 5 places of
accuracy if €=1/5 and 3 places if €=1/10 . The
best dependence of h on € and N has not been

investigated.

Ex. 6.2: We consider the nonlinear ordinary differen-

tial equation boundary value problem

£v(r) = £(r) - £5(r)/r?  O<r<w (6.3)

£(0) = £(®) = 0 (6.4)

which is a steady-state radially symmetric version of

the Klein-Gordon equation

2 du _ 3
Vou - T u=-u" . (6.5)

It may be shown that the bounded solutions of (6.3)-(6.4)

are analytic and bounded in the region D of Eqg. (4.8),

and they satisfy (4.9), with o = 1 . Hence, making the
substitution
N
fN(r) = k; . ka(k,h)olog sinh r (6.6)

and taking N = 16, h= .75/Ni , we get a 5 decimal in
the approximation to the positive solution of (6.3)-
(6.4).
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Ex. 6.3 [2]: We next consider the Poisson problem
u bu = - 1 [ (x,y)€5=10,11%(0,1]. (6.7)
vy [xy (1-x) (1-y) ]
u=0 on 3S . (6.8)

Here we use the approximation

N N
u, (xoy) = ) 1 u,; ;S (i,h) 09 (x)S (3,0) 0 (y) (6.9)
. i=<N j.—.-N J
where ¢(t) = log(t/(1-t)]. 1In this case we get a-

system of equations

BU + UB. = W (6.10)
in which U = [uij] and B and W are square matrices
of order 2N+1. The diaéonalization of B yields a
solution to (6.10) which, with h = .75/Ni , and N= 16
yields S dec. accuracy in (6.9).

Ex. 6.4 [2]: The initial value problem
%m =ut , 0<x<1l, 0< t<w (6.11)
u(x,0) = sin(mx) , u(0,t) = u(l,t) = 0 (6.12)
has the exact solution
-TT2t
u(x,t) = e sin(mwx) . (6.13)

We attempt to solve (6.11)-(6.12) via a boundary value

procedure. Setting

u=v+e Csinmn (6.14)

the resulting function v now satisfies

vix,0)=0 , v(O,t)=v(l,t)=0 , v(x,£)>0 as ta+oew .
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We can thus approximate the solution to (6.11)-(6.12) by

uN(x,t) = e-4tsin(Wx) +

(6.15)
N N
R R N SR ICSEIC A T O R
i=-N  j=-N
where ¢(x) = log[x/(l-x)] , ¢*(t) = log t
In this case we again take N= 16, h= .75/N} ;
h* = .S/Ni to get the system of equation
BV + VC = W , Vo= [vij] (6.16)

of order (2N+1l) , where B is the same as in (6.10).
Diagonalizing both B and C , we get 4 dec. accuracy

in the approximation (6.15).

Ex. 6.5: We illustrate yet another method of solving
Poisson's equation over a
planar region with boundary
consisting of a finite
number of analytic arcs. For

I II example, we consider the

problem

Fig. 6.1
The Region U of Ex. 6.5.

u : UYY = -f(x,y) , (x,y) €D (6.17)

where U is the region in Fig. 6.1, which consists of
the unit disc with } of it cut away. We solve (6.17)

subject to boundary conditions



62

u‘= 1+y2 on the arc I

e8+1r/2

u =2 , -%SGSH on the arc 1II (6.18)

e31T/2

u = (1l+x) - 2x on the arc III

and for f we take f(x,y) = ™Y
We now approximate the solution to (6.17)-(6.18) by

u(z) = uN(z) = v(z) + pz(z)
iﬂ[¢n(z)-jhl/h_

3 1
+ z 2 U, Im = - }
=1 j=-n nj ] ﬂ[¢n(z)—3h]/h

In (6.19) =z= (x,y)( = z=x+1iy) wv(z) is any solution
to the non-homogeneous problem. One such solution is

given by

e
viz) = % JI loqlz-clf(c)didn ¢ g o= (E,N) . (6.20)

Also, pz(z) is a polynomial of degree 2 in z=x+iy ,
which is harmonic in. U . Finally the functions ¢n in
-(6.19) are determined so that ¢n maps the n'th
boundary arc (defined in a "counterclockwise sense) of
Fig. 6.1 confprmally onto R, and such that ¢n is
analytic in D . The resulting double sum in (6.19) is

harmonic in D (see Eqg. (2.32) of [6]).

The polynomial P, and the unknowns “nj may be
determined by iteration. We first determine P, such
that p, = p2° interpolates u-=v at the corner points
of D . The solution for the unj then takes the form

C1 ue = b° wheré Cl is a block diagonal matrix,
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in which each of the 9 square blocks is of order 2N+l
and the matrices I are unit matrices, and the entry

bnj of b° is the function u-= v-p2° evaluated at
z = znj , with ¢n(znj) = jh . Once U = U has been

determined, we compute a new p2 = pél)

which inter-
polates the values of u=-v-Ww at the corner points of
D , where w denotes the double sum in (6.19) in which
H=Y°® » We then determine a new set of values |
1 El==§l ‘w?ere the entry bnj of é
is the function u-v- P, evaluated at the corner

nj 1
by solving C

points of D .

For example, if we take N=8 , h= 2/Ni we get 3

significant figures of accuracy. Notice that we are
able to ignore the effect of the singularities at the

corners.

Finally, we cite two additional examples where sinc
methods of type I have been used successfully on differ-
ential equations. In [3] a sinc method was used to »
compute eigenvalues of a second order ordinary differ-
ential equation over (0,®) , and in [4], a sinc method
was used to reconstruct a surface. This latter procedure
involved constructing an approximate solution to a
system of 3 nonlinear second order partial differential

equations related to the given Gaussian curvature of the

surface.
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