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SOME RECENT RESULTS ON THE EQUATION OF PRESCRIBED GAUSS CURVATURE 

John I.E. Urbas 

In this article we discuss some recently established results 

concerning convex solutions u E c2 (Q) of the equation of prescribed Gauss 

curvature 

(1) K(x) (1 + loul2> (n+2)/2 

Here Q is a domain in lRn , Du and o2u denote the gradient and the 

Hessian of the function u , and K(x) denotes the Gauss curvature of the 

graph of u at (x,u(x)) , which we shall assume is positive in n 
We start with a necessary condition for the existence of a convex 

c2 (Q) solution of (1). If u is such a solution, then the gradient 

mapping Du : n -+ lRn is one to one with Jacobian 

integrating (1) we obtain 

K= 

w 
n 

2 det D u , so by 

where w is the measure of the unit ball in lRn. Thus the condition 
n 

(2) 

is necessary for the existence of a convex solution 2 
U E C (n) of (1). 
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The first prob1em we consider is the Dirichlet problem for (1), which 

was recently studied by P.L. Lions [9], [10], Trudinger and Urbas [12] and 

Ivochkina [5]. The following theorem was proved in [12]. 

THEOREM 1: Let n be a c1 ' 1 uniformly convex domain in lRn 3 ~ E c1 ' 1 <n> 

and K E c1 ' 1 {n) a positive function such that 

(3) 

and 

(4) 

w 
n 

K(x) ~ ~ dist(x,an> 

for some positive constant ~ . Then the classical Dirichlet problem 

(5) det D2u = K(x) (1 + jDuj 2) (n+2)/2 in n U = ~ On an 1 

has a unique convex solution u € 

Theorem 1 can be obtained from the results of Lions [9], [10] as in 

[12], or directly from the results of Caffarelli, Nirenberg and Spruck [2], 

Krylov [6], [7], f8] and Ivochkina [5] on the existence of globally smooth 

solutions of the Dirichlet problem for equations of Monge-Ampere type, by 

using the interior second derivative estimate established in [13]. The 

existence of a convex solution u E c2 <n> n c0 (Q) of (5) was proved under 

the hypotheses of Theorem 1 by Lions [9], [10], and the case ~ = 0 was 

also proved by Gilbarg and Trudinger [4]. The Dirichlet problem for convex 

generalized solutions of (5) was studied by Bakelman [1], who proved a 

generalized version of Theorem 1. Additional references to this work are 

given in [1]. 

The condition (4) causes the equation (1) to become degenerate near 

an 1 Which precludeS US from Obtaining globally SmOOth SOlUtiOnS Of (5). 

However, a partial result on the global regularity of convex solutions of 

(5) is given in [12]. Specifically, if an € c2 ' 1 I~= 0 and 



217 

(modulo convex functions) , 'chen ·the convex 

The existence of globally smoo·th convex solutions of (5) was :recen·tly 

established by Ivochkina [5]. Her hypotheses ,3.re different to the ones of 

'fheorem 1; in particular, K is assumed 'co be bounded away from zero in 

:\6 and a restriction on the size of l¢1 2 ;:\6 is necessary. 

The sharpness of the condition (4) for the classical solvability of 

the Dirichlet p:o:-oblem (5) for arbitrary smooth boundary data, at least in 

terms of power functions, is shown in [12] using a barrier _a:cgument. 

Related to 'chis is the follmving global Holdei: es·i:imate which is proved in 

[15], and v-rhich yields nonexistence results for 'che Dirichle-t problem (5). 

THEOREI~ 2: Let n be a ,l .bounded domain. in and u E em a 

convex solution of (1), where K .c;atisfies 

(6) 

for some cons1':ants )1 > o and S E [ 0, l) . Then 

(7) I I I I (l-Sl/2n 
u (x) - u (y) , :;; C x - y , 

1uhere c depends on n , )1 ~ s and n . 

This result is an extension of the global oscillation estima·te proved 

in [14], and is proved by a careful application of the barrier ·technique 

us<=d 'chere. 

Although we cannot generally satisfy the boundary condition in (5) in 

the classical sense if (4) is not satisfied, it is possible to satisfy it 

in a certain optLmal or generalized sense. This lftras proved Bakelman [l] 

for generalized solutions. In [15] we have established ·the following 

result for smooth solutions. 
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THEOREM 3: Let n be a c1 ' 1 unifoY'rrlly convex domain in IRn, cp E c1 • 1 

and K E c1 ' 1 <m n r~P(rl) , p > n, a positive function satisfying (3). Then 

there is a unique convex funetion u E c2 (nJ n L 00 (Q) such -that 

(1) in Q , 

(8) lim sup u(x) ~ cp(y) 

x-+y 
for all y E ds-2 , 

u 

and if v E c2 (Q) n L00 (QJ is another convex solution of (1), and 

lim SUp v(x) ~ <fl(y) for all y E ()Q ~ -!;hen V ~ U in Q • 
x-+y 

solves 

The func·tion u is therefore the supremum of the convex subsolu-ti.ons 

of (l) which lie below ¢ on ()Q , and the proof of the theorem shows that u 

is also the infimum of the convex supersolutions of (l) which lie above ¢ 

on ()Q • To prove Theorem 3 ;~e solve approximating Dirichlet problems with 

boundary values ¢ and obtain a sequence of (Q) convex functions 

converging in (Q) to a convex generalized solution u of (l) , 'ltJhich 

satisfies (8) and t_he final conclusion of the theorem" To deduce the 

regularity of u we first use some measure theory to obtain information 

about the behaviour of u near :m , and then use a s·tandard method of 

Pogorelov [11] and Cheng and Yau [3]. If K satisfies (4) in Q n BE 

where ,....O,l(r, 
U E ~ ,, n BE/2 and 

while if K satisfies (6) in Q n B€(x0 ) , then 

u e CO,(l-8)/2n(~ n BE/2(x0)) 

u = 

The final ·theorem we men·tion summarizes the results we have proved in 

[14] , [15] in ·the case 

(9) f K=tu • 
Q n 

THEOREM 4: Let n be a uniformly convex domain in IR.n a:ttd 

K E c1 ' 1 (Q) n LP(Q) , p > n, a positive function satisfying (9). Then 

there is a convex solution u e c2 (Q) of the equation (1), and any -~;o 

such solutions differ by a constant. 
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To prove Theorem 4, we first obtain a generalized solution u of (1), 

which is done by solving approximating Dirichlet problems and passing to a 

limit with the help of an interior oscillation estimate, for example, 

Theorem 2 applied to smooth compactly contained subdomains of Q . The 

regularity proof is similar to that in 'rheorem 3, and the uniqueness 

assertion follows from a comparison principle. If K satisfies (4) near a 

point X E (\Q 9 then 
0 

lim u (x) oo 

x-+:ic0 

while if K sa'cisfies (6) near x 0 E (lQ , and 

then u is Holder continuous there wi·th exponent (l-i3)/2n 

near 

Finally, "''e mention that in [15], these resul·ts have been extended to 

l'Ylonge-Ampere equations of the form 

det f(x,u,Du) , 

under suitable hypotheses on f . 
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