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AN APPROXIMATION THEOREM FOR ORDER BOUNDED OPERATORS
Gerard J.H.M. Buskes

The object of this paper is to outline some recent work with P.G.
Dodds, B. de Pagter and A.R. Schep [1]. 1In the following E and F
will be Riesz spaces and T will be a positive operator from E to F.
For proofs which are not given the reader is referred to a forthcoming
paper [1]. Our aim is to approximate in a purely order theoretic way
any operator in the order interval [0,7] of the space of all regular
operators between E and F with operators of a particularly simple
kind with respect to T. For the sake of convenience we will assume
that E = C(k) (except in corollary 7), that the normal integrals on
F, denoted F;, separate the points of F and that F is Dedekind
complete. The latter has as a consequence that the space of all order
bounded (= regular) operators from E to F, denoted by Lb(E,F) is
itself a Dedekind complete Riesz space.

Every element f£ € C(K) determines a multiplication operator
g —gf on C{(K), which is called a multiplier. Abstractly such oper-
ators o : C(kK) —C(k) are defined by the conditions that |o(g)| A|hm| =0
whenever |g| A|h| = 0 and that o is order bounded.

We are interested in the set of all operators R in [0,7] for

which there exist n e MW, multipliers o .Un on C(K) and order

R

n
R on F such that R = I 7w.,To,. The set of all
1 n i=1 1 1

those operators will be labelled A£(T). The elements of X£(T) serve as

projections T

approximating operators in [0,T].

The following terminology is needed. If L is a Riesz space and
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¢ is an order bounded functional on L, then p¢(f) = lo|(|e)(f e 1)
defines a seminorm on L. For a set of order bounded functionals M
on L, we define |0|(L,M) to be the locally convex topology generated
by the set of all seminorms pw with ¢ € M. Every 0 <y € F; and
every 0 £ x € E determines an element ®W ¥ in the space of normal

s

integrals on Lb(E,F) by ®¢ X(S) = (Sx,p) for all S ¢ Lb(E,F).

’

Taking F = {®¢ XIO <9 e F;, 0 < x € E}, we have all the notation to

state lemma 1.
Lemma 1. £(T) is [0|(Lb(E,FLF)—dense in [0,7].

The proof of lemma 1 is largely based on a convenient formula for
the infimum of two positive operators from E to F. Indeed, for every
0 £ S,R ¢ Lb(E,F), 0<xeE and 0< ¢ ¢ F; we have ((RAS)(x),0) =

inf Z'(w. Sx ., 00 A <ﬂj in,w), where the infimum is taken over all fin-

; i
1,7
ite subsets {Xl""xn} c E¥ with pX X, =x and all finite subsets of
it
mutually disjoint band projections {Wl,...,ﬂm} on F with ZFw, = Id_.

g J F

However, we have in mind a more intrinsic way of characterizing
[0,7] in terms of £(T). For this purpose we need more structural infor-
mation about A£(T). By considering the tensor product of the band pro-
jections on F with the multipliers on E we obtain the following

result.
Lemma 2. 4£{(T) is a sublattice of [0,T].

If L 1is a Riesz space and Kk 1is a subset of L, IK is defined
to be the set of all £ € L for which theré exists a subset {fT} c K
with fT ¢Tf, DKk is defined by replacing 4 in the preceding sentence
by + (and Ik by Dk). The following up-down theorem by D.H. Fremlin

suits the situation (see [3]).
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Theorem 3. If L is a Dedekind complete Riesz space, if M is a
solid subspace of the normal integrals on I which separates the points
of L and if K 1is a sublattice of I, then the closure of K for

lo|(z,m) is DIDIk.

We employ theorem 3 by taking I = Lb(E,F), M=F, k=401,
Lemma 1, lemma 2 and some routine inspections of the situation, together

with theorem 3 now yield:
Theorem 4. DIDI £(7) = [0,7]

Because the characterization in theorem 4 is intrinsic, we can

now derive a much stronger approximation theorem, (due to Kalton and Saab [41]).

Theorem 5. If p 1is an order continuous Riesz seminorm on the
principal ideal generated by T in Lb(E,F), if s e [0,7] and € > O,

then there exists §' ¢ £(T) with p(s-S') < e.

Apart from being interesting in their own right, these theorems
have nice consequences. The main reason for this is the preservation of
certain properties of T in A£(T). For instanée, every element of
L(T) is compact if T 1is compact. A straightforward application is

the following majorization result by Dodds and Fremlin (see [2]).

Corollary 6. If F is an AL-space and E = C(K), if 0§ < 7T
are operators from E to F, and T is a compact operator, then S

is a compact operator.

To discuss another application we have to abandon the assumption
E = C(K). 1Instead, we assume that E is a Banach lattice with quasi-

interior point, i.e. with an element u € E such that E is norm dense
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in the principal ideal generated by u. We borrow the abstract defin-
ition for the multipliers from the C(k) situation, i.e. the multipliers
are the order bounded operators ¢ : E —E with |o(g)| A|n] = 0 as
soon as lgl A]hl = 0. The multipliers form a Riesz space under point-
wise operations and, in fact, this Riesz space is Riesz isomorphic to

a c(K)-space. Using the same techniques, the statements in theorem 4
and theorem 5 remain valid. The latter will be used in the proof of our

next corollary. (Again due to Kalton and Saab [4]).

Corollary 7. If E and F are Banach lattices and F has order
continuous norm (so no restrictions on E at all), if 0 < 8 £ T are
operators from E to F and T is a Dunford-Pettis operator, then S

is a Dunford-Pettis operator.

We sketch a proof of this corollary. To prove that S is a Dun-

ford-Pettis operator we have to show that for every sequence (a_)

n’ neIN
of elements of E, which converges weakly to zero, HS(an)“-+ 0. Sup-
o
pose a_ —0 weakly. By taking y = I 2 n[anl we may assume that E
n=0

has a guasi-interior point, namely y. Let A Dbe the solid hull of

{an[ ne W} and B = {g ¢ F*| loll £ 1}. Define for every R in the
principal ideal generated by T in Lb(E,F), p(r) = sup{|{Ra,® || a ¢ a,
¢ € B}. It can be shown that p is an order continuous Riesz seminorm
on the principal ideal generated by T in Lb(E,F). Therefore, there
exists by the remarks preceding corollary 7 an element S' in X£(T)
with p(§-5') < e. As S' 1is a Dunford-Pettis operator it easily fol-

lows that |l Sanll - 0.
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