
AN INTRODUCTION TO THE THEORY OF ABSOLUTELY 

p-SUt'l~IING OPERATORS BEHIEEN BANACH SPACES 

Joe DiesteZ 

These notes constitute the text of a sequence of 

lectures g-iven at "che University of New England, a brief 

synopsis of which was presented at the Conference on 

Analysis in Linear Spaces. Thel'e is nothing new here in 

terms of mathematical knowledge; our only hope is that 

this theory be new to the audience. Readers who like what 

they sample here will love Professor Gilles Pisier's forth­

coming monograph on "Factorization of Operators between 

Banach Spaces", the present notes are subsummed by the first 

section of Pisier. 



2 

§1. The class of absolutely p-summing operators 

This section establishes the basic facts about ths class TI of 
p 

absolutely p-summing operators between Banach spaces. After defining 

the notion of an absolutely p-summing operator and giving a brief 

discussion regarding the viewpoint of absolu·tely p-summing operators being 

operators that increase the degree of summability of a sequence, we show 

that 11 is an "operator ideal" and establish the basic inclusion 
p 

relationship between 11 's of different index. 
p 

'V>Je clos.e with a basic 

example of an absolutely p-surrm1ing operator and the fundamental 

Grothendieck-Pietsch theorem. 

Let 1 ~ p < 00 • A linear operator T; X + Y is called absolutely 

p-summing if there exists a p > 0 such that given any x1 ,x2 , ... ,xn EX 

we have 

( *) 
n 

I 
i=l 

n 
II Tx .II p) l/p ~ p sup{ ( I 

~ i=l 

We denote the fact that T ; X+ Y is absolutely p-summing by TEll (X·Y)· 
p ' ' 

notice that any T E IT (X;Y) 
p 

is bounded. For T E 11 (X;Y) 
p 

we define the 

p-summing norm n (Tl 
p 

by 

n (T) = inf{p > o 
p 

(*) holds}; 

plainly, II Til ~ TI (T) 
p 

holds for any T. 

To better understand just what impositions are put upon an operator 

when it is assumed to be p-summing we consider two classes of vector-valued 

sequence spaces ; 
£strong and £weak If X is a Banach space and p p 

1 ~ p < co, then a sequence (xn) in X is said to be strongly p-summable 

if (llxnlll E £ p; in case (xn) is strongly p-sununable we say (xn) E 
£strong 

p 

and give (xn) the length II (xnlll strong= II (llxnll ll\p· 
£ 

Again, if X is 

a Banach space and l ~ p < oo, 

weakly p-summable if for each 

sequences is denoted by £weak 
p 

thenpa sequence (xn) 

(x*x ) E £ • n p' 

in X is called 

the set of all such 

It is an easy consequence of the closed 
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graph theorem that whenever (x ) E R. weak 
n P 

ll(xn)ll weak =sup{( I lx*xnjp)l/p: x*EX*, llx*ll::; 1} < oo. 

R. n 
p 

Whenever T : X + Y is a bounded linear operator, T induces natural 

operators from R. strong (X) 
p 

to i strong (Y) 
p 

and from R. weak (X) to 
p 

R.weak (Y) via coordinate-by-coordinate application of T. When this 
p 

naturally induced operator takes R.weak (X) 
p 

into i strong (Y) 
p 

it is, 

again by a closed graph argument, bounded and this happens precisely when 

T is absolutely p-summing with the p-summing norm of T precisely 

equal to the operator norm of the induced operator from R. weak to 
p 

R.strong • 
p 

A consequence of this is the fact that T E II (X;Y) 
p 

precisely 

when for finitely non-zero sequences (xn) in X we have for some p.:~ 0 

that 

(**) II (Tx >II ::; 
n R.strong (Y) 

p 

and, moreover, the tightest fitting p 

pll (x >II ak 
n R,we (X) 

p 

in (**) is precisely II (T). 
p 

In addition to possible clarification of the nature of absolutely 

p-summing operators, the above affords some notational conveniences that 

are not inconsiderable. That this is so will be made clear throughout 

the rest of this section. 

II (X ;Y) 
p 

is a normed linear spaae with norm II 
p 

The only real obstacle to be overcome in understanding why this is so 

is the triangle inequality and its attendant consequence that the sum of 

two p-summing operators is p-summing. Let S,T E II (X;Y) 
p 

and let 

x1 , ••• xn E X. Then on considering the finitely non-zero sequence 

~1 ,x2 , ••. ,xn,o,o ••. ) we have 



4 

II (Sxk + Tx1 lll t ( Jl,s rong II ell s~ll + II Txkll ) II p 

p 

II (II Sxkll ) II p + II (II T~ll ) II p 

rr (s l II (x. l II k + IT (T) II (x.. l II k 
p k Jl, >vea p R Jl, we a 

p p 

[IT (S) + IT (T) JIJ (x1 Jll k 
p p ( Jl, wea 

p 

It follows that S + T is absolutely p-su~ming and that 

Il (S + T) ~ Jl (S) + II (T) • 
p p p 

IT (X;Y) is a Banach space with norrn Il 
p p 

Let (T ) be a Il -Cauchy sequence. Since JITII ~ IT (T) always 
n p p 

holds, (Tn) is Cauchy in the classical operator norm as well. Therefore 

there is a bounded linear operator To: X + Y such that lim II To - Tnll 0. 
n 

We claim that To E ITP(X;Y) and that lim II (To -
n p 

0. Let E > 0 

be given. Choose N 
E 

so that whenever m,n ~ N we have IT (T 
p m 

Then given any finitely non-zero sequence (xk) of merribers of X we have 

whenever N . If 
E 

mean that once m,n ~ N 

But now letting m run 

0 for then this translates to 

( I0 liT xk - T x llplf_l;jJ ~Ell (x lll 
k=l m n k J k Jl,weak 

off towards 
ko 

( I IIT0 ~ -
. k=l 

p 

T x.llp)l/p ~ E II (x. lll 
n K K Jl, weak 

p 

as welL The arbitrariness of (xk) and of E > 0 tells us that in 

fact To T E Il (X,Y) for all n ~ N 
n p 

and that lim Il (To - T ) 
n p n 

0. 
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Of course now To = (To - Tn) + Tn belongs to as well and 

the completeness of with the norm IT 
p 

is established. 

and so 

IT is an operator ideaZ, that is, if s : X + Y and p 

T : Y + z are bounded linear operators one of which is 

absoZuteZy p-summing, then TS is absoZuteZy p-summing. 

Suppose T E IT • 
p 

Then for any finitely non-zero sequence 

(I IITsx.llp)l/p ~IT (T)IIsx.ll ak~rr (T)IIsllllx.ll ak 
1 p 1 twe p 1 twe 

p p 

rr (TS) ~ rr (T) II sll 
p p 

in 

Suppose S E liP. Then for any finitely non-zero sequence (xn) in X: 

( I IITsxillp)l/p::; IITII (I llsxillp}l/p ~ IITIIITP(S)IJ (xilll tweak 

p 

and so IT (TS) ~ IITIIIT (S). 
p p 

It follows from this that we have the following: 

If R : W + X, S X + Y and T : Y + z are bounded Zinear 

operators with s E liP (X;Y), then TSR is absoZuteZy p-summing 

with IT (TSR) ~IJTIJIT (S)IJR)I. 
p p 

How do the classes IT compare for differing p's? 
p 

If 1 ~ p < q < oo, 

map is contractive. 

and the inclusion 

Let Then for any finitely non-zero sequence (xl of 

vectors in X and any sequence (A.} of scalars, 
1 

(IIIA.Tx.llp)l/p ~IT (T)II (A.x.)IJ ak 
" 1 1 p 1 1 twe 

p 

X: 
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Suppose r is chosen for the purpose: 

Then an easy application of Holder's inequality shows that 

where 

II (A.ixiliiR.weak s II(A.i)ll r II (xi)IIR.weak 

p q 

If we let A.. = II Tx.llq/r th-en 
l. l. 

II (A.iTxi)IIR. strong 

-P 

Since we may as well suppose (A.i) isn't entirely zeroes, we see then that 

= II (A.iTxilll R.strong I II <\>llr 
p 

s n (Tlii<A..x.)ll k I II (A..lll 
p J. J. R.wea J. r 

p 

= IT (T) II (xi> II weak 
p R. 

q 

Example. Let n be a compact Hausdorff space and 1.1 be a regular Borel 

probability measure defined on n. Then the inclusion map IP : C(n)+ LP(l.l) 
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is absolutely p-summing for each 1 s p < oo, In fact, if 

E C(O), then 

(211 f (w) I P d).l (w)) 1/p 

( r I If. (\~' I p d).l (\'i')) 1/p Jn :t 

(LIIow(fi) lp dj.1(,.;))1/p 

where ow E C Wl * is the funct.iona.l 0 f w 
f(w), 

II (f. l II k 
J. Jl.wea. 

p 

It follows that I E TI (C(O) 1 L (p)) and H (I ) ::> l. 
p p p p p 

If ).1 is just a regular Borel measure on Q , then :the inclusion 

map of C(Q) into ( 11) is still p-summing with p-suroroing norm I ).II Wl l/p. 

In a sense the above example is the prototype of all absolutely 

p-summing opera·tors. That this is so is part and parcel of the next result 

which is the rocst: fundamental featm:e abo·ut absolutely p-summing operators. 

The Grothendieck-Pietsch Domination Theorem 

Proof 

Let T : x + Y be absolutely p-sumning. Then theY'e exists 

a regular' BoY'eZ prohab1:Zity meaaw.•e 11 defined on (BX*' weak*) 

for which 

We make good use of the fact that TIP (T) is the least p :<: 0 such 
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n n 

L 
i=l 

II Tx .lfP 
~ 

sup{ L lx*x.IP : llx*ll ~ 
i=l ~ 

1} 

How? Well if xl, ••• , X E X are given, then the function n 
n n 

cpx , ••• ,x (x*) IIP(T) L lx*x.lp - L IITx.llp is continuous on 
1 n 

p i=l ~ i=l ~ 

(BX*' weak*). Let ~ £ C(BX*' weak*) be the family of all such¢ 's. 
xl, .•. ,xn 

~ is a convex cone. What's more, because II (T) 
p 

is what it is, each 

¢ E ~ achieves a non-negative value somewhere on (BX*' weak*). Therefore, 

~ is disjoint from the convex cone N of all continuous functions 

w on (BX*' weak*) that're everywhere negative, a set with non-empty 

interior. It follows from the Hahn-Banach theorem that there is a 

~ E C(BX*' weak*)* such that 

~(wl < o ~ ~(¢) 

for all w E N and all ¢ E ~ Plainly we can assume 11~11 = 1. Since 

~ (1/J) < 0 for all wEN , ~ is a non-negative Borel measure on (BX*' weak*); 

II ~II 1 just says ~ is a probability measure. Checking 0 ~ ~ (¢) for 

¢ = ¢x finishes the proof. 

§2. More examples of absolutely p-summing operators 

In this lecture we give some more examples of absolutely p-summing 

operators . To begin, we show that the absolutely 2-summing operators 

between Hilbert spaces are precisely those operators of Hilbert-Schmidt 

type even up to coincidence of norms. Then we employ Khintchine's inequalities 

to show that the natural inclusion map of Jl,l into !1,2 is absolutely 

1-summing; since every Hilbert-Schmidt operator admits this natural 

inclusion as a factor, the ideal property of absolutely 1-summing operators 

alerts us to the fact that Hilbert-Schmidt operators are always absolutely 



9 

1-summing. Finally, we note that, thanks to the Grothendieck-Pietsch 

domination theorem, absolutely p-summing operators are always weakly 

compac·t and completely continuous, features of the class that are any-thing 

but obvious from the definition. One upshot of this observation is a 

·transparent proof of the celebrated Dvoretsky-Rogers theorem: the identity 

operator on an infinite dimensional Banach space is never absolutely 

p-srunming for any 1 s p < oo. 

Example. If H and K are Hilber·t spaces~ then ll2 (H:K) coincides with 

the class of Hilbert-Schmidt operators from H to K; moreover, the 

ll2 norm and the Hilbert-Schmidt norm are the same. 

To establish the above claim, it's convenient to recall a few erstwhile 

facts about the Hilbert-Schmidt operators. Let H, K be Hilbert spaces 

and T : H + K be a bocmded linear operator. We say T is a Hilbert-

Schmidt operator if for some complete orthonormal system (ei)iEI in H, 

I II Te .11 2 < oo; . ]_ 
it is not too difficult to establish that if T is a Hilbert-

]_ 

Schmidt operator then I liTe .11 2 < 
l 

for every comple·te orthornormal system 
i 

for H and that the sum I II Te ill 2 is the same regardless of the 
i I 

choice of The number G(T) = ( l:ll Te .II 2 ) 2 
l 

is called the Hilbert-

Schmidt norm of T. Every Hilbert-Schmidt operator is compact and admits 

of a representation in the form LA < · , e > f for some Unl E £2, and 
n n n 

n 
some orthornormal sequences (en) and (fn) in H and K respectively with 

II (An) ll2 coinciding with the Hilbert-Schmidt norm of the operator . 

Suppose T : H + K is absolutely 2-summing. Let 

be orthonormal vectors. Then for any x E H 

L I <x, e. > 1 2 s II x 11 2 
l 

by Bessel's inequality. Therefore, 

e 
n 
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(Li1Teill 2>i s n2(Tl II (eill~~eak 

= n2(T) sup{(~ lx*e.l 2li: llx*ll s l} 
l l. 

=n2(T) sup{(~ l<x, e.> l2>i: llxll Sl} 
i=l l. 

s n2(T) sup{(lixll 2li: llxll s l} = n2(T). 

It follows that T is a Hilbert-Schmidt operator and a(T) s n2(T). 

Now suppose T is a Hilbert-Schmidt operator and represent T in 

the form 

orthonormal sequences in H and K respectively. For any x € H we 

have 

so for x1 , ... , xk € H we see that 

k 
s a2 (T) sup{ L I <xi' u> 12 Hulls l} 

i=l 

Therefore, T € n2(H7 K) and n2(T) S a(T). 
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The prototype for several of the most striking results in the theory 

of absolutely p-sum.TUing opera·tors is the following fact, i·tself an 

interesting interpretation of Khinchine's Inequalities. 

Example. The natural inclusion £1 <=+-9.2 is absolutely 1-swnming. 

Let x1 , ... , xn E 9,1 • Then 

1 

I llxill I <I lxikl2)2 
i i k 

~ c ~ II ~ xik rk II 1. 

where (rk) denotes the sequence of Rademacher functions, 

But given 0 

= c 

= c 

:,; t :,; l, (rk(t)) 

III xik rk.<tll ~ 
i 

tr~~ xik rk <tl I dt 

fo1 F~ xik rk (t) I d'c 

belongs to B,Q, so 
00 

sup{ I, I x*xi I : x* E Bg,} . 
i 

Therefore 

I II xill2 
i 

l 

:,; c Jo ~ I 
~ 

:,;c Io1 sup 

= c sup{ j 
i 

I 
k 

{I 
i 

xik rk (t) 1 dt 

lx''x.J : x* E: Bg,} dt 
l 

I X *x. I ·. x* E Bg, } = C II (x Jll . ak 
1 oo 1 g,~e 

It follows that £1 c.;..£ 2 is absolutely l-summing and has IT1-norm $ C. 

Every Hilbert-Schmidt operator admits the natural inclusion £1 c.;..£2 

as a factor. 

Let T : H ~ K be such an operator. Then these are sequences 

Tx L A. <x,e > f n n n 
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and note that 

e >l n 

s II(/.. lll 2 11<<x, e >)Jiz 
n n 

so that II T1 11 sa (T) . Define T2 : £2 -+ K by 

and note that IIT2 11 s l. Plainly T is naught but T1 composed with 

!/,l c-+£2 followed by T2 . 

Corollary. Let H, K be Hilbert spaces and 

IT (H; K) 
p 

HS (H; K) 

l $ p $ 2. 

II 2 (H; K). 

Proof. We've already commented on the fact that HS(H; K) 

on the inclusion of lir(H; K) in liz(H; K)o Now if T 

Then 

liz(H; K) and 

H -+ K is a 

Hilbert-Schmidt operator then there exist bounded linear opera'cors 

and R : !/,z -+ K such that the diagram 

T 
H 

L 1 I R 

!/,z 

commutes. Since !/, 1 c,. !1, 2 is absolutely 1-summing so too is R c:,, L T. 

We remark that the above offers an interesting mapping property of 

Hilbert-Schmidt operators unknown 'co their earliest proponents, namely, 

Hilbert-Schmidt operators take unconditionally convergent series into 

absolutely convergent series. 

Now for a really informative insight into the structure of p-summing 

operators we prove the following remarkable result. 
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Theorem. Let l :::: p < co • Then evm"y absolutely p-summing operator 

is weakly compact and completely continuous. 

ProaL Let S E TI (X; Y). By the Grothendieck-Pietsch domination theorem 
p 

there is a regular Borel probability measure )l on (BX*' weak*) such 

that for any x E X 

II sxll :::: np (S) (I I x*x I P d)l (x*l) l/p . 

BX* 

Suppose we consider elements of X as functions defined on because 

each x is weak* continuous on BX*' the above inequality can be read as 

follovJS 

il sxll :::: rr (S) II x L J II ( ) 
p Lp )l 

In other words, S acts as a boQnded linear operator from (X, L ()l)­
p 

topology) ·to Y; on completing X in L ( )l} 
p 

and extending S to the 

resultant Banach space X we have the following factorization: 
p 

s 
X y 

~/s 
X 

p 

where s is the unique bounded linear ex-tension of S to X . 
p 

It's the 

inclusion map X c.> X that we're in·terested in because it is weakly 
p 

compact and completely continuous. 

X ~X is weakly compact. If l < p < oo, then this follows from 
p 

·the reflexivity of and the attendant reflexivity of its closed 

linear subspaces. If p l, then ·the fact that the inclusion map of X 

into L1 (w) has to pass continuously through L2 ()l) on its way ensures 

its weak compactness and hence that of X ~x1 . 

X "'-¥X is completely continuous. Indeed, if 
p 

sequence in X, then for all n and all x* E BX* 

(xn) is a weakly null 

, lx (x*) I :::: supllx II < oo n n 

and for all x* E BX*' lim xn(x*) 
n 

0; it follows from the Lebesgue 



14 

Bounded Convergence Theorem that lim II x II 
n P 

o. 
n 

Corollary. If 1 :::; p < "' and T E II (X; X) , 
p 

then is aonrpaat, 

Proof. If (xn) is a bounded sequence, then (Txn) has a subsequence 

(Tx~) which is weakly convergent; therefore, (T2x•) = (T(Tx')) is 
n n 

norm convergent. 

Dvotetsky-Rogers Theorem. Suppose for some 1 ::> p < oo we have l:lx*x jP <"" 
n 

for eaah x* E X* implying that II X liP < 00 

n 
Then dimx<oo 

Proof. If L II X liP < 00 holds whenever for each 
n 

n n 
x* E X*, then the identity operator id : X -+ X on X is absolutely 

p-summing. It follows that id2 = id is compact. But the classical 

Riesz lemma assures us that the identity operator on a normed linear 

space is compact only in case of a finite dimensional space. 

Actually, a bit stronger statement about composing operators can be 

said. 

CorolLary. If T E II (X; Y) 
p 

and 

then ST is aompaat. 

S E II (Y; Z) 
q 

for some 1 :::; p,q < oo, 
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§3 A few more applications of the Groth.endieck-Pietsch theorem 

This lecture provides several additional applications of the 

Grothendieck-Pietsch theorem. Hints as to the breadth and depth of usage 

to which this wonderful theor~m can be put might be gleaned from this last 

truly introductory lec·ture. 

We start by introducing the important notion of ootype 2. After 

observing that Hilbert spaces have cotype 2, we follow Bernard Maurey to 

the conclusion that absolutely p-summing operators into such spaces are 

2-samming for any p > 2. We then close the circle of ideas concerning 

Hilbert-Schmidt operators by showing that ·this class coincides with the 

p-surnming operators for any p ~ 1. Next, we take up an extension property 

enjoyed by the absolutely 2-surnming operators. After recovering from the 

surprise discovery that regardless of the geometry of a finite dimensional 

Banach space E the identity operator on E always has 2-smuming norm 

equal to the square root of E's dime~sion, we continue to follow Stan 

Kwapien's lead in proving that every n-diroonsional subspace of a Banach 

space is the range of a linear projection of operator norm not exceeding 

~, This is the famous theorem of Kadec and Snobar. 

A Banach space Y is said to have cotype 2 .if there is a k ~ 0 

such that given y 1 , ••• , yn E Y, ·then 

n 1 

< * l ( L II y illz l z 
i=l 

where the r.'s are the usual Rademacher functions. The least k ~ 0 
~ 

for which ( *) holds for all Yl, ..• , y n E Y is called the cotype 2 

constant of Y and is denoted by cz(Y). 

It is a classical result of W. Orlicz that if 1 ~ p ~ 2, then 

L ().1) has cotype 2 for any measure \1 • Naturally, Khintchine' s inequalities 
p 

play a significant role in Orlicz's theorem and we recommend Orlicz's 

paper be read. However, at this moment we will have to contain our 
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enthusiasm and be happy with the following. 

Theorem. Hilbert spaces have cotype 2 with cotype 2 constant = 1. 

Proof. Let h 1, •.. , hn be me~ers of the Hilbert space H. 

Then 

Ill I r. (t)h.ll 2 dt 
i=l ~ ~ 

(
1 

< I ri (t)hi' f ri (t)hi > dt 
Jo i=l i=l 

il n 
I r.(t)r.(t) <hi' hJ.> dt 

0 .. 1 ~ J 
~.)= 

n Il I < hi' h.> r. (t)r. (t) dt 
i,j=l J 0 ~ J 

n 
I <hi, hi> 

i=l 
1 

because f r. (t) r. (t) dt o .. 
~ J ~J 

0 

The ~mportance of spaces having cotype 2 derives, in part, 

from the following. 

Theorem. Let Y be a Banach space having cotype 2. Then, for any p > 2 

and any Banach space x , 

ll2 \X; Y) = ll (X; Y). 
p 

Proof. Suppose T £ ll (X; Y). By the Grothendiech-Pietsch Domination 
p 

Theorem, there is a regular Borel probability measure ~ on (BX*' weak*) 

such that for each x E X 

IITxll s llp(T) (I I x*x Pjd (x*))l/p 
Bx* 

Let (xn) be a finitely non-zero sequence of members of X. Since c 2 (y) 

the cotype 2 constant of Y 

is 
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(L bx .11 2 ) ~ ;;; c 2 (Y) [ I: n r. (t)Tx.ll 2 dtr J J J 

( J: III r. (t)Tx.llp r/p ;;; c 2 (Y) dt 
J J 

[ 
rl )1/p 

c 2 (Y) J h(L r~(t)x.lllp dt 
0 J J 

which by Khintchine's inequality is 

for some a > 0. This .in tu.rn is 
p 

;;; c 2 {Y) IT (T) a II (x.) II ak 
p p J Q.we 

2 

It follows that T E rr 2 (X; Y) vli th 

Since TI 2 (X; Y) ""'liP(X; Y) wherever p;;; 2 we have completed 

the proof. 

The above result is due to Bernard Maurey and is but a small 

part of his analysis of spaces with nontrivial cotype. 

Corollary. If H and K are Hilbert spaces, then for any p;;; 1 

the class of absolutely p-swrrming operators from H to 

K coincides with the Hilbert-Schmidt class. 
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n 's 
p coincide with HS for 

1 ~ p ~ 2 and in §1 we noted that if p ~ 2 then n2 is contained in 

ITP; all that remains is to notice that Maurey's theorem in tandem with 

the cotype 2 character of Hilbert spaces gives us equality of with 

A small remark ought to be made here. As we remarked in §2 the 

theory of absolutely p-summing operators uncovered new mapping properties 

valid for Hilbert-Schmidt operators, namely if 1 ~ p < 2 then Hilbert-

Schmidt operators take weakly p-summable series into strongly p-summable 

series. In light of the developments of this chapter, we are now able 

to give very weak conditions that will ensure a given operator between 

Hilbert spaces is of Hilbert-Schmidt type: if for some p > 2, an 

operator between Hilbert spaces takes weakly p-summable series into 

strongly p-summable series then it is a Hilbert-Schmidt operator. 

On the way to polishing off the next gem an interesting variation 

on the principal example of §1 presents itself. 

Example. Suppose (0, r, ~) is a pPobability spaae and 1 ~ p < ~. 

Then the naturoZ inaZusion map of L~(ll) 

p-summing with p-summing norm = 1. 

into L (1J) is· absolutely 
p 

This is a consequence of some magic derived from M.H. Stone's 

representation theorem for Boolean algebras. Recall what this wonderful 

theorem says: if A is a Boolean algebra then there is a compact 

' 
Hausdorff totally disconnected space n such that A is isomorphic· 

as a Boolean algebra to the Boolean algebra A of all simultaneously 
A 

closed and open ("clopen") subsets of n. 
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l<ihat' s Stone's theorem got to do with us? Ttlell, take t:he a-algebra 

Li it's a Boolean algebra possessed of a special ideal N = {A E ~:~(A) O}. 

If we factor N out of I, then we get a new Boolean algebra A = LIN 
wherein bvo members from L :ind themselves in the same coset if the 

measure of their symmetric difference is 0. Notice that 1J can be viewed 

as acting on A, AI B c \' too; after all, if . ~ L are sent to the same cosets 

modulo N, then ~(A) = y(B). View 1J as acting on A. Apply the Stone 

representation ·theorem to 1:\ and find a compact, Hausdorff, totally 

disconnected space rl v;rhose algebra i:\ of clopen subse·ts is isomorphic 

as a Boolean algebra to A; if A E iA then denote by A its isomorphic 

image in A. So far we've done little but complicate the situation. The 

magic is about to begin. 

Start with a simple function 
n 

L a .. XA. 
i=l ~ • i 

suppose 

A1 , •o• , An are pairwise disjoint sets of positive measure. Look at 

n 
I a. x~:it's continuous on ~- Because two simple functions in Loo(]J) 

i=l J. Ai 

are regarded as the same in L.,(JJ) only when they agree except on a set 
n n 

of N, ·the mapping J that takes I a. X,,. to ~ a. is well-
"" J. ~ 

i=l J. i=l 
n 

defined. Observe that ·the norm of I 
i=l 

a. X 
:t A. 

J. 

is just 

as is 'che nom of a. 
J. 

in C(SI), In other words, 

J., is an isometry. Nov.1 silnple functions are dense in L00 (1J) so J 
"' 

extends to an isometry of all of L00 (y) into C W) whose range contains 
n 

all func·tions on rl of ·the form I a. x., . for notatio!lal S<mity 
J. A.' 

i=l ~ 

denote this extended isometry by J oo' too. Okay, let's look at ·the 

range of J 
"' 

as an isometric image of a Banach space, it's closed. 

But here's the punch-line: the collection of functions of the farm 
n 

L a. XA ' 
i=l J_ i 

i.e. , the image under J 
"" 

of the simple fu.rlctions in 

A 

we'll 

is an algebra of continuous funct.ions on fl that contains the constants 
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and, thanks to rl's total disconnectedness, separates points; moreover, 

in case the scalars are the complex numbers this algebra is self-adjoint; 

therefore the range of J is dense in 
00 

c (rl) by the Stone-Weierstrass 

theorem. 

J 00 is an isometric isomorphism of L00 (~) onto C(~). 

No, we haven't forgotten about 

as living on A; if we define )1 on 

L ()1) • 
p 

:ll. by 

Recall that )1 

~ (i,) = 1J (A) ' 

can be viewed 

then it is 

quickly established that )1 is a bounded additive measure on A with 

non-negative values (the same values that )1 has) and total mass L 

What's more, )l is plainly regular and countably additive! Think about it' 

regularity is trivial because all of JJ'S arguments are already both compact 

and open, while countable additivity follows from the fact that there c:an 

only be finitely many disjoint clopen subsets of the compact ~ whose 

union is also clopen (:hence compact). VIe can e'-rtend )1 1to the Baire 

cr-field of fi in a unique fashion reserving regularity, coun·table a.ddi-

tivity, non-negativity and total mass as we do so. Again 'llle can extend this 

extension in precisely one regular, countably additive fashion to the Borel 

cr-'field of ~; the result of this extension work is a regular Borel 

probability measure 1J defined on ~. Regularity ensures, by the way , the 

density of C(~) as a linear subspace of 
n 

Take a simple function I x, in 

L (],1) " 
p 

Now we're in business! 

(p) and consider its counterpart 

in c 
i=l Ai 

Compute their L -norms. 
p 

n 
II I a. 

i=l :!. 

n 

II I a.~ II 
i=l :!. i p 

(we're assuming the Ai's, and hence the 's, to be proved disjoint)" 



and 

L (JJ) 
p 

n 
L a. 

i=l l 

to 

functions, 

XA 
A. 

1. 

n 

L a; 
i=l -

J 
p 

Gci. l 
J. 

coincide" 

X· in 
A. 

l 
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n 
the L -nor-ms of L a. X 

p i=l J. Ai 

Therefore the map J 
p 

L (~) is an isometry" 
p 

n 
that takes I a. xA. 

i=l 1. l 

By density of simple 

can be extended to an isometric embedding of L (\l) 
p 

into 

L (~) whose range contains a dense linear subspace of the dense subspace 
p 

in 

C(fi). Therefore, J 's 
p 

extension, still denoted by J p' is an isometry of 

To conclude we need but realize the commutativity of the following 

diagram; 

L ().Jl~ L (\l) 
ro p 

"·l k 
C(fi) c;,..___.;. L (p) 

p 

The inclusion C(fi) ~ L (~) is absolutely p-summing with p-suaming 
p 

norm 1; this we know from §1. Both J and 
-1 

J are isometric hence 
co p 

have norm one. The rest follm•s from the ideal property of 

We're ready for this next result 

n • 
p 

Theorem. Let T:X + Y be absolutely 2-summing. Suppose x is a closed 

linea:!' subspace of z. Then T admits a lineal' extension 

s:z-+ Y which is also absolutely 2-summing with n2 (s) ;;; n2 (T). 

Proof. By the Grothendieck-Pietsch dornina·tion theorem, there is a regular 

Borel probability measure \J on (BX*' weak*) such that 

holds for each X E: X. As in §2 we see that if x2 is the closure of X's 

image in L2()J), then the inequality above allo~:;s us to "extend Tn to an 

operator T :X2 -+ y with II Til ;;; IT 2 (T). 



22 

Diagramatically 

Now x2 is a closed linear subspace of L2 (~), a Hilbert space. As such 

has an orthogonal complement we can extend T to all of 

simply by defining it on to be zero. Now we have the diagram above, 

on suitable modification looking like this: 

T 

X------+ y 

r 
where X<::-....+ (~) is the isometric embedding x ~ x(.), L00 (~)~ 

is the absolutely 2-summing natu:eal inclusion which as an ordinary bounded 

linear operator·has norm one and T is a bounded linear operator with 

IITJI ::1 TI 2 (T). Don't take our insertion of L 00 (Jl) into the above diagram 

too lightly. 

Why? Well, L ()l) 
00 . 

is a very special Banach space •. Suppose for the 

moment that all the spaces under consideration are real Banach spaces. 

Then L00 (~) has a lattice structure as well as being a Banach space; it 

is easy to see that as a lattice L00 (]l) is Dedekind complete, i.e., every 

bounded set in L"' (]l) has a least upper bound in Lro(IJ) • Moreover, the 

closed unit ball of Leo ( jl) has a biggest element, the constantly 1 

function. Now peak at the standard proof of the Hahn-Banach theorem BUT 

allow yourself the freedom of operators, instead of functionals, with values 

in L00 (]l). With the aforementioned comments on L00 (~) • s Banach lattice 

structure clearly in mind, you will soon convince yourself that operators 
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into L00 (~) can be linearly extended from subspaces to superspaces with 

nary an enlargement of normo In case you're in the complex setting, try to 

apply the old Sobczyk trick used in deriving the complex version of the 

Hahn-Banach theorem; wi·th proper attention to details, it works! To sum up 

the special character of L 00 (J.;) is highlighted by the following: 

if X is a closed linear• subspace of the Banach space z and u is a 

bounded linear• operatol" from X into L00 (~), then there is a bounded 

for which vj = u 
X and llvll = !lull. 

Apply this message to the diagram 

T 

z 

extending X_. L 00 (Jl) ·to the norm one operator E:Z + L 00 (Jll we get the 

absolutely 2~summing operator T o [L.,(J.!) .c....;,L2 (Jl)] o E which extends T 

and has 2-surnming norm ;;;, n2 ('1') thanks to the ideal structure of n2 • 

Next, we present a surprising and beautiful computation, due to 

Stan Kwapieno 

E.xample: If E is a finite di,mensional Banach space, then n2 (idE) 

First, we'll show that given x1 , 000 xn E E, then 

this will sho·w that 

Consider 

It is plain ·that 

T* x* 

ldirn .E sup 
llx* II ;;;1 

,em 
2 

n 

I I 
i=l 

Let • o • X 
m 

be given. 
m 

, a I) • La. X .• 
m i=l l 1. 

exhibits the following behaviour 

( (x* x1 , . . . , x* x ) ) • 
m 
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Therefore, 

Ji Til = II T*ll = sup 11 x* 11 :£l !IT* x*ll 2 

sup!! x*li :£lll (x* x1 , ••• .I 

a quantity to be reckoned with. Now consider the diagram {and its con-

sequences) : 

T 
f..m E rr 2 (T)·= rr 2 (T iq d Q) 2 

\ I 
f..2 

:;; II Til rr 2 (id d) i!QII 
f..2 

m 
f/ker T :£ JJTJI ld 

II 
f..d 

2 :;;IJTJI ldim E 

where an understanding of the diagram and the accompanying computation may 

om well be aided by the remarks that Q is the natural quotient of ~2 onto 

the factor space f..~/ker T (and so has norm 1) and T is the 1-1 

linear operator induced by T on that factor space (thereby ensuring T 

has the same norm as T). It follows that, 

VOILA! 
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To prove the reverse inequality, we apply the Grothendieck-Pietsch 

domination theorem to idE; the result is that there is a compact 

Hausdorff space K, a regular Borel probability measure v on K and 

operators i:E + C(K}, j:C(K}~L2 (~} and G:L 2 (v} + E with 

II ill, II 2 (j} :;; 1 and II Gl! :;; TI 2 (idE}. Pictorially, we have 

i 
E-C(K} 

~u 
A 

idE 

j 
~ 

j 

G 

I'~ 
!dim E 

2 

Reflecting on these implicitly defined operators, we see that 

A 
-1 

ldim E = Hilbert-Schmidt norm (id.tdim E) 

2 

II2 (id.tdim E) 
2 

JJ 2 (A A-1 } 

:;; II2 (A} IIA-1 11 

:;; II2 (ji} II Gil 

:;; !!ill II 2 (j} !!Gil 

:;; II 2 (idE}. 

Corollary (KQdec-Snobar). If E is a finite dimensional subspace of a 

Banach space x, then there exists a linear projection P of X onto 

E for lllhiah liP II :;; I dim E. 
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Proof, We know that the absolutely 2-summing operator idE : E + E can 

be extended to an absolutely 2-sumrning operator P : X + E with 

v'dim E; of course, P is the sought-after 

projection. 
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