AN INTRODUCTION TO THE THEORY OF ABSOLUTELY
p-SUMMING OPERATORS BETWEEN BANACH SPACES

Joe Diestel

These notes constitute the text of a sequence of
lectures given at the University of New England, a brief
synopsis of which was presented at the Conference on
Analysis in Linear Spaces. There is nothing new here in
terms of mathematical knowledge; our only hope is that
this theory be new to the audience. Readers who like what
they sample here will love Professor Gilles Pisier's forth-
coming monograph on "Factorization of Operators between
Banach Spaces", the present notes are subsummed by the first

section of Pisier.



§1. The class of absolutely p-summing operators

This section establishes the basic facts about the class Hp of
absolutely p-summing operators between Banach spaces. After defining
the notion of an absolutely p-summing operator and giving a brief
discussion regarding the viewpoint of absolutely p-summing operators being
operators that increase the degree of summability of a sequence, we show
that Hp is an "operator ideal" and establish the basic inclusion
relationship between Hp's of different index. We close with a basic

example of an absolutely p-summing operator and the fundamental

Grothendieck-Pietsch theorem.

Let 1 £ p < ®, A linear operator T:X + Y 1is called absolutely
p-summing if there exists a p > 0 such that given any HyrXgreeo X € X

we have
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We denote the fact that T : X > Y is absolutely p-summing by T e HP(X;Y);
notice that any T € HP(X;Y) is bounded. For T € HP(X;Y) we define the

p-summing norm HP(T) by
HP(T) = inf{p > 0 : (*) holds};
plainly, Tl < HP(T) holds for any T.

To better understand just what impositions are put upon an operator

when it is assumed to be p-summing we consider two classes of vector-valued

seguence spaces : x;trong and l;eak . If X 1is a Banach space and

1 £ p < », then a sequence (xn) in X 1is said to be strongly p-summable
stro

if (”an) € zp; in case (x ) is strongly p-summable we say (%) e zp ng

and give (xn) the length H(xn)H

strong ”(Han)“p. Again, if X is
2

a Banach space and 1 < p < o, thenpa sequence (xn) in X 1is called
weakly p-summable if for each x* e X%, (x*xn) € xp; the set of all such

sequences is denoted by Q;eak .. It is an easy consequence of the closed




graph theorem that whenever (xn) € l;eak
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Whenever T : X+ Y 1is a bounded linear operator, T induces natural
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t
Strong (x and from z‘;e (X) to

operators from lp strong (Y)

to &
b

weak R : . . . R
2 (Y) wvia coeordinate-by-coordinate application of T. When this

P
naturally induced operator takes z;eak (X) into zstrong ()

it is,
again by a closed graph argument, bounded and this happens precisely when

T is absolutely p-summing with the p-summing norm of T precisely

equal to the operator norm of the induced operator from lzeak to
zztrong . A consequence of this is the fact that T ¢ HP(X;Y) precisely

when for finitely non-zero sequences (xn) in X we have for some p= O

that
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and, moreover, the tightest fitting p in (**) is precisely HP(T).

In addition to possible clarification of the nature of absolutely
p-summing operators, the above affords some notational conveniences that
are not inconsiderable. That this is so will be made clear throughout

the rest of this section.

HP(X;Y) is a normed linear space with norm HP

The only real obstacle to be overcome in understanding why this is so
is the triangle inequality and its attendant consequence that the sum of
two p-summing operators is p-summing. Let S,T € HP(X;Y) and let
XpreeoX € X. Then on considering the finitely non-zero sequence

b

l,x2,...,xn,0,0...) we have
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[HP(S) + HP(T)]II(xk)IIQw
p

eak

It follows that S + T is absolutely p-summing and that

I S+ T < II (s + I T) .
Hp (X; Y) ’ZS a Banach Space wi t;l norm Hp

Let (Tn) be a Hp—Cauchy sequence. Since [Tl < HP(T) always

holds, (Tn) is Cauchy in the classical operator norm as well. Therefore

there is a bounded linear operator Tp: X - Y such that lim llTy - Tn” = 0.
‘n
We claim that Tg € HP(X;Y) and that 1im HP(TO - Tn) = 0. Let € >0
n

be given. Choose N€ so that whenever m,n 2 N we have HP(Tm - Tn) < e.

Then given any finitely non-zero sequence (xk) of members of X we have
- <
”(mek Tnxk)knlstrong <€ ||(xk)ll£weak
P P
whenever m,n = Ne' if % = 0 for k > kg, then this translates to
mean that once m,n 2N

ko ,
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But now letting m run off towards ® we see that

0
p|l/p
[ kzl ”Toxk - Tnxk” ] < e”(xk)ulweak
b

as well. The arbitrariness of (xk) and of €>0 tells us that in

fact Tg - T € Hp(x,y) for all n 2 N and that 1lim T (To = T)) = 0.
n



Of course now Tp = (To - T ) + T belongs to HD(X;Y) as well and

the completeness of HP(X;Y) with the norm Hp is established.

Hp is an operator ideal, that is, if S : X > Y and
T : Y+ % are bounded linear operators one of which is

absolutely p-summing, then TS is absolutely p-swmming.

Suppose T € HP. Then for any finitely non-zero sequence (xn) in X

h umxiup]l/ s lisxl goak STp@sll= ooy
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and so T (rsy < 1w (mlish
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Suppose S € HP. Then for any finitely non-zero seguence (xn) in X:

I 1
[ N “TSxi“p} /? < |l (Z ”SXi“P] /P < L ENOTICH] jeak
o

and so Hp(TS) < HTUHP(S).

It follows fyxom this that we have the following:

If R:W~%X, S :X-+Y and T : Y+ Z are bounded linear
operators with & ¢ Hp (X;¥), then TSR 1is absolutely p-summing

with T_{7Tsr) < I=lim_(s)Iiwl.
B P
How do the classes Hp compare for differing p's?

If 1 <p<qgc<ew, then HP(X;Y) = Hq(x;Y) and the inelusion

map 1S contractive.

et T ¢ HP(X;Y). Then for any finitely non-zero sequence (x,) of
i

vectors in ¥ and any sequence (X, ) of scalars,
i

weak
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Suppose r is chosen for the purpose:
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Then an easy application of Holder's inequality shows that
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If we let ), = "Txi"q/r , then

- p,1/p

ll(liTxi)"Qstrong = (I T 1%)

P
= (Jdlmx )l ¥ iz 1) P) /P
1
= (U 9P
where
Nopihy = QDY = Qe Hys .

Since we may as well suppose (Ai) isn't entirely zeroes, we see then that
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Example. Let Q be a compact Hausdorff space and u be a regular Borel

probability measure defined on . Then the inclusion map Ip : C(R)~> Lp(u)



is absolutely p-summing for each 1 £ p < «, In fact, if

£ fn € C(R), then
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where 6w e C(QR)* is the functional 6W £f = £f(w),
< [luf.>u au(w)
Q i 2weak

- IED e
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It follows that I_ e II_(C(Q); L da II_(I < 1.
w a o P( () p(“)) an p( p)

If u is just a regular Borel measure on § , then the inclusion

map of C() into Lp(u) is still p-summing with p-summing norm |u|(Q)1/p.

In a sense the above example is the prototype of all absolutely
p-summing operators. That this is so is part and parcel of the next result

which is the most fundamental feature about absolutely p-summing operators.

The Grothendieck-Pietsch Domination Theorem

Let T : X~ Y be absolutely p-summing. Then there exists
a regular Borel probability measure 1w defined on (Byyr weak®)
for which

Il < 1 _(T) U |x* () |P du(x*)}l/P
P BX*

Proof
We make good use of the fact that HP(T) is the least p 20 such

that for any x.,,...%X_ € X,

1 n
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How? Well if Xy,..., X € X are given, then the function
1 n g

n n
¢ (x*) = TE(1) z Ix*x.lp -3 ltx.I® is continuous on
X ogeoe s X P . 1 . i
1 n i=1 i=1 ’
(Bx*, weak*). Let ¢ ¢ C(Bx*, weak*) be the family of all such ¢Xl,”.,x 's.
n

® is a convex cone. What's more, because HP(T) is what it is, each
¢ € & achieves a non-negative value somewhere on (BX*' weak*). Therefore,
® is disjoint from the convex cone N of all continuous functions

Y on (BX*' weak*) that're eVerywhere negative, a set with non-empty
interior. It follows from the Hahn-Banach theorem that there is a

U e C(BX*' weak*)* such that

_ u(¥) < 0 < u(¢)
for all YeN and all ¢ € @ . Plainly we can assume lul = 1. since
u(p) < 0 for all YeN , yu is a non-negative Borel measure on (BX*' weak®) ;
ful = 1 just says 1 is a probability measure. Checking 0 < u(¢) for

¢ = ¢X finishes the proof.

§2. More examples of absolutely p-summing operators

In this lecture we give some more examples of absolutely p-summing
operators . To begin, we show that the absolutely 2-summing operators
between Hilbert spaces are precisely those operators of Hilbert-Schmidt
type even up to coincidence of norms. Then we employ Khintchine's inequalities
to show that the natural inclusion map of 21 into 22 is absolutely
l-summing; since every Hilbert-Schmidt operator admits this natural

inclusion as a factor, the ideal property of absolutely l-summing operators

alerts us to the fact that Hilbert-Schmidt operators are always absolutely



l-summing. Finally, we note that, thanks to the Grothendieck-Pietsch
domination theorem, absolutely p-summing operators are always weakly
compact and completely continuous, features of the class that are any-thing
but obvious from the definition. One upshot of this observation is a
transparent proof of the celebrated Dvoretsky-Rogers theorem: the identity
operator on an infinite dimensional Banach space is never absolutely

p-summing for any 1 < p < o,

Example. If H and K are Hilbert spaces, then 1i,(H:K) coincides with
the class of Hilbert-Schmidt operators from H to K; moreover, the

o norm and the Hilbert-Schmidt norm are the same.

To establish the above claim, it's convenient to recall a few erstwhile
facts about the Hilbert-Schmidt operators. Let H, K be Hilbert spaces
and T : H-+ K be a bounded linear operator. We say T is a Hilbert-

Schmidt operator if for some complete orthonormal system (ei)ieI in H,

) llTe llI?<=; it is not too difficult to establish that if T is a Hilbert-
i
Schmidt operator then 2 HTeill2 < o for every complete orthornormal system

1

) for H and that the sum 2 ”Tei”2 is the same regardless of the
i

(€3)jer

1
choice of (ei)iel' The number o(T) = (Z“Teinz)2 is called the Hilbert-

Schmidt norxrm of T. Every Hilbert-Schmidt operator is compact and admits
of a representation in the form an<<. B en>fn for some (An) € %, and
n

some orthornormal sequences (en) and (fn) in H and K vrespectively with

“(An)uzcoinciding with the Hilbert-Schmidt norm of the operator.

Suppose T : H > K 1is absolutely 2-summing. Let ej, e, ..., e,

be orthonormal vectors. Then for any x € H

I l<x e >[2 <lxI2

by Bessel's inequality. Therefore,
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To(1) sup(( ) |xve,|2)ts skl < 1}
1

To(m) supl( § |<x, ;> [2F: lxl < 1}
i=1

To (0 sup{ (a2 Nzl € 13 = Tmp(m).

A

It follows that T is a Hilbert-Schmidt operator and o(T) < Io(T).

Now suppose T is a Hilbert-Schmidt operator and represent T in
the form
Ty = ékn <x, en> fn '
where (A ) € Ly with o(T) = H(An)uz and with (e ) and (£)

orthonormal sequences in H and K respectively. For any x € H we

have
Iz = T3, ]2 (<0 o> 12,
so for Hys eeoe Xy € H we see that
k, k
izl = 112 = E [A,12 i£l|<:xi, e >|?

k
s o%(m sup{ | |<x;, u>|?% ¢ llul s1}
i=1

Therefore, T e llp(H; K) and Mo(T) £ o(T).



The prototype for several of the most striking results in the theory
of absolutely p-summing operators is the following fact, itself an

interesting interpretation of Khinchine's Inequalities.
Example. The natural inclusion &1 <% 18 absolutely I-summing.

Let xl,...,xn € %1. Then

Dlegll =0 (] %y
i i k
c

where (rk) denotes the sequence of Rademacher functions,

1
C ZJ |} %, z, ()] at
R

1]

1
. t dt
c foyz w7 (0 ]

L

)

But given O < t £ 1, (rk(t» belongs to B so
ZIZ Xy rk(t)|é sup{é.lx*xil : x* ¢ BQm} .
i

Therefore

1
g Izl <c L)E‘ E %y T (6) | dt

A

1
c L)sup {g ]x*xil : x¥e Blm} dt

* . * =
C sup{ Z lx Xil . xX* € Blw} c ”(xi)Hweak
i 21
It follows that &; <%, is absolutely l-summing and has Ij-norm < C.
Every Hilbert-Schmidt operator admits the natural inelusion 21 S»ip

as a factor.

Let T : H+ K be such an operator. Then these are sequences
(kn), (en) and (fn), in %9 , H and K, respectively, for which
T = Z An‘<x,en > £
where o(T) = H(An)nz and (én), (fn) are orthonormal. Define

T, : H=+> 47 by

1
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T x = (}\n<x, en>) ’

and note that

oy = 110w o> | OISR, o>z

so that "Tl” <0(T). Define Ty: % >K by

T, (M) = rilun £ .

and note that "T2" < 1. Plainly T is naught but T composed with

1
ll c+22 followed by T

5
Corollary. Let H,K be Hilbert spaces and 1 <p < 2. Then

HP(H; K) = HS(H; K) = HZ(H; K).

Proof. We've already commented on the fact that HS(H; K) = Ip(H; K) and
on the inclusion of My (H; K) in Tp(H; K). Now if T : H-> K is a
Hilbert-Schmidt operator then there exist bounded linear operators

L:H->Q; and R : & = K such that the diagram

T
H - K

Ll IR
2y S &2
commutes. Since Q1 < %, is absolutely l-summing so too is RS L = T.
We remark that the above offers an interesting mapping property of
Hilbert-Schmidt operators unknown to their earliest proponents, namely,
Hilbert-Schmidt operators take unconditionally convergent series into

absolutely convergent series.

Now for a really informative insight into the structure of p-summing

operators we prove the following remarkable result.



Theorem. Let 1 < p <« . Then every absolutely p-summing operator

18 weakly compact and completely continuous.

Proof. Let S € HP(X; Y). By the Grothendieck-Pietsch domination theorem
there is a regular Borel probability measure U on (BX*' weak*) such

that for any x € X

llsxll < I (s) ([ |x#x|® au (x*)) e
Bya

Suppose we consider elements of X as functions defined on B because

xx !

each x is weak* continuous on B the above inequality can be read as

x*!

follows

sl < np(s) HX(‘)HLP(u) .

In other words, S acts as a bounded linear operator from (X, Lp(u)—
topology) to Y; on completing X in Lp(u) and extending S to the

resultant Banach space Xp we have the following factorization:

e}
X

\
where g is the unique bounded linear extension of s to xp. It's the
inclusion map X C+XP that we're interested in because it is weakly
compact and completely continuous.

X c.>XP is weakly compact. If 1 < p < =, then this follows from
the reflexivity of Lp(p) and the attendant reflexivity of its closed
linear subspaces. If p = 1, then the fact that the inclusion map of X
into Ll(u) has to pass continuously through Lz(u) on its way ensures
its weak compactness and hence that of X C+Xl.

X G¥Xp is completely continuous. Indeed, if (xn) is a weakly null
sequence in X, then for all n and all x* € By, , Ixn(x*)l < sup”xn” < @

and for all x* ¢ BX*' lim x, (x*) = 0; it follows from the Lebesgue

n
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Bounded Convergence Theorem that 1lim Il x ”p = 0.
n

Corollary. If 1 <p<w and Te HP (X; %), then T2 4is compact.

Proof. If (xn) is a bounded sequence, then (Txn) has a subsequence
(Txé) which is weakly convergent; therefore, (TZXQ) = (T(Txﬂ)) is

norm convergent.

Dvotetsky-Rogers Theorem. Suppose for some 1 < p < = we have Z|x*xn|p <

for each x* ¢ X* implying that ) "xn"p <o , Then dim X < o .

Proof. If ) "anp < ® holds whenever )|x*x |® < = for each
I n

n n
x* € X*, +then the identity operator id : X+ X on X is absolutely
p-summing. It follows that id? = id is compact. But the classical

Riesz lemma assures us that the identity operator on a normed linear

space is compact only in case of a finite dimensional space.
Actually, a bit stronger statement about composing operators can be

said.

Corollary. If T € Hp(x; Y) and S € Hq(Y; Z) for some 1 £ p,g < ®,

then ST 1is compact.
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§3 A few more applications of the Grothendieck-Pietsch theorem

This lecture provides several additional applications of the
Grothendieck-Pietsch theorem. Hints as to the breadth and depth of usage
to which this wonderful theorsam can be put might be gleaned from this last
truly introductory lecture.

We start by introducing the important notion of cotype 2. After
observing that Hilbert spaces have cotype 2, we follow Bernard Maurey to
the conclusion that absolutely p-summing operators into such spaces are
2-summing for any p > 2. We then close the circle of ideas concerning
Hilbert-Schmidt operators by showing that this class coincides with the
p-summing operators for any p 2 1. Next, we take up an extension property
enjoyed by the absolutely 2-summing operators. After recovering from the
surprise discovery that regardless of the geometry of a finite dimensional
Banach space E the identity operator on E always has 2-summing norm
equal to the sguare root of E's dimension, we continue to follow Stan
Kwapien's lead in proving that every n-dimensional subspace of a Banach
space is the range of a linear projection of operator norm not exceeding
/n. This is the famous theorem of Kadec and Snobar.

A Banach space Y is said to have cotype 2 if there is a k 2 O

such that given yj,..., v, € Y, then
1

n ! n )
] 2t s x(f 1) r @2 e
i=1 0 i=1

where the ri's are the usual Rademacher functions. The least k 2 0
for which (*) holds for all yi,..., v, € Y is called the cotype 2
constant of Y and is denoted by c¢3(Y).
It is a classical result of W. Orlicz that if 1 < p < 2, then
Lp(u) has cotype 2 for any measure p. Naturally, Khintchine's inequalities
play a significant role in Orlicz's theorem and we recommend Orlicz's

paper be read. However, at this moment we will have to contain our
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enthusiasm and be happy with the following.

a

Theorem. Hilbert spaces have cotype 2 with cotype 2 constant = 1.
Proof. Let hy,..., hn be members of the Hilbert space H.

Then

1 n n

Jo < ] ro)ng, _2 r; (t)hy > at
i=] i=1

n
2
f \lizlri (t)nlI% at

1 p

.. 2 r () () < by, hy> dt
i,j=1

1
hj >f0 ri(t)rj(t) dat

it

~13
A
=

1
because f ri(t)rj(t) dat
0

[l
o

The importance of spaces having cotype 2 derives, in part,

from the following.

Theorem. Let Y be a Banach space having cotype 2. Then, for any p > 2
and any Banach space X ,

X; Y) = X; Y).
Ty ( ) Hp( )

Proof. Suppose T ¢ HP(X; Y). By the Grothendiech-Pietsch Domination
Theorem, there is a regular Borel probability measure u on (BX*' weak*)
such that for each x ¢ X
1
Irxll < HP(T) {J | x#x pld (x*) /P .

Bya

Let (xn) be a finitely non-zero sequence of members of X. Since cz(y) is

the cotype 2 constant of Y
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P 0’B,, 3 3
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P By, /0 3 3
1 1/p

* *

c.(¥) T_(T) j { J IV r.(e) x x| at]  apx),
2 P B 0 3 3
X*

A

which by Khintchine's inequality is

A

* % *
c. (YY) I (T) a O |xx.]? dp(x
L0 T pJB2l3|)u()
for Some ap > 0. This in turn is

S o, 1 a e e
2

ak
It follows that T € H2(X; Y) with
<
HZ(T) < c2(Y) HP(T) ap

Since HZ(X; Y) ¢ hp(x; Y) wherever p 2 2 we have completed

the proof.

The above result is due to Bernard Maurey and is but a small

part of his analysis of spaces with nontrivial cotype.

Corollary. If H and K are Hilbert spaces, then for any pz2 1
the class of absolutely p-summing operators from H to

K coincides with the Hilbert-Sehmidt class.



Indeed we saw in §2 that all the Hp's coincide with HS for
1spg2 and in §1 we noted that if p 2 2 then H2 is contained in
HP; all that remains is to notice that Maurey's theorem in tandem with
the cotype 2 character of Hilbert spaces gives us equality of HP with

H2 for pz 2.

A small remark ought to be made here. As we remarked in §2 the
theory of absolutely p-summing operators uncovered new mapping properties
valid for Hilbert=-Schmidt operators, namely if 1 £ p < 2 then Hilbert-
Schmidt operators take weakly p-summable series into strongly p-summable
series. In light of the developments of this chapter, we are now able
to give very weak conditions that will ensure a given operator between
Hilbert spaces is of Hilbert-Schmidt type: if for some p > 2, “an
operator between Hilbert spaces takes weakly p-summable series into

strongly p-summable series then it is a Hilbert-Schmidt operator.

On the way’to polishing off the next gem an interesting variation

on the principal example of §1 presents itself.

Example. Suppose (%, Z, W) is a probability space and 1 £ p < =,
Then the natural inclusion map of L_(w) into Lp(u) 18 absolutely

p-summing with p-summing norm = 1.

This is a consequence of some magic derived from M.H. Stone's
representation theorem for Boolean algebras. Recall what this wonderful
theorem says: if A is a Boolean algebra then there is a compact
Hausdorff totally disconnected space Q such that A is isomorphic

as a Boolean algebra to the Boolean algebra A of all simultaneously

closed and open ("clopen") subsets of 5.
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What's Stone's theorem got to do with us? Well, take the o-algebra
Z; it's a Boolean algebra possessed of a special ideal N = {aA € E:u(A) = 0}.
If we factor N out of 2, then we get a new Boolean algebra A = Z/N
wherein two members from Z Zind themselves in the same coset if the
measure of their symmetric difference is 0. Notice that u can be viewed
as acting on A, too; after all, if A, B € 2 are sent to the same cosets
modulo N, then wu(2a) = u(B). View u as acting on A. Apply the Stone
representation theorem to A and find a compact, Hausdorff, totally
disconnected space 5 whose algebra ; of clopen subsets is isomorphic

as a Boolean algebra to A; if A € A then denote by A its isomorphic

-

image in A. So far we've done little but complicate the situation. The

magic is about to begin.

n
Start with a simple function 2 a; XA in L_(u); suppose
i=1 i

Al, ces 4 An are pairwise disjoint sets of positive measure. Look at

~

n
2 a; Xﬁ;it's~continuous on {. Because two simple functions in L_(u)
i=1 i

are regarded as the same in L_(u) only when they agree except on a set

1 .

n n
of N, the mapping J_ that takes 2 a, X to Z a; Xﬁ is well-
i=1 i i=1 i

. n
defined. Observe that the Lm(u) norm of z ai XA is just
=1 i

i
n A
sup. . . |a.| as is the norm of Z a, X2 in C(f). In other words,
1sisn'"i i=1 i A

J, is an isometry. Now simple functions are dense in Lw(u) so J
extends to an isometry of all of Lw(p) into C(ﬁ) whose range contains
all functions on { of the form '§1 a, Xﬁ,7 for notational sanity we'll
denote this extended isometry by 3;, too.l Okay, let's look at the

range of J_: as an isometric image of a Banach space, it's closed.
But here's the punch-line: the collection of functions of the form

n

2 a; Xﬁ . i.e., the image under J_ of the simple functions in Lw(u),
i=1 i

~

is an algebra of continuous functions on § that contains the constants
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and, thanks to ﬁ's total disconnectedness, separates points; moreover,
in case the scalars are the complex numbers this algebra is self-adjoint;
therefore the range of J_ is dense in C(@) by the Stone-Weierstrass
theorem.

J_ 1is an isometric isomorphism of L (u) onto c@.

No, we haven't forgotten about Lp(u). Recall that u can be viewed
as living on A; if we define 1 on ; by ﬁ(g) = pu(A), then it is
quickly established that ﬁ is a bounded additive measure on ﬁ with
non-negative values (the same values that u has) and total mass 1.

What's more, ﬂ is plainly regular and countably additive! Think about its:
regularity is trivial because all of ﬁ's arguments are already both compact
and open, while countable additivity follows from the fact that there can
only be finitely many disjoint clopen subsets of the compact Q whose

union is also clopen {(hence compact). We can extend ﬁ to the Baire

o-field of & in a unique fashion reserving regularity, countable addi-
tivity, non-negativity and total mass as we do so. Again we can extend this
extension in precisely one regular, countably additive fashion to the Borel
o=field of ﬁ; the result of this extension work is a regular Borel

probability measure ﬁ defined on Q. Regularity ensures, by the way , the

density of C(f) as a linear subspace of Lp(ﬁ). Now we're in business!

n
Take a simple function z a; Xﬁ in L_(u) and consider its counterpart
n A i=1 i P
2 a, Xa in C(Q). Compute their L_-norms.
. i A, P
i=1 i
n n
: 1/p
I Ya, 1 = (] la[Pua)
i=1 * AP i=1 * *

1/p

I Ta, %0 = (1layl 3y
ip i=1

i=1

{(we're assuming the Ai's, and hence the ﬁi's, to be proved disjoint).
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n

= (A, - £ .
Because u(Ai) u(Al) the LP norms o iglal XAi

n n
and 2 a. Xa coincide. Therefore the map J_ that takes z a, X in
e P im bRy

n
Lp(u) to Z a; Xﬁ in LP(C) is an isometry. By density of simple
i=1 i

functions, JP can be extended to an isometric embedding of Lp(u) into

L (ﬁ) whose range contains a dense linear subspace of the dense subspace
C(ﬁ). Therefore, Jp's exténsion, still denoted by JP' is an isometry of

Lp(u) onto Lp(ﬁ).

To conclude we need but realize the commutativity of the following

diagram;
L (wWe——01Hs Lp(u)
J, J-l
p
el e Lp(ﬁ)
The inclusion c(f)) s Lp(ﬁ) is absolutely p-summing with p-summing
norm = 1; this we know from §1. Both J and J;1 are isometric hence

have norm one. The rest follows from the ideal property of HP.

We're ready for this next result

Theorem. Let T:X + Y be absolutely 2-summing. Suppose X 1is a closed
linear subspace of Z. Then T admits a linear extension

S:2 + Y which is also absolutely 2-summing with I, (s) = M,(T).

Proof, By the Grothendieck-Pietsch domination theorem, there is a regular
Borel probability measure u on (Bx*, weak*) such that

Il = 0 I,

holds for each x € X. As in §2 we see that if X2 is the closure of X's

image in Lz(u), then the inequality above allows us to "extend T" to an

operator %:X2 + Y with "T" s H2(T).



Diagramatically

T
X ——t ¥
%)
Now X2 is a closed linear subspace of Lz(u), a Hilbert space. As such
X2 has an orthogonal complement xé; we can extend T to all of Lz(u)
R . 1 .
simply by defining it on X to be zero. Now we have the diagram above,

2

on suitable modification looking like this:

T
X e Y
L, (1) &— Lz(“)

where X c—» Lm(u) is the isometric embedding x =+ x(.), Lw(“)c“'Lz(”)
is the absolutely 2-summing natural inclusion which as an ordimary bounded
linear operator has norm one and T  is a bounded linear operator with

"TH s H2(T). Don't take our insexrtion of Lw(u) into the above diagram

too lightly.

Why? Well, Lm(p) is a very special Banach space. .Suppose for the
moment that all the spaces under consideration are real Banach spaces.
Then Lw(“) has a lattice structure as well as peing a Banach space; it
is easy to see that as a lattice Lw(u) is Dedekind complete, i.e., every
bounded set in L_(u) has a least upper bound in L_(u). Moreover, the
closed unit ball of Lm(u) has a biggest element, the constantly 1
function. Now peak at the standard proof of the Hahn-Banach theorem BUT
allow yourself the freedom of operators, instead of functionals, with values
in L_(u). With the aforementioned comments on L_(u)'s Banach lattice

structure clearly in mind, you will soon convince yourself that operators
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into L_(M) can be linearly extended from subspaces to superspaces with
nary an enlargement of norm. In case you're in the complex setting, try to
apply the old Sobczyk trick used in deriving the complex version of the
Hahn~Banach theorem; with proper atﬁention to details, it works! To sum up
the special character of L, _(.) is highlighted by the following:

1f X 18 a closed linear subspace of the Banach space 2z and u 1§ a

bounded linear operator from X into L_(u), then there is a bounded

linear operator wv:z + L_(u) for which le =u and |v| = lu

Apply this message to the diagram

T
T
X &= L (1) & L, () — Y
a
4
o,
L
, E
z

extending X‘“‘Lm(u) to the norm one operator E:Z + L_(u) we get the
absolutely 2-summing operator T o [Lw(p)f=—>L2(u)] 0 E which extends T

and has 2-summing norm = HZ(T)‘ thanks to the ideal structure of H2.

Next, we present a surprising and beautiful computation, due to

Stan Kwapien.
Example: JIf E 4s a finite dimensional Banach space, then Hz(id'E) = Ydin E.

First, we'll show that given x cee X € E, then

1’

7 R S 3
() 1x.01*)* s V/dim E sup ( z [x% %, |2)%;
i=1 * I 1 C

w*| <1 i=

this will show that H2(idE) < Ydim E. Let Kyo oo X be given.

m
. m .
Consider T.Ez + E given by T((al, cee am)) = .z a; X,.
i=1
It is plain that T*:E* » (K?)* = K? exhibits the following behaviour

T x* = ((x* Xis eee g X* xm)).
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Therefore,

Iz = o] = sup| [ T* x| 5

| s

I %,

= SUP“ X*li <1 1 seoe g x* Xm)u 2

3 3
* 2
sup“x*”él(.x B
i=1
a quantity to be reckoned with. Now consider the diagram (and its con-

sequences) :

T
m ~ .
Kz E nz(T)‘= HZ(T 1d£d Q)
2
. 5 sloln, Ga ol
2
e 7 el v
I
£c21 s|z| /aim E

where an understanding of the diagram and the accompanying computation may
well be aided by the remarks that O is the natural quotient of Kg onto
the factor space Zg/ker T (and so has norm 1) and T is the 1-1
linear operator induced by T on that factor space (thereby ensuring &
has the same norm as T). It follows that, |

m 3 m 3
L l=%0% = ] e, %)

i=1 i=1

IA

m
%
H2(T) sup”e*" < 1(.2 le* eilz)
" i=1

2

HZ(T)

A

] /dim E

m
vdim E . Sup" x*“SI( E Ix* xi‘2)§
T i=1

VOILA!
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To prove the reverse inequality, we apply the Grothendieck-Pietsch

domination theorem to

Hausdorff space

operators

K,

i:E + C(X),

o
%

a regular Borel probability measure

the result is that there is a compact

J:C(R) eI, (1)

u

‘ii”, H2(j) 1 and |G| = H2 (idB). Pictorially, we have

Reflecting on these implicitly defined operators, we see that

vdim E

Corollary (Kadec-Snobar). If

Banach space X,

E for which |g|

E

A

A

A

<

.

on K and

and G:Lz(u) - E with

Hilbert-Schmidt norm (id ai )

H2 (id

2

. (a A-l)

1, @) |a7)

n, (31) Jef
1l m, ) lel

Hz(idE).

. )
Ldlm E

im E
2

is a finite dimensional subspace of a

then there exists a linear projection P of X onto

<

Ydim E.
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Proof. We know that the absolutely 2-summing operator idE : E~> E can
be extended to an absolutely 2-summing operator P : X - E with
H2(P) s Hz(idE) = Vdim E; of course, P is the sought-after

projection.
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