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THE MALLIAVIN CALCULUS AND LONG TIME ASYMPTOTICS
OF CERTAIN WIENER INTEGRALS

Nobuyuki Ikeda, Ichiro Shigekawa and Setsuo Taniguchi

1. INTRODUCTION

The asymptotic behavior of stochastic oscillatory integrals has
recently received much attention in the probabilistic literatures and is
closely related to various problems in the analysis and applied mathe—
matics, (cf. [3],([4],[61,[5],[10]1,[141~[17] and [19]). 1In particular,
in order to study asymptotic properties of stochastic oscillatory
integrals, Malliavin [17] has used the stochastic calculus of variation.
Gaveau and Moulinier [5] have also been interested in similar problems.
The main purpose of this paper is to complete in detail the proof of
Malliavin's results which was sketched in [17]. To do this, as is shown
in the section 5, we need some considerations which are not discussed
in [17], (see Propositions 5.1 and 5.2). We will also give a slight
extension of some results in Malliavin [17].

Let us consider a smooth Riemannian metric g on Rd which
is uniformly elliptic and bounded, (see Assumption 2.2). Then there
exists the diffusion process {X(t),Px,x S Rd} generated by half the
Laplace-Beltrami operator Ag/2 with respect to g . For every smooth

differential 1l-form 6 , we set

K (x,y;0) = Ex[exp{Vcij 8} |x(t) =yl

(1.1) x[0,¢]

for (t,x,y) € (0,») x Rd X Rd
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where Ex['|X(t) = y] denotes the conditional expectation with respect
to the probability PX given X(t) =y and
[
xX[0,t]
is the stochastic line integral of 6 along the curve X[0,t] = {xX(s) ;

0

A

s <t} , (see [8] and [9], for details of the definition). We are

interested in the asymptotic behavior of a(t;6) defined by

(1.2) a(t;8) = sup |Kt(x,y;6)|
xryéR

as t —>» ., In this paper, from now on, we always assume the

following:

ASSUMPTION 1.1 (i) . The derivatives of all orders (2>1) of 8, (x) ,
i=1,2,*°¢,d are bounded where ei(x) , 1 =1,2,°°¢,d are the

coefficients of 6 with reépect to the basis dxl , 1= 1,2,°°°,4 .

(ii) There exists a positive constant C such that

(1.3) ||de||2(x) >cC for x€rY

where l-ll(x) denotes the norm on T;(Rd) ()'r;(Rd) with respect to g .

ASSUMPTION 1.2 1ret &8 be the adjoint operator of the exterior

differential operator d with respect to g . We assume that
(1.4) 66 =0 .

The physical meaning of this assumption combining the integral (l.l)
in the theory of electro-magnetic fields can be found in [4] and [23].
The result of Malliavin in [17] is as follows: In case when ¢
is the standard flat metric on Rd , under some appropriate conditions,

a(t;0) decays exponentially as t —> ® , i.e.,
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(1.5) - 1im% log a(t;8) < O .
>0

By using the stochastic calculus of variation called the Malliavin
calculus, Malliavin gave a program of the proof of (1.5) and a sketch
of details. In this paper, we will show how one can obtain an extension
of Malliavin's result based on ideas of the partial Malliavin calculus,
(see Section 3). We will also give full details of the proof of
Malliavin's result in [17]. Our analysis relies heavily on tﬁe theory
of partial Malliavin calculus. In particular, we will use the integra-
tion by parts formula with respect to the conditional expectation on the
Wiener space.

The organization of this paper is as follows: In Section 2, we
will reformulate our problem in terms of Wiener integrals and state
main results. In Section 3, we summarize the basic notations and results
in the theory of the partial Malliavin calculus. It should also be noted
that these are useful themselves in the study of various problems.

In Section 4, for every positive N , we will evaluate the quantity

sup |Kt(x,y;9)! .
x,yeR", |x-y | <N

The section 5 will be devoted to the proof of (1.5) in case when g is
the standard flat metric on Rd . Finally, in Section 6, we will prove

Theorem 2.1, by combining the results obtained in Sections 4 and 5.

2. MAIN RESULTS

1 2 ) a
Let (x ,x ,°-',xd) be the standard coordinate of x in R and

we denote by aj ;, J = 1,2,°°¢,4d , the vector fields on Rd
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3 .
_.5. ’ J=l,2,"‘,d.
Ox
We set ’
d AN
glj(x) = gx(ai,aj) ’ x ER A i,j = 1,2,¢°,d .

In this paper, we always assume the following:

ASSUMPTION 2.1 (i) The Riemannian metric g is uniformly elliptic and
bounded in the following sense: For some positive constant K ,
d

(2.1) el = g med
i, =1 *J

x|g|?

fin

1 2 d
for x € Rd and £ = (E,E ,°°°,£ ) € Rd .

(ii) gij(x) , 1,3 =1,2,°¢¢,4 and their derivatives of all orders

are bounded.

In order to apply the Malliavin calculus to our problem, we have to
rewrite the quantity Kt(x,y;e) given by (1.1) in terms of Wiener
integrals. To do this we first summarize some of basic facts in the
stochastic analysis, (see [9], for details). We denote by O(Rd) the
bundle of orthonormal frames on the Riemannian manifold (Rd,g) and let

T :O(Rd) —_— Rd be the natural projection. Let {Ll,L ---,Ld} be

2'
the system of standard horizontal vector fields on O(Rd) with respect
to the Riemannian connection V on (Rd,g) . We now consider the
following stochastic differential equation on O(Rd) of Stratonovich's
R . . . a 4, W
type defined on the d-dimensional Wiener space {WO,B(WO),P 1o
d

(2.2) ar(t) = Z La(r(t))°dwa(t)
a=1 :



50

where Wg denotes the space of all functions w: [0,0) ——> Rd with
w(0) = 0 and Pw is the d-dimensional Wiener measure. ILet ‘{r(t,r,w);
t > 0} be the unique solution of (2.2) with initial value =z(€ O(Rd)) .

We set

(2.3) X(t,r,w) wlr(t,r,w)) .

The stochastic line integral of © along the curve X([0,t]l;x,w) ,

(given by {X(s,r,w);0<s <t} ,

6
'[X([O,t];r,w)
can be decomposed in the following form:
a rt_ o 1 t
(2.4) f 6= 2 J. 0, (x(s,r,w))aw (s) = —2-f §6(X(s,r,w))ds
X([0,tl;x,w) =1 ‘0 0

where 8 = (8 ,5 ,---,5 ) denotes the scalarization of 6 , i.e.,
1’72 da

§i(r) = e(ei) for r = (x,[el,e ---,ed]) € O(Rd) ’

2'
(see [8] and [9]). By the assumption 1.2 and (2.4) we have

a ot .
(2.5) 6= 2 J ea(r(s,r,w))dw (s)

fX([O,t];r,W) a=1l ‘0

By using similar arguments as those in [9], Chapter V, it is easy to

see that the image measures on Wd and Wd+l of PW by the mappings:
(2.6) Wg 2w —> {X(t,r,w);0 £t <®} € w"1

and

(2.7) Wg 2 w—> {(X(t,r,w),u + f "~ )50 <t <‘ ©} & wd+l

X([0,t]ir,w)
depend only on x = w(r) and (w(x),u) respectively. Here W' denotes

n .
the space of all continuous functions w : [0,°) —> R . Letting
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x = m(r) , we denote above measures by Px and Q(x u respectively.
4

)
Then we have the system of diffusion measures ‘{Px;x € Rd} generated
by half the Laplace-Beltrami operator Ag/Z . It should be also noted
that the quantities which we will evaluate depend only on the laws of
stochastic processes given by (2.6) or (2.7) and those of stochastic
processes induced by their functionals. Since these laws depend only

on (m(x),u) , for simplicity we use the notations {X(t,x,w);0 <>t < »}

and {(X(t,x,w),u + J ' 8)} to denote the stochastic processes
X([Olt];xlw)
given by (2.6) and (2.7) respectively. Now the kernel Kt(x,y;e) st 20,
x,y € Rd defined by (1.1) can be rewritten in the following form:
W
(2.8) K (x,y;0) = E [exP{/——l-J 8} x(t,x,w) = y]
: X([olt];xlw)

w
where E [ -

X(t,x,w) = y] means the conditional expectation with
. W . .
respect to the Wiener measure P given X(t,x,w) =y . Furthermore it

holds that

(i) for every smooth exact differential 1-form a ,

(2.9) |k, (x,y:0)| = [K (x,yi0 + )| , xy€E &S,

v
o

(ii) for every ¢t,s >

Kt+s(x,y;6)p(t + s,%,y)
(2.10)
= j 5 Kt(x,z;e)p(t,x,z)Ks(z,y;e)p(s,z,y)m(dz)
R
where p(t,x,y) , (t > 0,x,y € Rd) , denotes the fundamental solution

with respect to the Riemannian volume m of the heat equation on the

d
Riemannian manifold (R ,g)

ou _ 1
(2.11) vl Eﬂgu .
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REMARK 2.1 We note that the semi-group relation (6.7) in Ikeda-
Watanabe [10] (also the line 16 of page 25 in Malliavin [17]) should

be read as (2.10) mentioned above.
Before stating the main result, we have to introduce an assumption.

ASSUMPTION 2.2 There exists a compact set D in R4 satisfying the

following:

(i) The Riemannian metric g coincides with the standard flat

R d . .
metric in R outside of D , i.e.,

(2.12) gij(x) = 5ij for x¢D, i,j=1,2,°°°,d4 .

(ii) There are positive constants a; i=1,2, (al ;:a2) ’
such that for every n € Sd-l we can find a number B satisfying the

following

2
(2.13) 0 < a; ;=<Ys,n> (z) = a, for every z¢?D,

where

Ya,B(z) = (8,05 = 358.)(2) , 0,8 =1,2,°0,d
(2.14)

B

1 2 d d-1
(z)n + n=(m,n ,°°°,n) €8

a
<y n>(z) = 2y

g=1 B

and Sd_l denotes the (d-1)-dimensional unit sphere, i.e.,
d:
S

Lo tiner?, n] =1} .

REMARK 2.2 It is clear that

de(x) = z Y.‘(x)dxl/\dxj , x ER .
lgi<jea Y
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1 2 el d-
For every n = (n",n ,°*°,n ) €5 1 , we consider the vector field A

defined by
d 4
() ='E N, -

Then, letting i(An)de be the interior product of the vector field A
and the differential 2-~form d6 , we have
. 1 3j
i(a )dd = -= 2 <y,,n>(x)dx" ,
n’ o 240 3

(cf. [20]).
We now are in a position to state our main result.
THEOREM 2.1 Under Assumptions 1.1 ,1.2,2.1 and 2.2, it holds that

1
(2.15) ) lim E-log a(t;0) <0 .
Ty
REMARK 2.3 As shown in Section 4, we use only the assumptions 1.1 ,1.2

and 2.1 in some parts of the proof of Theorem 2.1.

REMARK 2.4  Under the assumption 2.1, the condition (ii) of Assumption
1.1 is equivalent to the following: There exists a positive constant
C' such that
el
(2.16) z v B(x) >c' for xE€ER .
a,=1 %
In fact, this can be proved as follows: By the assumption 2.1,

. . i
we can choose a positive definite symmetric matrix (aj(x)) such that

.. d . .
1] 1 J a
g (x) = Z (x)a”’(x) for x€R
o1 At x A

where (glJ(x)) is the inverse matrix of (gij(x)) . Then it follows

from (2.1) that for some positive constant K ,



54

A

1 2 d 2 d
2.1n el 2 Z| Eak(x)F,I < k|g| for £ = (EjsEyttiEy) ER L

k=1 i=1l

Therefore (2.16) implies that for x € Rd B

2 d a d d i P
lael“(x) = Z Z (2 Za (x)a (x)y, ; (x))
npl n=1 i=1 j=1 m

1 d d a i 2
zE T 2 Eam(x)Y (%)) (by (2.17))
m=1 j=1 i=1
p & ¢ 2
25 z Z yi.(x) (by (2.17))
K i=l j=1 ]
2
> C'/K” . (by (2.16))
This implies (1.3). Conversely we now assume (1.3). Letting
(6] (x) = (a;.'(x))-l , we have
d d
2 2 d
2.1 e’ < 3| Eb;'(x)sl <x[g]® for £= (g enEy ERTL
k=1 i=1
Hence we have, for x € Rd ,
d : d d d d d
2 oy mis 2 (2 2 3 2 pleplmamaty, e’
i,9=1 %I i,5=1 n=1 m=1 k=1 ¢=1 * 3 ’

1 d d [} d o ‘2
> —3- X Z(Z Z a; (x)a (x)y (x))” , (by (2.18)),.
i=1l j=1 m=1 n=1 *

> o/ , (by (1.3)),

which implies (2.16).

REMARK 2.5 In 2-dimensional case, the condition (ii) of Assumption 1.1
implies the condition (ii) of Assumption 2.2. In this case, it holds

by (2.13) that

1]
‘%?- for x €ER .
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Hence, for every n € S1 ’

L
<Yl,n>(x) ;CT for x €R

oxr

d

Cl
<Y2:n>(x) T for xER,

v

which implies (2.13). In general case, the condition (ii) of Assumption
2.2 is not natural in a sense and 'is technical. In case when g is the
standard flat metric in Rd , Malliavin [17] has discussed the above
problem under Assumptions 1.1 and 1.2. As will be shown in Section 6,
in many cases, without assuming the condition (ii) of Assumption 2.2,
(2.15) still holds. However, in such cases, in order to prove (2.15)

we need different arguments from those given in the section 5. For
example, the following shows that in case d > 3 , the condition (ii)

of Assumption 1.1 does not imply, in general, the condition (ii) of
Assumption 2.2,

EXAMPLE 2.1 et d >3 and 2 < d; <d . ILet us consider a smooth
differential l-form 6 on Rdl satisfying the assumptions 1.1 ,1.2

and the condition (ii) of Assumption 2.2 in case of the dl—dimensional
Euclidean space Rd . 6 can also be regarded as a smooth differential
1-form on Rd and it satisfies the assumptions 1.1 and 1.2 on the
d-dimensional Euclidean space Rd . However it does not satisfy the
condition (ii) of the assumption 2.2 on Rd . It is not hard to show

(2.15) in this case. The proof can be reduced to the estimate in the

case of dl—dimensional Euclidean space. For details, see Section 5.
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Before closing this section, we give one more remark. It is easy

a+1

to see that the system {Q(x u);(x,u) € R 7} defined above is a
7

. . d+ .
diffusion on R . . It is also not hard to show that the generator of

2
this diffusion is given by, for every f € Cé )(Rd X Rl) '

2
(2.19) Af(x,u) = %{Agf(x,u) + 2535(13(9) (x) £(x,u)) + ||6||2(x)—33 fx,u)
du

1
- se(x)% £(x,u) } for (x,u) € R x R

where b(6) is the vector field defined by

d d
GX(B) gx(b(e)x,B) for every B Tx(R ) , x €ER

(see [20]) and W6l (x) denotes the norm of 6 in T;(Rd) . As shown
in Section 4, under the assumptions 1.1 ,1.2 and 2.1 , the transition

d 1
probabilities Qf(t,(x,u),*) , £t >0 , (x,u) €ER x R , of the diffusion

1
9 % &'} have the smooth positive densities

: (S
{Q(x’u) i (x,u) €R
glt, (x,u),(y,v)) , £t >0, (x,u),(y,v) € Rd x Rl , with respect to the
measure U(dydv) = m(dy)dv on Rd X Rl . The diffusion

d

1
{Q(x u);(x,u) €R X R} is symmetric with respect to the measure 1 ,
7

i.e., for every t > 0 ,

(2-20) q(t,(X,U)I(Y:V)) = q(t, (Y,V),(X,u))

for every (x,u),(y,v) € Rd X Rl .

Then the kernel Kt(x,y;e) can be written in the form

qlt, (x,0), (y,v))av

(2.21) K, (x,y:6) = (p(t,x,y))_lJ oI
1

R
d
for £t >0, x,y ER .
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Hence, by the Feynman-Kac formula, it is easily seen that

Kt(x,y;e)p(t,x,y) is the kernel function associated to the operator

2
(2.22) HE =%A £ - % el “f + v-1<as,e> - -;— V=180F. .

g

For the physical meaning of these related to the electro-magnetic field,

see [4], [6] and [23].

3. THE PARTIAL MALLIAVIN CALCULUS

Before proceeding to the proof of Theorem 2.1, in this section, we
prepare the basic notation and results in the theory of Malliavin's
calculus which we need. These are a slight modification of some results
in [21], [12] and [10].

Let H be a separable Hilbert space with inner product <-,*>H
and we identify H* , the dual space of H , with H . We now fix an
abstract Wiener space {W,H,u} , that is, H is included in a separable
Banach space W as a subspace and the injection i :H ——> W is
continuous with the dense range. Also U is a Gaussian measure with

zero mean carried on W such that
2
I exp{vV-1h (w) }u(dw) = exp{—lh]H/2} for hEWCH*=HCW
W

where h(w) is the canonical bilinear form between W* (= the dual space

of W) and W and l-

- (cf. [7],[11] and [27]). 1In general,
let E be a separable Hilbert space. Then we denote by LP(W —> E,u)
= LP(E) ;s L £ p <, the usual Lp—space of py-measurable functions

F:W——>E with

"F"P = {fWIF(W) Igu(dw) }l/P < o
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1
LP(W-———é R ,u) is simply denoted by Lp(w,u) = Lp . A Wiener function-
1
al F:W-—>R is called a polynomial if there exist an integer n ,
elements 21,22,'-°,2n of W* and a real polynomial p(El,EZ,-'~,£n)

in n variables such that
F(w) = p(ll(w),lz(w),°~-,2n(w)) for any w€E€wW.
In this expression, we can always assume that

oty = 85 i, = 1,2,°°,n .

We denote by P the set of such polynomials. For a dense subspace E0

of a separable Hilbert space E , we set
0 .0 . . .
P(E") = {F;F:W —> E  which is expressed in the form

F.(w)e, for some n. , F, €EP and e, € EO} .
i i i i

n
Flw) = 2
l=

1
0 ) 0 ,

An element F of P(E’) is called an E -valued polynomial. As usual

in the theory of Malliavin's calculus we define the weak derivative D ,

the adjoint operator § of D and the Ornstein-Uhlenbeck operator L

on P by (3.2),(3.4) and (3.6) in Ikeda-Watanabe [10] respectively.

For details, see also Watanabe [27] and Sugita [25]. We define the

Sobolev norm H-Hp s ! l<p<w,sé€E Rl by
, =
s/2

F = I-1L F for F € P(E) .

I "p,s Il ( ) “P (E)
Set

D:(E) = the completion of P(E) by the norm ".“p < -
. ’
We use the same notation H-Hp s to denote the norm of D;(E) . We
[ .

define the Sobolev space Dm(E) over the Wiener space by
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U = N D%(E)
pzl,seR
and
D (® = U p°(®) .
p21l,s€R
Then D-m(E) is the dual space of Dw(E) , (cf. [25] and [27]). For

1 s © —co . s ]
E=R , DP(E) , D (E) and D (E) are denoted simply by Dp , D and

=00

D respectively. Then we obtain that the operators D,§ and L on

P(E) can be extended to the continuous linear operators:
o0 o
D:D () —>D (H®E)
§:D (H®E) —> D ()
L:D () —>D (8) ,

respectively. For detailed'properties of the Sobolev norm and the
Sobolev space, see Watanabe [27] and Sugita [25].

We now proceed to introducing the notion of partial weak deriva-
tives. Let us consider a family # of closed subspaces H(w) of H ,

i.e.,
(3.1) H = {H(w) ; H(w) : closed subspace of H , w € W} .

. B . .
Take a separable Hilbert space E . We denote by PH(W) the projection:
H®E —> HW) @E . For every F:W —>H®E , we define

PEF:W—-—-—)H@E by
B B
(3.2) PHF(W) = PH(w)(F(w)) for every w EW .

For simplicity, we often denote this mapping by PyE . In this section,

from now on, we always assume the following:
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ASSUMPTION 3.1 The family H satisfies the following conditions:

For every separable Hilbert space E ,
(i) Py;(BW;H®E) CBW;H®E) ,
(i) P,0"H@®E) CO HOE)

Here B(El'Ez) denotes the space of all measurable mappings:

F: El —_— E2 where Ei , 1 = 1,2, are separable Banach spaces.

DEFINITION 3.1 For F €P(E) and w €W , we define DHF(w) EHQRE

by

(3.3) <DgF (w) ,h ®e>H®E = ng(@(w + tPH(W)h) - Fw),e>./t)

for wWEW, h€EH and e €E .
By the definition of DH we have
LEMMA 3.1 (1) It holds that

(3.4) DF = PH(DF) for F € P(E) .

(ii) Let p>1. If FnEP(E) ’ Fn—-ﬁo in LP(E) and

D

g, > G in Lp(H@E) , them G =0 .

Proof. Since, for F € P(E) ,

<DF (w) ,h ® e> = lim(<F(w + th) - F(w) ,e>E/t)

HOE o

for wEW,h€E€H ,6e€E,

(3.4) follows from (3.3).
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We take FHEP(E) such that Fn-——>0 in LP(E) and

Dy, —> G in LP(H ®E) . Then, for every K € D (u ®E) ,

< > = 113 E[<D K>
E[<G,K H®E] n_l)g [ HFn' H®E]

Il;_l): E [<Fn,5 (PH.K) >g]

=0,

where E[°] denotes.the expectation with respect to the measure u .
Here we use the assumption 3.1. Hence G = 0 which completes the proof.
o
The lemma 3.1 implies that for every F € D (E) , there exists a

sequence {Fn} P F € P(E) satisfying the following:
0
(1) Fn—-———>F in D (E) ,
(ii) {DHFn} consists of a Cauchy sequence in Dm(E) R

(iii) the limit

is unigquely determined.
For every F € o () , DHF determined above is called the H-partial
weak derivative of F . Furthermore it is easy to see that for every

FepH ® E) , there exists an element & € D (E) satisfying
< > = E[< > en .
E[ F,DHG H®E] [<0,G E] for every G D (E)
We set

(3.5) §,F =0
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and & : DM ®E) —> D (E) is called the adjoint operator of the

H-partial weak derivative Dy . We also define the H-partial Ornstein-
Uhlenbeck operator LH :Dw(E) _ Dm(E) by

(3.6) Ly = -GHDHF for F €D (E)
We now have the following:

LEMMA 3.2 It holds that

DyF = Pp(DF) for FE D" (E)
(3.7) : 5HF = §(PyF) for FED HOE)
LF = -0D.F for FED(E) .

It should be emphasized that in common with D the operator DH

has the following properties:

LEMMA 3.3 (i) (Derivation property). For F,.,F, € D,

(3.8) DH(Fle) = FleF2 + 13213[_]1-"l .

(ii) (Chain rule). Let us consider F = (Fl,FZ,---,Fd) ’

Fi S D°°(R1) ; i=1,2,000,d . Then, for every ¢ € C:(Rd) '
(a)  ¢@® €0°,
(b)

a :
1
(3.9) Dy (¢(F)) = _fl(ai¢)(F>DHF ,

1

where c:(Rd) denotes the space of all slowly increasing Cw—functions

f:Rd—>Rl.
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Proof. Combining Lemma 3.2, the derivation property and the chain rule
for D we can complete the proof.
Before turning to typical examples of the partial weak derivative,

it will be useful to introduce some notation. We consider the

. . . R o n W . . .
n-dimensional Wiener space {WO,B(WO),P } . In this section, we will
restrict ourselves to the case of a finite interval . [0,T] where
T > 0 is an arbitrary but fixed number: We use the same notation W

0

: n
to denote the space of all continuous functions w: [0,T] —> R  such

that w(0) =0 . Wg is a Banach space with norm
lw| = max lwey | .
0T

If H is the Hilbert space given by

H={w€E Wg ; each component of w is absolutely continuous

(3.10) with square integrable derivatives} ,

n T . . . .
= X ht n (¢ (S ot = _g. l
<hl,h2>H o fo hl(t)hz(t)dt ’ hi H, hj(t) Ty hj(t) ’

then {Wg,H,Pw} is an abstract Wiener space which we call the

n-dimensional Wiener space.

EXAMPLE 3.1 (Partial weak derivatives, [21] and [12])

Let di ;i =1,2, be positive integers and 4 = dl + d2 . lLet us

. X . . d W
consider the d-dimensional Wiener space {WO,H,P } . Set

dl+l a
H(Z) ={h;h= (0,0'...,0,h ,"',h)eH}
d
1
and we consider a family H = {H(Z)} ; i.e., letting H(w) = H(2) .
w & Wg , we set H = {H(w) ;w € WS} . Then H satisfies the assumption

3.1. Then it is nét hard to see that
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o
= €
DHF D(Z)F for every F €D (E)
where D(2) denotes the operator introduced in Section 1 of Kusuoka-
Stroock [12]. For details, see [12] and [21].
(Conditional weak derivatives, [101])
We fix a Wiener func-

EXAMPLE 3.2
et {w,H,u} be an abstract Wiener space.

. 1 da < d
tional F = (F ,F ,°°°,F ) €D (R) such that
-1
(det OF) e N L
p21 ¥

(3.11)
(<DF1,DF]>H) denotes the Malliavin covariance of F .

[$)
where r
Following Ikeda-Watanabe [10], we define the conditional weak derivative

00 o
DF : D (Rl) —> D (H) given F by

d d . i

(3.12) DG=DG- Z Z(y),.<DG,DF > DF

F . . B ij H
) i=1 j=1
where Yp = ((YF)ij) is the inverse matrix of O_ . We set
H(w) = {hEH;<h,DFl(w)>H= 0,1<izda},we€w
and
H={aw) ;wewl.

R . i
It should be noted that here we have to fix nice versions of DF (w) ,
Furthermore, it is

satisfies the assumption 3.1.

1£izgd. Then H
clear that for every G € 5»HIC)R;)
d d . i
(3.13)  P6Ww) = 6w - T I (y ). . (W) <G(w) ,DF? (w) > _DF" (w)
. . Fij H
i=1 j=1
on {w; det GF(W) # 0} .

Hence, by the lemma 3.2,
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(3.14) D_ =D on D

i
Since, DHF =0, 1

o d .
f e C+(R )

£i<d, it follows from (3.9) that for every

(3.15) DH(f‘DF) =0

We will now point out the different properties of DH and 6H from the

those of D and § respectively.

LEMMA 3.4 Let F = (¢h,F,c++,FD) € 0°(RY and
(3.16) DHFi =0 , i=1,2,°°°,d.
Then, for every ¢ & C:(Rd) and K € Dm(H)

(i) DH(¢(F)) =0,

(ii) @K ED () and

(3.17) SH(¢(F)K) = ¢(F)6HK .

Proof. It is clear that (i) follows from the lemma 3.3. Next we note

that

§ (GK) = --<DG,K>H + G6K

(see [27]). By combining this with Lemma 3.2, we have, for G € e

and K €D (H) ,

8,(GK) = 6(GP,K) = -<DG,P K> + G&,K .

Then setting G = ¢(F) and using (i) we can complete the proof of (3.17).

We now turn to studying properties of the pull-back of Schwartz

. . . d . Sl .
distributions on R as elements in D related to the partial weak
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derivative DH . Let S'(Rd) be the Schwartz space of tempered distri-

da
butions on R .

PROPOSITION 3.1 Let us consider a Wiener functional F = (Fl,FZ,-“,

Y e 0° @)Y such that

(1) DHF =0 , i=1,2,°°°,d ,
(ii)
-1
(3.18) (det GF) e N L
le P

where O 18 the Malliavin covariance of F .

Then, for every G € D’ , o€ Dw(H) and T €8" (Rd) ’

(3.19) <<D G,<I>>H,T(F)> = <GS ,%,T(F)>

H H

where T(F) denotes the pull-back of T wunder the mapping F :W —> Y

(c£. [27] and [10]) and <°,%> denotes the canonical pairing between

D" and D .
Proof. Let {¢n} be a sequence of ¢n S S(Rd) such that
R d
o —=>T in S'(R’)

where S(Rd) denotes the Schwartz space of rapidly decreasing c -
functions on Rél . Then we have
<Gy 8>,/ T(F)> = iiz E[<D,G, 0> ¢ (F)]

= lim E [<DHG,¢n(F) <1>>H]
n->o

= lim E[GSH(¢n(F)<I>)]
n->o

= lim E[G(SH(Q))d) (F) ] (by (3.17))
n>eo n
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= <G6H(<b) T(F)>
which completes the proof (3.19).

COROLLARY 3.1  (Integration by parts formula). Let F & Dm(Rd) satisfy
the same condition as in the proposition 3.1. Let G = (Gl,GZ,---,Gn) €
Dw(Rn) and

(3.20) (det o H)'1 e N L
GI le P

where o G.H denotes the H-partial Malliavin covariance of G defined
14

by

- i 3
(3.21) °G,H = (<DHG e >H) .

Then, for every K€D , isigeee,i €1{1,2,000,n) and ¢ € CT(Rn) ,

E[(3, 3, *+=d, ¢)oCGGIK®) |[FGw) = y]
1 h g
(3.22)

= El¢ocw) 2, (K;G,F) (w) |F(w) =yl

i eeei
12

if <l,6y(F)> # 0 , where

n .
, - j
<I>i (XK;G,F) (w) E;l SH((YG,H)ij(W)K(W)DHG (w))
(3.23) =

¢i 12...1 (K7G'F) (W) = q)i (‘I’i - (K;G,F);G,F) (W)

1 m m 1 m~-1

m= 1,2,°°°,k .

Here E[-¢

F(w) =yl denotes the conditional expectation with respect to

the measure w given F(w) =y and Yo u = ((YG H)ij) 18 the inverse
14 1

matrix of OG,H .

Proof. By the assumption (3.18), there exists a continuous version of

<l,8x(F)> and
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<(3, 3, 3, ¢)oG(w)K(w),S (F)>
1t X Y

= E[(3, 3; *°°3, §)°GWIK(W) |F (w)
1 2 k

y]<l,6y(F)> '
(3.24)

<¢°G(w)t1>i

5 (X;G,F) (w),8 (F)>
y

(K;G,F) (w) |F(w)

= E[¢°G(w)<l>i y]<l,6y(F)> '

1...lk

(cf. [27] and [10]). On the other hand, by using (3.9) and (3.20), we

have

n
9,40G(w) = 2

<D, ($°G) ,DHG:' >y
j=1

Oe,m 5
Hence

<3, ¢oG(W)K(w) ,8_ (F)>
i y

d
= <<DH(¢oG),'E

Z K (w) DHG3>H,5y(F)> .

“e,m' 15
Combining this with (3.19) we have

<9, ¢oG WK (w) .6y(F)>

d
<poG)8,( T
J=

3
l(YG,H)ij(W)K(W)DHG (w)),Gy(F)>

<¢0G(w)©i(K;G,F)(w),éy(F)> .

By using this and (3.24), we can conclude (3.22) in case k =1 . Now
by repeating the argument of the induction on k , we can easily

complete the proof.

1.2 d
REMARK 3.1 We again consider a Wiener functional F = (F ,F ,°°°,F ) €
da
Dw(R ) satisfying the same condition as in the proposition 3.1. Let

1 2 n
G= (G ,G ,°°°,G) € Dm(Rn) and we assume that
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(3.25) (067 - D7) (w) € span{DF (w);1 <i <dl ae., 1<js<n .

Then the condition

(3.26) (det oK)'le Nn I
p=l

is necessary and sufficient for (3.20) where K = (G,F) and Ox denotes
the Malliavin covariance of K . In fact, this can be proved as follows.

Since DHFl =0, i=1,2,°°2,d4,

J

j 3

i i
<DF,DG = <DF",DF” - DpG> ., i=1,2,°*,d,j =1,2,°*n .

>
H
It also holds that, by (3.7),

J

i i j i i 3j
(3.27) <DG ,DG H = <DHG ,DHG >H + <DG - DHG ,DG” - DHGJ

>
H
i,j = 1,2,°°°n .

By the assumption (3.25), there exists the matrix C(w) = (C]i (w)) such

that

. . a .
(3.28) DG (w) = DG (W) = I C]t(w)DFk(w) ,i=1,2,000,n .
k=1

Hence, setting
_ i s
AF,G(W) = (<DF (w), (DG DyG™) (W)>)

we have, by (3.27),

. d

j i 3j i k
= + .
<D_G ,D,G e z Ck(w)(AF'G(w))j

i
<DG,DG
H A '°H o1

Combining (3.27), (3.28) with this, we Have
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OG,H(W) + C(w)AF’G(w) C(w)oF(w)
det GK(w) = det
(3.29) AF,G(W) UF(W)
= det cG’H(w)det oF(w) .

This implies that (3.20) and (3.26) are equivalent.
Before closing this section, we show a relation which is useful in
the evaluation of a(t;0) , (see, Section 5). From now on, in this

section, we always fix %l,kz,--°,2d € W* such that

<£i,2j>H = 6ij ' i,j = 1,2,00¢,d .

We also set

Ho={hGH;<h,!Li>H=0,l<i;d}

H = {HO} (ZE{H(w);w EW} , Hw) = HO)

o) = (8, (0) 8, (0) ,o0e 2, (0) € D (&Y .

PROPOSITION 3.2 For every GE D and x € R,

(3.30) E[(LHG)2|F =x] = E[IDHGlfl + |D§G)§®H|F =x] .

In order to prove, we will prepare some notation and a lemma. ILet

W be the linear span of Zl,l

1 sessL, and

2

W, = {wEw;w) =0 for every & € W, C w*} .

Then we have the pseudo orthogonal decomposition:

W= W, @Wz (direct sum) ,
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(cf. [18]1,[22] and [10]). We write ﬂiw = wi , if w = Wy + Lo wi S Wi B
i=1,2, . Set w = ('ni)*(ll) , the image measure of u under the
mapping " c W —> Wi , (1 =1,2,) . Then we have an abstract Wiener

space {WZ,HO,MZ} . For every £ € @M , 2 € r" , we set

fz(y) = £(y +z) yERn .

LEMMA 3.5 Take an element K € P such that

K(w) =p(ql(w),q2(W),°",qn(w)) r WEW

where qqedye oy, EW* . Then for every =x & Rd ,

(3.31) EIK|F = x] =B “[K ]
where
K w) = By () (901G 002270, ()
d

g i i n
(i§1<ql,2i>ﬂx ,-..,i§l<qn,zi>Hx ) €ER

z (x)
for x = (xl,xz,"',xd) € Rdl .
|
Here E denotes the expectation with respect to By
Proof. The mapping g :W — R® is defined by
qlw) = (ql(w),qz(W),---,qn(w)) .
Then

EK|F = x] = <K,8(F)>(/2m “expl |x|?/2}

<plalmg) + q(nw) 8 (F)>(/2m “expl x| %/2}

<pla(mw) + zq(x)),ax(F)>(/2—1F)dexp{|x|2/2}
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Elp(q(mm) + zq(X))]<l,5x(F)>(/2—ﬂ_)dexp{|x]2/2}

which completes the proof.

Proof of Proposition 3.2 We first note that F satisfies the condition

co 2
of Proposition 3.1. Since the mappings: DH : D — D (#) , 3 D a—p
00 oo
D (H®H) and L,:D —> D are continuous, it is sufficient to show

H
(3.30) for GE P . If we take G(w) € P such that

G(w) = plq, W) ,ayw),eeepq (W) 4 apedyeeee,d ew* ,

then
n
DyGw) = .2 d,platw))ma, weEW
i=1
2 n n
DyG(w) = '>_31 ‘flsiajp(q(w))%qi ® mody weEW .
(3.32) e
n n
L,Gw) = 2 Z3,3.plgw))<r.q.,m.q.>
'H (W) fml J=l i Jp q qu 2qj H
n
- iflaip(q(w))qi(ﬂzw) wEW.

Since W, CW and w* C W; , G can be regarded as a polynomial on the
abstract Wiener space {WZ,HO,UZ} . Letting D and I Dbe the weak
derivative and the Ornstein-Uhlenbeck's operator defined on {W2,Ho,u2}

respectively, we have

n
DG(w) = iflaip(q(w))qi wEW, ,
(3.33) n n
DGWw) = 2 X Biajp(q(w))qi ®qj wEW, ,

i=1 j=1
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. n n
IGw) = Z X 3,9 p(q(w))<q Ly
i=1 j= 1t 3 O

=}

- ‘E aip(q(w))qi(w) wEW, .
i=1

By Lemma 3.5, (3.32) and (3.33), we have

2 Moo x,
El|DgGl [P = x1 = E 1 156* |2

(3.34) U
2 42 ~2 X2
E[]DHGIH()H]F =x] = []D e
Setting
n n
Ky rooes¥ sujgoeegu,) = 'E .2 aiajp(y)<w2qi,ﬂ2qj>H
i=1 j=1
n d
- 23pWly., - Z< <q;/L.> uy )
i=1 % RS JH
K(w) = k(ql(w),"',qn(w),ll(w),°°‘,£d(W))
we have, by Lemma 3.5,
n
2 2 2
E[(LG) IF=x1 =& ‘(971
(3.35)
u
2 o~ x 2
[(c) 1.
On the other hand, it holds that
n H
2~ x 2 2 |~ X ~2 x
E “[(IcH1 = E “[|bc | + |B%6| ()H ,

(see Shigekawa [22]). By combining (3.34), (3.35) with this we obtain

(3.30).
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4. LOCAL ESTIMATES

In this section, we assume only Assumptions 1.1, 1.2 and 2.1.
Hence we do not assume the assumption 2.2. The purpose of this section

is to prove the following estimate:

PROPOSITION 4.1  Under Assumptions 1.1, 1.2 and 2.1, for every positive
constants t and L , there exists a positive constant B(t,L) which

may depend on t and L such that

(4.1) sup Ik, (x,y:0) | < B(t,L) < 1.
x,yeRd,]x-yISL

We first begin to introduce some notation. Let us consider the

l-dimensional torus

T={z€c;|z| =1} .

Then by the mapping: [0,27) 3 u — e'/-lu €T we can identify T

with the interval [0,2m) . For every positive & , let MR, be the

totality of probabilities A such that

(4.2)

If %(e/—_lu))\(du)l <ol for every e (@ ,
T

where

ol = suplote”™™ |
u

/~1u

and -g—% denotes the derivative of the mapping: u -— ¢(e ) . Then

we obtain the following:
LEMMA 4.1  For every positive [

sup IJ e‘/__lu)\(du)l < 1.
_keMk T
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Proof. Iet M be the totality of all probabilities on T . Since
T 1is compact, M also is compact in the weak #-topology. Furthermore,

for every ¢ € c™(T) , the mapping

/I
MaA—-—éfd‘b(e 19 ) (aw)
is continuous. Hence MR is closed. Therefore M2 is compact in the
weak *-topology. It follows from this that if
Ve
sup If M@aw| =1,
Ae My T
there exists an element AO c Ml such that
/T
lf 1oy olaw| =1
T

/~1u

Since |e | = 1, this implies that Ao is the Dirac measure.

This contradicts (4.2). Therefore

sup Aaw | <1

AtEMQ

| f /_u
T

which completes the proof.
Next we set

Flt,x,w) = X(t,x,w) and G(t,x,w) = 0 .

‘[X( [0,t);x,w)

W
Letting A be the image measure of P [° = y] under the

t,x,y
mapping: w —> exp{V/~1G(t,x,w)} , we have

d
(S > .
Xt’x,y(du) , X,V R, t 0

(4.3) K, (x,y;0) = f e‘/'—fu
t T

LEMMA 4.2  For every positive constants t and L , therve exists a

positive comstant & = L(t,L) which may depend on t and L such that
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d
4.4 EM for - < R
( ) At,x,y N Fi X,y ER , Ix yl L

Proof. It is well-known that for every t > 0 and x € Rd ’

(4.5) F(t,x,w) €D (RY , alt,x,w) €07,

(cf. [10]). Furthermore, by using the assumptions 1.1 and 2.1, we can

show that for every p > 1

=1
4.6 det <
(4.6) sw 1t op e, xm! Ip <
xeR
where o denotes the Malliavin covariance of F(t,x,w) . In

F(t,x,w)

order to obtain the uniform estimate like as (4.6) we need a delicate
lower bounds on the Malliavin covariance in terms of vector fields

{L. sLijye00,L in (2.2). For details, see Kusuoka-Stroock [13]. It

1772 d}
also holds, by the assumptions 1.1 and 2.1, that for every integer

1 . .
p>1 and s &R , there is a positive constant C satisfying the

1

following:

d
s IG(t,x,w) ] <C for x € R .,
PssS =

(4.7)  NF(t,x,w) - xnpls zcC 1

1

Letting
H(w) = {h € H;<h,DXi(t,x,w)>H =0, 1<iz<ad}l,
we consider a system H of closed subspaces of H given by
H= {5) ;v €W} .

Then H satisfies the assumption 3.1 and it holds that

/~1G(t,x,w)

_ d¢, /mlG(t,x,w)
) =l

(4.8) D (gle )DG(E,%,w) , ¢ ec™n .
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Here and from now on, we identify a function ¢ on T with the periodic
. 1 .
extended function on R . Setting K(t,x,w) = (G(t,x,w),F(t,x,w)) ,

we have, by (3.29),

(4.9) 8t O e,k ~ 9% o, w8 OF Trie, )]

where and O are the Malliavin covariance of

o
K(t,x,w) G(t,x,w) H

K(t,x,w) and the H-partial Malliavin covariance of G(t,x,w) respec-

tively. We also have

(4.10) <DHG(t,x,w),DHG(t,x,w) >H .

g =
G(t,x,w) 2
We will now show that for every p > 1

-1

(4.11) sup Il (det o ) IIp <o,

d
XER

G(t,x,w) ,H

By (4.7) and (4.9), this can be reduced to show that for every p > 1

(4.12) sup |l (det o

d
XER

7 <w
K(t,x,w) P

Let us consider the system {Al'iz'.”'gd} of vector fields on

1
O(Rd) X R given by
A (r,u) =L (r) + 0 (02 . a=1,2,...,d.
o o o du
Then it holds that for every a,B = 1,2,¢°°,d
v~ — 3
[AOL’AB](r’u) = [L(!'LB] (r) + dea’s(r)?‘; 12 U.IB = 1121"'1d

whexre [ , ] means the Lie bracket and 6 = (d_e-a B) denotes the
1

scalarization of d6 , ([9]). Letting 7 be the mapping defined by
T=T X id:O(Rd) x BF — &% x g

and using ﬂ*([La,LB]) =0, a,8 =1,2,°22,d , we have
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- 3

'" ([A yA 1) = ae 0,8 311 0,8 = 1,2,°°°,d

where @, and ﬁ* are the differentials of the mappings m and T
1 2
respectively. Therefore, in the standard coordinate ((x ,x ,'°',xd)

4

(e;),u) in O(Rd) X Rl , we have

det (7B T B,y e, TA LT (R ,A]) (r,u)

d
= e% 0 = det(e%)ag (x)
J J a,B
8, (r) a (r)
a,B
for (r,u) € O(Rd) X Rl .
Hence
d d
Z T (det(w Al,ﬂ A jeee,m Aa,ﬂ ([A A ]))
a=1 B=1
(4.13) 4 4. . .
12— 2 ij 2
= X Z det(e.) as = det(g -~ (x))ladl " (x) .
a=1 p=1 ] o, B

On the other hand, by the assumptions 1.1 and 2.1,
i 2 1.4
det (g™ (=) lasl“ (=) 2 % .

By combining (4.13) with this, we obtain (4.12), (cf. [26]).

By using (4.11), we obtain that for every ¢ € Cm(T),

i°k(e'/_—lu)

7 du t,x,y(du)

(4.14)

= L

2 (e it xw, 8, (F(£,3,w))> (p (3, y)m(y))”

where m(y) = /det(glj(y)) i.e., the density of the Riemannian volume

with respect to the Lebesgue measufe. By Proposition 3.1, (4.8) and

(4.11), it holds that for every ¢ € i ,
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Ew[gi(eEG(t’x'W)) P e, = v]
u
= EW[¢(e/:'TG(t'X'W))5 ( DHG(tIX'w)
UH <DpE(t,x,w) , DGk, x,w) >y
Hence, for k>d,p>1,l+l=l,
p 4

do e/——lG(t,x,w)

_W .
|2 15 ) |F(t,x,w) =yl

(4.15) ;||¢llm{l|6y(F(t,x,w))yllq’_k

DHG (t,x,w)

x {8
I H(<DHG(t,x,w) ,DHG(t,X,w)>H

(see Watanabe [27]). By (4.6), there exists a constant 02

of x and y such that

(4.16) ||<Sy(£'(t,x,w))llq’_k 2 c2ll<sollc_k

Y0 (<1,8 (F(t,x,w))>)
p.k y

) |F(t,x,w) =yl

—1}1/2

independent

where C denotes the completion of S (Rd) with respect to the norm

-k

v

2 ~k/2
el = I+ x| - 72

(cf. Watanabe ([25]). We also note that, by (3.7),

DHG(t,x,w)

S ( )
H <D,G(t,%,w) ;DG (E, %,w) >H’

) <DH<DHG(t,x,w) ,DHG(t,x,w)>H,DG(t,x,w)>H

(4.17) >
(<DHG(tler) IDHG(tIX,W) >H)

LHG(t,x,w)

- <DyG (t,%,w) DG (t,x,w) >

Combining (4.7), (4.10), (4.11) with this, we obtain that

DHG(t,x,w)

2
(4.18) sup [ {8,( ) } "p,k <

] H <DHG(t,x,w) ,DHG(t,x,w) >H
%eR

Furthermore it is well-known that for every L > 0 ,
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-1
(4.19) sup (p(t,x,y)m(y)) <
d
X,YER ,|x—ylSL

By (4.15), (4.16), (4.18) and (4.19),

d¢, /=1G(t, x,w)

(4.20) sup IEW[‘d—G e VEexm = v1] < cglel,

d
X,Y€R , IX"Y ‘SL
where C3 is a positive constant. Therefore, by (4.14), (4.19) and

(4.20) , we can conclude that for every L > O

A

sup IJ gi(e‘/:zu))\ (au) |

Tdu t,xX,y = C4“¢“m

d
X, YER ,|x—ylSL
where C4 is a positive constant. This completes the proof of the

lemma.

Proof of Proposition 4.1 (4.1) is an easy consequence of the lemmas

4.1 and 4.2.
REMARK 4.1 By Proposition 4.1, we can show that
sup spec H < 0O

where H is the self-adjoint operator in L2(m) defined by (2.22)
and spec H is the set of spectrums of H . To see this, denoting by

{Qt;t > 0} the semi-group generated by H , it is enough to show that

lol < 1

for some t > O where HQtH is the operator norm of Q -

First we remember that Qt can be expressed as

Qtf(x) = I th(x,y;G)p(t,x,y)f(y)m(dy) .
R

Hence we have
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2 rot 2
o817 = | 1] X Guyioptexy) spiney | niax)
d

d
L,(m) =Y R

f
| 4 Ixtvie 1% (t,%,y) m(dy)
d d
R R

r
x| plexw|ew |%m(ay) ) m(ax)
d
R

On the other hand, using Proposition 4.1, we obtain

f th(x,y;e)lzp(t,x,y)m(dy)
d
R

A

S(t,L)zp(t,x,y)m(dy) + f p(t,x,y)m(dy)

st vl

= B(t,L)z(l - f plt,x,y)m(dy)) + f p(t,x,y)m(dy)
|x-y|>z |x=y|>z

f 2
- - B(t,L)2)J plE,x,y)m(@y) + 8(t,5)°.
|x-y|>L
But we can choose L so that
1 a
p(t,x,y)m(dy) ;5 , for x ER
|x-y |>L
(see the proof of Lemma 6.2). In this case we get

2 1 2
ﬁQtfu < ?2—(1+ 8(t,L)2)f J p(t,x,y) |f(y) i m(dy)m(dx)
L2(m) a’_a

(1+B(t,1)2) [£]2
L2(m)

N

=

Thus we have

1/2

12,1 < 3 ese,m A% <1

which we desired. For related results, see [23].
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5. THE CASE OF THE BROWNIAN MOTION

In this section, we always assume that g is the standard flat
metric on Rd . Hence the assumption 2.1 and the condition (i) of the
assumption 2.2 are automatically satisfied. Furthermore the correspond-
ing diffusion process is the Brownian motion on Rd . Also we assume the
assumptions 1.1 and 1.2. Furthermore we assume that the inequality
(2.13) holds for any x € rY . Under these conditions we will show the
estimate (2.15). To do this it is sufficient to show that for fixed

t >0,
(5.1) 0 < a(to;e) <1.
In fact, it follows from (2.10) that
log a(t + s;6) < log a(t;0) + log a(s;8) for t,s >0 .
Hence we have
o1 . 1
lim E-log a(t;0) = inf E-log a(t;0)
£ t>0

which implies (2.15).

Next, we note that

.1
(5.2) lim E-log a(t;0) > sup spec H
o

where H is the operator defined by (2.22). To see this, note that

t
Qt = e H is given by

Qtf(x) =f Kt(x,y;e)p(t,x,‘y)f(y)m(dy) .

Rd

Therefore
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thfll2 =J lJ Kt(x,y:e)p(t,x,y)f(y)m(dy)|2m(.dx)
(e}

< J J th(x,y;9)|zp(t,x,y)|f(y)|2m(dy)m(dx)
rIR? ‘

In

a(t;e)zj J p(t,%,9) |£() | *n(dy) m(dx)
R@:Rd

a(t:0) 2002 ;
L, (m)

Thus it holds that

||Qt|| a(t;e) .

fia

Hence we have

1
sup spec H = lim & log QI

T

fin

lim = log a(t;0) .

oo

o=

d W X .
Let {WS,B(WO),P } be the d-dimensional Wiener space. Then, as
. X W .
stated in Section 3, {W,H,P } is an abstract Wiener space, where
W=W_, and H is the Hilbert space defined by (3.10) with n =4 .

. . da+ .
Iet us consider a system of vector fields Va on R t given by

a+1 i
= 3 = =
v, . vaaj aa + eaad+l a=1,2, ,d
j=1
da .
where 6 = Z 6.dx:l . Now we consider the following stochastic differen-

3=t ° a, da u
tial equation (S.D.E.) defined on {WO,B(WO),P }

_ d
(5.3) ax(e) = Z

vaci(t))cdw“(t) .
. ‘

1
Iet §(t,§,w) ’ X% = (x,xd+l) (S Rd X Rl , be the solution of S.D.E. (5.3)

with the initial condition X(0) = x . Set
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- - - d+. -
X(t,x,w) = (X(t,x,w),X l(t,x,w)) S Rd X Rl .

,xd+l) c d

L = - 1 R
Then it is clear that X(t,x,w) , x = (x R X R , is independent

d+
of x L and depends only on x . Hence, for simplicity, we denote it

by X(t,x,w) . Furthermore we note that
(5.4) X(t,x,w) = w(t) + x X ER .
Also it is well-known that

x(t,%w € 0" @YY
Setting
a+l
G(t,x,w) = X (t, (x,0) ,w) ,
we have
i=1/0

d ¢t R
(5.5) G(t,x,w) = f 6= 2 f 8, (X(s,x,w))odX (s,x,w) ,
X([0,t]5%,w) *

(see (2.5)). Heénce, as stated in (2.8), Kt(x,y;e) can be expressed in

the form
)
(5.6) K, (x,7;0) = E lexp{/-1G(t,x,w) }|X(t,x,w) = y] .
For simplicity, without loss of generality, we set t, =1 . Now let

0

Hw) = {h;h €H, <h,DX (L,x,w)> =0, 1 <i <4} .

Then the system H = {H(w) ;w € WS} satisfies the assumption 3.1. We
can also define the operators DH,GH and LH as in Section 3. We will

first prove the following lemmas:
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LEMMA 5.1 (Malliavin [17]1). It holds that

a1
DHG(l,X.W)[h] = -2z j (nu(s,x w) - na(x,W))ha(s)ds
a=1’0
(5.7)
a (1l .
= -z J n (s,x,w) (6%(s) - h¥(1))ds , hE€H ,
a=1’0 o
where
d (t 8
na(t,x,w) = 2 J ' B(X(s,x,w))OdX (s,%x,w)
g=1/0 “’
(5.8)
_ 1
na(x,W) = Jona(s,x,W)ds .

and ]'.la(S) ='d%'ha(s) s 0<s <1 ,0a=1,2,°°,d.

We now set, for a continuous function £ on [a,b] ,

1 P -2 - 1 [P
(5.9) Va8 = E—;—aL(f(t) -5t , = b—:—Lf(t)dt .
LEMMA 5.2 (Malliavin [171). It holds that
a

(5.10) <DHG(l,x,w),DHG(l,x,w)>H = aflv[o,l](na) .
LEMMA 5.3 (Malliavin [171) . It holds that

a
(5.11) trace DD G(l,x,w) = Z f A8 (X(s,x,w))s(l - s)odxX>(s,x,w)

a=1l0 ¢
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LEMMA 5.4  (Malliavin [171). It holds that

d rl
LHG(l,x,w) = Z J A6 (X(s,x,w)) (1 - S)sodxq(S,x,w)
: a=1’0

d d 1 o 8
- 2 z {J X (SIXIW)Y B(X(SIXIW))OdX (S,X,W)
a=1 B=1 ‘0 Gr
(5.12)
1

- [Xa (lelw)f (X(slxlw)) ode (SIXIW)

N

1
+ (Xa(llxlw) - Xa(o,x,w))J sY
0

aIB(X(s,x,w))OdXB(s,x,w)]} .

Although Malliavin [17] has formulated the lemmas mentioned above
in terms of the pinned Wiener space, we use the partial Malliavin
calculus. This éllows us to handle the results of Sections 4 and 5
in the same framework. Then, in order to prove the lemmas, we can use
the general theory of Malliavin calculus in case of Wiener functionals

obtained by Ito's calculus.

Proof of Lemma 5.1 We consider the Jacobian matrix Y(t) at

x = (x,0) given by

Y (t)

(Y?(t,§,w)) = (ajxi(s.i,w))

and set

1

Z(t) e T,

(zﬁ(t,E,w))

(cf. [9]). Then we have, by (5.4) and (5.5),
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1\0 0 l\o 0
(5.13) Y(t) = AN and z(t) = S
0 « [N
1 1
% ----% ] - ---% ]
and
d rt
a+ -
Y, l(t,x,w) = 2 f 9,6 (X(S,x,w))Oan(S,X,W)
1 i 0
a=170 )
(5.14) ,i=1,2,°°°,4 .
+1 - +1, -
zf Y,z = -Yf ez

Hence, by (5.6) in [10], we have
DG(1,x,w) [h]

= | {¥@,xw -

a (1 d+1 a+
a=1’0 o

e,z ea(x(t,x,w))}ﬁ“(t)at .

Combining (5.14) with Itd's formula, we cbtain

- a -
¥,z - Ya+l(t,x,w) + 8 (X(t,x,m)

1
f Y (X(Slxlw))odxg(slxlw) + 0 (X(llxlw)) , O = 1'2'.o.,d o
e B ¢

—na(t,x,w) + na(l,x,W) + ea(X(l.XIW))
Therefore, noting

DHG(l,x,w)[h] = DG(1,x%,w) [h]

™Mo

(5.15) - <DG(l,x,w),DXl(l,x,w)>HDXl(l,x,w)[h]

1

1

i

DX (1,%,w) [h]

1]

1.
f n'(s)ds for h€H,i=1,2,°°°,4,
0

we can complete the proof of (5.7) with (5.8).

Proof of Lemma 5.2 (5.10) is an easy consequence of (5.7) with (5.8)

and so details are omitted.
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Proof of Lemma 5.3 It follows from (5.7) with (5.8) that

a
DD,G(1,%x,w) [h,q] = - 2 f pn (t,x,w) [g] (0% (t) - h*(1))dat , h,g € H .
o
a=1’0
Since
a (t 6
- na(t,x,w) = -2 I Baes(x(s,x,W))°dX (s,x,w)
g=1'0

+ (0 (X(t,x,w)) - 6 (X(0,x,w))) ,
o o
we have, by (5.15),

DDHG(l,x,w)[h,g]

d d da ¢l x o o 8
z z Z f aka ee(x(s,x,w))g (s)[h (s) = sh (1)]0dX (s,x,w)
o=1 B=1 k=1/0 ©= ¢

d da rl o o -8
+ X 2 f 3 0,(X(s,x,w))[h (s) - sh (1)1g (s)ds

a=1 =10 @ B

+
| Mo
T ™Mo

1
J 2,8, (x(s,x,w) " () 6% (5) - n*(D)]as .
o=1 =170

et {g } be a complete orthonormal system on L, ([0,1];dt)
k k=0,1,°°° 2
such that

£O(t) =1 , O

A
o+
in
[

Setting
o

\%
[¢3
e = (Ol"°lolllol°°‘ro)

o
n, (tle o =1,2,°°°,d,k =0,1,°°°,

h]f(t)

t
n () J g (s)as

0

we obtain an orthonormal system {hﬁ(t)}u=l,2,°-~,d,k=0,l,.-- in H .

Then
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trace DDHG(l,x,W)

d e« d 1 5 .
= 2 E{EJ3$$JM&&WH%GH°&%&&W
a=1 k=1 j=1’0 J

1
+ Zfoauea(x(s,x,w))nk(s)gk(s)ds} .

Noting

[

d
£26=0 and 2 (N’ =s1-s),
a=1 k=1

we obtain

fol)

1
trace DDyG(1,x,w) = z [ Aea(x(s,x,w))s(l -s)Oan(s,x,w)
o=1’0

which completes the proof.
Proof of Lemma 5.4 We first note that

LHG(l,x,w) = trace DDHG(l,x,w) - DHG(l,x,w)[W]
Hence it is sufficient, by Lemma 5.3, to show that

QHG(l,x,w)[W]

d d 1 o 8
= X Z {J X (s,%x,wW)Y B(X(s,x,w))OdX (s,%x,w)
a=1 B=1 Jo G

(5.16) 1

- [XOL(O,x,W)J Y B(X(s,x,W))°<ilXB(s,x,w)
0 7
1

+ (L, xw) - x“(o,x,w)>f sY,

(R(s,x,w)) oax® (s,x,w)1}
o @B

By Lemma 5.1, we have

DHG(l,x,w)[w]

d a 1t 8
= -2 X {f (J Y B(X(s,x,\«v))odx (s,%,w)) 0dX" (t,x,w)
a=1 g=1 40 Jo ¥’
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1et
- I J Yq B(X(s,x w))°dXB(s,x,w)dt(Xa(l,x,w) - Xu(O,x,w))}
d d 1 8 o
=w 2 X {J Y (X(s,%x,w))edX (s,x,w)X (1,x%,w)

Xﬁxmw HMSxmwﬂ(sxm

)
. 8
J (1= )y, g (X(s,x,w)) 0ax (s,%,w) (X (1,x,w) = X(0,x,w))}

0

which implies (5.16).

We now consider the following stochastic differential equation

defined on {W B(W ), B} .

(5.17) dB(t) = aw(t) - B dat

Topde . 0sE<1,

and let B(t,w) be the solution of (5.17) with B(0) =0 . We set

(5.18) E(t,x,y,w) = B(t,w) + (x + t(y = x)) .

Then, as is well-known ([91), conditional Wiener integrals can be re-

written as follows:

LEMMA 5.5 (1)

w.d& a n 8
E[Z 2 {J Xa(s,x,W)y (X(s,%,w)) edX (s,%x,w)
o=l =1 o8

1
- [XOL(O,x,w)I Yy, g (X5 xam) oaxt (s,x w) + x*(1,x%,w)
(5.19) °
o 1 B 2
-X(mmeJSﬂxwanhmdwx(axmﬂ}lh«Lxm)=y]
0 7

w, & an 'a g 5
=E[| 2 Zf B (s,w)y_ ,(E(s,x,y,w))edE (s,x,y,w)|"]
a=1 g=1/0 o8 /

where E" demotes the expectation with respect to B
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(ii)
a (1

B[] = f Do (X(s,x,w)) (1 - s)sedx™ (s, %, |2 |x(1,%,w) = y]

(5.20) =170

a1l
= EW[| z J Aeu(«i(s,x,y,W)) (1 - S)S°d£a(s,x,y.w) |2] .
a=1’0

(iii)

w -
B [(<DHG(1,x,w),DHG(l,x,w)>H) p|X(l,x,w) =yl

(5.21)
d W 1 - 2 -

Z E [(f (g, (t,x,y,w) = T o(x,y,w) at) )

a=1 0
where

d rt 8
Ca(t,X,Y,W) = 2 J YG,B(E(SIX'YIW))OdE (SlerIw) ’

(5.22) 8=1’0

1
Ca(x,y,w) = foCa(t,x,y,W)dt .

d
Proof. The image measure of PW under the mapping: Wo Sw——

E(t,x,y,w) € wg %1,y is the d-dimensional conditional Wiener measure
AT 4
where
d d
= [ H = = .
0,%;1,y wew ;w() = x,w(l) =y}

Hence (5.19) and (5.20) are clear. Futhermore (5.21) is an easy conse-
quence of (5.7) and (5.8).
Before proceeding to estimating several conditional Wiener integrals,

we note the following.
LEMMA 5.6  There exists a positive constant c, such that

(5.23) E'(|B(t,m |%] < c,t(l - t) CET B | < c, (e - £ ¥

0

A

t<1l.
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Proof. The proof is easy and is omitted.

LEMMA 5.7  There exist positive constants ¢, and C, such that

d d 1
E [I z =z {j x* (s,x, w)Y B(X(s )X w))°dX (s,x,w)
o=1 B=1
o 1
- [X (lelw)[ Y
6]

o s<x<s,x,w))odx6(s,x,w) %W
1
(5.24) - Xa(O,x,w))J s
0

Yy gk eax” (5,30, 132 (L) = 9]

d 1
=< Cz{l + (2 {Ew[f |<Y ,Tg———gT (E(s, x,y,w))l ds}l/2 [y - x[z}
o=1 0

Lcy(l+ ly - xlz) .

Proof. By (5.17) and (5.18), we have

a da, 8
z Z J B (s,w)Y, g(&(s,x,y,w))°dE (s,x,y,w)
o=1 B=1°0 !
d d rl o 8
= 2 Z J B (s,w)Y, B(E(s,x,y,w))dw (s)
o=1 B=1°0 !
d d rl BB(s W)
(5.25) -z Z f B (s,w)Y B(E(s X,¥,W)) —————Er-ds
a=1 B=1"0
d rl
+ 2| B%(s,m<y ,TZ—:-T>(E(S x,y,w))ds|y - X|
0=1°0

d 1
z EfB (s,w)3. ¥ _(E(s,x,y,w))ds .
a=1 B_l 0 B 0«'8

+
N

By Lemma 5.6, there exist positive constants Kl and K2 independent

of x and y such that

a a1 B
zz J B% (s uhy, 4 (E(s, x,y.w))—'i—‘—s—'—“i’— ds = 0
o=1 g=1/0 S
(5.26) d

1
EM[E EIB(&WY &HSXJNHW(Q[]<K1
a=1 B=1
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W, & oay 5
ElZ 2 J B (s,w)3,Y B'(E(s,x,y,W))dsl I S
a=1 B=170 %
Furthermore
a rl _
£ ] EJ 8% (s, <y, TY—T (E(s,x,y,w))ds |y - x| |21
a=10
(5.27)
<ax |y-x/? J R[5 (s ) |11 <y T (Bl x,y,0) | *1as
a=170
=K IY X[ z {J E [|<Y ,-l—-——l—>(€(s x,y,w))l ]ds}l/2
a=1 ‘0

where K3 is a positive constant independent of x and y . By

combining (5.19),(5.25),(5.26) and (5.27) we can complete the proof of

(5.24).

LEMMA 5.8  There exist positive eonstants C, and Cg such that

a
B[] 2 f Aea(X(s,x,w))(l-—s)SOan(s,x,w)12|X(l,x,w) =yl
a=1"0

A

d
(5-28) = Cc {l + 2 EW[J’ |3 <Y l'—"—-‘>(£(5 XIYIW)) | dS] !Y XI
4 a=1 ly - x|

A

2
C5(l + |y—x| )

where 3 <y ,Tg——§T>(z) - _§_<Y ,Tg;L§T>(z) .
az”

Proof. Since 86 = 0 , we have

a (1
> f Aeu(z(s,x,y,w))(l - S)sodEG(s,x,y,w)
1

d (1

= 2 J A8 (E(s,x,y,w)) (1L - s)sdE”(s,x,v,w)

[+
a=1’0

Furthermore

d
(5.29) AB == 233
o

a=1,2,°°°,d ,
=1 '

80,8
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and
: a
(5.30) Z 86 (2) (y" - x) = s oY .—ll-—>(z> ly -x| .
o=1 a=1 Y
Hence
4l
g [z J A0 (E(s,%,y,w)) (1 - s)s0at” (s,%,y,w) |2]
o
0=1’0
w, St a
=g 2 [ 46 (E(s,%,y,w)) (1 - s)sdw (s)
o=170
(5.31) a
+ Z f Aeu(E(s,x,y,w))sBa(s,w)ds
a=170

d
+ 2 I <Y rTX—-;T>(E(s,x,y,w))s(l - s)dsly x|! 1.
a=170 Y

It is easy to see that for some positive constants 4'K5'K6'K7

W drt o 2
E (|2 f 48 (E(s,x,y,w)) (L - s)saw (s) ] <K, ,
0=1‘0

A
~

d (1l
EW[| z [ AGQ(E(s,x,y,w))sBa(s,w)ds|2] 2K
0=1’0

d 1l
(5.32) EW[I EJ 9 <y ,—ly———l>(£(s,W.y.w))s(1 - s)dsly-X||21
a=170 b4
d 1
<K EE[f o, < oy >(E(s,x,y,w) | 2ds1 |y - x|
6 ly - x|
o=1 0 .
2
< K |y -x|

By combining (5.20),(5.31) and (5.32) we can complete the proof.

By using the lemmas 5.4,5.7 and 5.8 we obtain the following.
PROPOSITION 5.1  There exists a positive constant Cq such that

(5.33) e X x@am =31 g+ y-x|%)
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REMARK. 5.1 1Let d =2 and 6 be the differential l-form,

(5.34) 6 = %—(xldxz - xzdxl) .

Then © satisfies the assumption 2.1 and the condition (ii) of the

assumption 2.2. In this case, by (5.12),

s 2 1 12
LHG(l,x,w) = - '( X (s,x,w)°d¥X (s,x,w) + [X (0,x,w)J dx (x,s,w)
0 i 0
1. 1 1>
+ (X (1L,x,w) - X (O'X'W))_( sdX (s,x,w)]
‘ 0
1 1
+ f Xz(s,x,w) °dxl(s,x,w) - [X2 (O,x,w)f dxl(s,x,w)
0 0
2 2 1
+ (X (L,%x,w) - X (O,x,w))J sdX (s,x,w)] .
0
Therefore we have
B 1,6(Lxw |2 x(1,xm) = v]
1 1
- walf ' (s,w) aw” (s) - f B” () v ()
0 0
1 1
+ (g2 - xz)f sh(s,was - (' - xl)J 8% (s,w as) | %1
0 0
1 1
- Ewtlf 8 (s,w) aw” (s) - f 8% (s, w an’ (s) |
0 0
w, 2 2 (%1 1 o1 fta 2
+ E [](y - x )J' B (s,w)ds - (y - x )f B (s,w)dsl ]
0 0

1 1
EW[IJ Bl(s,mav’(s) |21 + EW[II 8% (s, av(s) |21
0 0

1 1
+ ]yz - x2|2E[|J Bl(s,w)ds|2] + lyl - xl|2E[|fBz(s,w)‘ds)12] .
0 0

Hence

2
|© .

W 2
(5.35) B [,6(xm [P |x (k) =yl =3+ |x -y
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This means that under the assumption 2.2, the estimate (5.33) is

sufficiently sharp.

Next we prepare a general lemma.

LEMMA 5.9 (ef. D. Stroock [24]). For every continuous function

1 .
£:[0,T] —> R with

£(t) 2 e >0 for o<tz<T,
2
€ 2
(5.36) V[O’T] (g9) 2 > T
where
t
g(t) = J f(s)ds , 0<tx<T.
0
Proof. For some tor 028, 2T,
g = J f(s)ds .
0
Hence
t
1 0] tO 5 T t P
V[O T](g) = E{J dt(J £(s)ds) +f dt(J f(s)ds) "}
7
0 € t0 tO
T 2
21 2 2 € 2
> € Efo(t - t))atze Vio,T] (h) =757
where
h(t) =t , 0<t<T.

In order to prove (5.1) the following proposition plays an important

role.

PROPOSITION 5.2  For every positive integer p > 2 , there exists a

positive constant C. independent of x and

7 v such that



97

(5.37) EW[IDHG(l,x,w) I;Iplx(l,x,w) =yl cC (1+ |x - y[z)—P/2

Proof. Since (5.29) holds, we obtain

a rt 6
L, (Erx,y,w) = Z f Y, B('é(s,x,y,W))dw (s)
B=1/0 '
d (t B
- f Y (E(s,x,y ) BS) gg
8=1J0 a,B 1-s
(5.38)

t t
+ ly-—x|f <Yu T%{}§j>(5(s,x,y,w))ds + %{ Aea(g(s,x,y,w))ds
0 ‘ 0]

o= 1,2,°°°,d .

We set
d
(5.39) clt,x,y,w) = z Ca(tIXIYIW)
o=1
and

da st 5
A(t,w) = E[ (<YB 1> (&(s,x,y,w)) ds
B=1’0 !

where 1 = (1,1,°°°,1) . Then, by the assumption 2.2, there exist

positive constants C ,C9 independent of x and y such that

I Mo o

<
Cg

(<y ,1>(z))2 2 Cq
B=1 ° =
(5.40)

1

Cot < Alt,w) < Cgt ,

o
i
ot
lla
o

We also consider

-1
alt,x,y,w) = ¢(a “(t,w),x,y,wW) , 0 2t <A(t,w)

-1 . . .
where A “(t,w) is the inverse function of t —> A(t,w) . Then we have

1

V[o l](c(',x.y,w)) = f (a(r(s,w),x,y,w) - E(x,y,w))zds
! 0

(5.41)

where
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1

T(x,y,w) = f t(s,x,y,w)ds .
0
Setting
2
o ) = inf{s; [B(s,w) | 2 1} AN ,

we obtain that for some Clo and Cl1 ]

W 1 2 2
(5.42) P [ON(W) # -—2] < 2d exp[-ClON ] for N 2> Cll v

N

(191). Next, if 1/N° <C, , by (5.40) and (5.41),

1 c8 - 2
V[O’l](C(-,x.Y.w)) ;E;- L) (a(s,x,y,w) - C(s,y,w)) ds
;ci_l? v 3 (a(.IXIYIw))
9 N° [0,1/N’]
([27]). 1It follows from this that for 1/N3 2Cq s
1 1
WiVig,qp (B L%y ;E;;;}
(5.43)
1 1 1
c lwio ) # 51 U {w;v , @t xym) <5, o () =5} .
N [0,1/n7] N N

On the other hand, by the general theory of martingales, there exists a

Brownian motion {B(t,w)} such that

a(t,x,y,w) = B(t,w) + m(t,x,y,w) , 0 <t <A(l,w)

(5.44)
where
A te,w d ds
m(t,x,y,w) = —J z <y /B(s)>(E(s,x,y,w)) 1 - s
0 a=1 ¢
-1 .
A T (t,w) d -x
+ iY-le z <y I—L—>(E(SVXIYIW))dS
a=1 o ly-XI
-1
lA (t,w) d
+ ‘2"[ z Aea(E(S,X,Y,W))dS .
0 o=1
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Then, if o_(w) = l/N2 , N 3_—£-v1 ,
N = C8
1
|m(tIXIYIW)[ <c. (1 + |y - Xl)t , for t < —
=12 = 3
N
where C12 is a positive constant independent of x and y . Hence,
if o (w) = 1/MN° , N2 =-V1, then
N =
8
[od
1.2
(5.45) v 3 m,x,y,w) < 221+ |y - =57 .
[0,1/87] /3
Since
1/2 1/2 2
v e v @ ev? L w
[0,1/N71] [0,1/N7] [0,1/N7]
(1271), if N2 () 'Vl and
1
7§C12(l+ x -y =,
then
1/2 1 1
{w;Vv / 5 (@l x,y,w) ;-—Z,UN(W) = —3}
[0,1/N7] N N
(5.46)
: 1/2 2
Cwiv? L Bew <31
[0,1/N] N

By combining (5.42),(5.43),(5.46) with Lemma V-8.6 in [9], we obtain

that if N > (C8)_l v (Lv/Cypv Cy) and
w2 (r+|x-yDh
= Jg 12
then
-C. N
W 1 14
(5.47) P [vlo'l](;(-,x,y,w)) =gl 2¢ e

N
where C13 and C14 are positive constants independent of x and y .

This implies that for some positive constant C15 ’



(5.48)

Next we will show (5.37) by using (5.48). It follows from the

assumption

o = o(x,y)

(5.49)

We set

(5.50)

By Lemma 5.

(5.51)

Setting

K

we have

100

W

B[ 8p+1

. P -
Vip, 13 EErxyw)) TT 2 € (1 4 Ix - v

d
W . P -
E [(aflvm'l]wa( x,y,W)) Pl e (1 + lx - v

2.2 that for (y - x)/‘y - xl € Sd_l we can choose an integer
satisfying
a. < (<y —1—:—}5-—>(z))2 <a, s for =z € Rd
1= a’ly - x| =72
d
F(x,y;w) = B§1V[0,l](§8("x'y'w))

t
D ey = f o YTE

o OYuWy—xl(asﬁ“%W”dﬂy—x‘

f(2)
o

t
(tIXIYIw) = J L <y IB(SIW)>(£(SIXIYIW))dS
0 1l-s5 'a

(3) £
fa, (t,x,y,w) {<Ya,dW(5)>(£(s,x.y,W))

0

d (t 8
= 2 f Y (E(S,XrYyW))dw (S)
g=1’0 a8

t
(4) 1
fU. (tIXIYIW) = 2[0Aea(E(S,X,Y,W))dS .

9 and (5.49), we have

(1) %1 2
Vio,1721 Fo Crxeyew)) 2 55 | - v|” -

3 = Sup{in] (Z) I: |Ael(2) |Iz S Rdlilj = 1121"'ld} 7

8p+l1

°



(2)

d22 2
(fa (',x,y,w))§=f§-K8( supl[B(s,w)|)

Vio,1/2] :
OSSS-Z-

(5.52)
(4)

»w
o[ N

(£

[o 1/21 (e, x,y,w)) £

Next we note that there exists a l-dimensional Brownian motion {é(t,w)}

and the time change function Tt(t,w) such that

t d

f(3)(t,x,y,w) = B(t(t,w),w) , t(t,w) = f (= Y, (E(s,x,y,w))z)ds .
a 0 g=1 % B

Hence, for some positive constant K (independent of x and vy)

9

t(t,w) < th

and

3 ~
sup |f; )(t,x,y,w)| sup |B(t,w) |
0<t<l 0<t<K9

I

Therefore we have

(3) . 2
(5.53) v (£ ( sw [Btw ] .
[0,172] "o Ost<K,

(*,%,¥,wW))

lla

We now set

Qx,y) = {w ; sup lB(s,w)l é—é—-d—};(—__ lx - Yl ,
0<t<1/2
sup IB(t,w)|<—‘/> |x - y|} .
0<t<K
Then, noting
172 (1), 1/2
(V[O,l/2](c (er%,y,w))) 2 (v 0, 1/2](f (°,%x,7,w)))
4
(k) . 1/2
kE (V[O 1/21] (f (erx,y,w))) ’

([27]), we obtain that if



lx - y| 2—=x6

-8
—
%
then for w € Q(x,y) ,

. 1/2
(V[0,1/2](Ca( 1X,Y7,W))) ,

K d
2 !x YI-[—-- de l -y| + 2 Ix Yl+-—~1
a a a
/ / 1/
Zlx-vl- &/ glx-vl + 2/ Elx-vD

5/ wlx-vl

(5.54)

v

By combining this with
F(x,y,w) 2V (i;(°xyw))>lv (¢ (oyx,y,w))
Yo ="V10,11 "o 24 =5 [0,1/2] o v Zp Y v
we obtain that if

lx - y| 2—=x6

_EL
ay
W "3‘ /
(5.55) E [F(x,y,w) 7 Qx,y)] 2 (2 -?)plx-yl L
1

On the other hand, there exist positive constants 016 and Cl?

independent of x and y such that

W c 2
(5.56) PUIR(x,y) "] £ Cp exp[-cl__7|x - y|9
By (5.48),(5.55) and (5.56), if

| - y| 2 x 6

)
Y

then
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=

W[IDHG(I,X,W) IH_plX(l,X,W) =y]

E" [ (x,y,w) P72

i

lla

5

which implies (5.37).

B F (v, P2 0,y 1 + B F (x,y.w) P

1/2

@ 0,91

1/2

@ép _o P, 1/2 _ (8p+1) /2 _ 2
(2 al) Ix y[ +C1 (l+[x y|) VClG exp[Cl7|x y[ /21

We now return to the proof of (5.1). By using (3.22),(3.30),(4.8)

and (4.17) we obtain that for every ¢ € Cm(T)

lEW[%E(eJ:IG(l'X’W)) |%(1,%,w) = y1|

W H

ia

G

2<D2G(l,x,w) ,DHG(l,x,w) ® DHG(l,x,w)>

Ex,x,w

holl_{="¢ .
Ipge 1, x,w) |

]L G(1,x,w)
+ EW[ H

i

3ol B 1|6 (13w | * 2L,z = y1*

X (EW[lDHG(l,x,w) |;4|X(l,x,w) = y])l

Hence, by Propositions 5.1 and 5.2, if

K
lx - y| > 8 x 6
Va.
1
then, for ¢ & e
IEth—ﬁte'/"—l—G‘l'x""’) |21, %) = yl]

fin

-1/2

ELHol (1 + |x = y|?

D61, %,w) |

H
/2

2
ol (C (1 + ly - x| ))1/2(c7(1 + x -y

|x(1,%,w) = y1}

12)-2)1/2

vl

/2
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By combining this with Lemma 4.2, for ¢ € C (T) ,

W do, /~1G(1,x,w)
(5.57). 2" 15t e F x@exw = v1] < el
where C18 is a positive constant independent of x and y . By

Iemma 4.1 and (5.57), we have

a(l;8) <1

which completes the proof of (5.1).

Before closing this section, we give some remarks. Setting

i
v
ei= (Ol°'°11,“'ro) i=1,2,°°°,d,
if, for 1 <m<i <d
e}
(5.58) <Yu’ei>(z) =0 , z€ER , O = 1,2,°°°,4a,

then the assumption 2.2 does not hold. In this case,

YOL 6(Z) =0 , ZERd , o =1,2,°°°,d, B =mm+1,°°°,d .
7

Hence, by (5.8),

m-1rt 8
ﬂa(t,x,y,w) = Z J Y (X(s,x,w))edx (s,x,w) , & =1,2,°°°,d .

g=1/0 %P

Furthermore if we assume that

1 -1 d d
YOL S(z)I(x':llzl...ldlB=lI21...Im—llz=(Z ,",Zm ,Zm,“rz) & R
7

1 2 -1 .
depend only on (z ,z ,"’,zm ) , then DHG(l,x,w)[h] is independent

+
of {(Xm(t,x,w),Xm l(t,x,w),”',xd(t,x,w)),O;t'<°°} . Therefore
W -p
E [IDHG(l,x,w)I [x(1,%,w) = y1

' [ne,xm [, xm = v
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m m+1l

m+1 d d
m'X ,°°°,x ) and (v ,y ,°°°,¥y ) . TUnder

are independent of (x

these assumptions, in many cases, (5.57) (also (2.15)) still holds.

. . m-
fact, in such cases, the problem can be reduced to one in case of R

Next we return to the remark 5.1. In this case, we have

2 Lot o1 1 °2 2
<DHG(l,X,W) A ® g = 2{J (f (h"(s) = h7(1))as) (g (t) - g (1))dat
0“0

1 (t
°2 2 o] 1
+ J (f (g"(s) - g (1))ds) (h" (t) - h™(1))dat} .
0’0
It follows from this that for some C > 0 ,

!DZG(l X w)] <C

2 g @u =
and
=1
65 (1<DyG (L,%,w) ;DG (L, x,w) >} "DpG(L,x,w) |

> (L6, xw | - 0 DG, x,w) |1_{2 }

This means that in order to show (5.1) we need the estimate (5.37).

6. THE PROOF OF THEOREM 2.1

First we choose a positive constant R0 such that

D C B(O,RO) where B(a,r) = {z € Rd; |a - z‘ <r}.

We now show the follwing two lemmas.

LEMMA 6.1 For every t > 0 , there exist R(t) >
d

v
)

such that 1f x,y €ER and (x,y) NB(O,R(t)) = ¢ ,

(6.1) |k, (x,7:0)| < B(E)

and 0 < B(t) <

In

4
L
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where

2(x,v) =‘{zERd;z=x+n(y-x),O;n;l} .

Proof. We consider the first hitting time t(w) for B(O0,R;) , i.e.,

Tw) = inf {t 2 0;w(t) €BORY}, wew,

Then we have

K, (x,y;0) = Ew[e‘/:TG(t’x'W);T(x(-;x,w)) > t]%(t,x,w)

vl

+ EW [e\/:'IG(t,x,w) ;

T(X(o;x,w)) < t]X(t,x,w) =yl

(6.2) ay 9
- W B([Oltlixrw)_ .. R - g(tlxlz)
=E[e ;T(B(*5x,w)) >t|B(t;x,w) VS e

W /——lG(t,x,w)
[e

+ E sT(X(e;x,w)) ;t|x(t,x,w) =yl

where B(t;x,w) = x + w(t) and g(t,x,y) , £t >0, x,y GRd, denotes

the heat kernel on Rd , i.e.,

1.4 lx-v 12
glt,x,y) = ( ) expl - }

21t 2t
It follows from (6.2) that
th(X,Y;e)I
(6.3)
W glt,x,y)
<|E [exp{u/:.-J 6};t(B(5x,w)) > t|B(trx,w) =yl |
B([0,t] 5 x,w) plt,x,yImly)

+ lPW[T(X(';x,w)) ;tIX(tr&W) =Y]| .

In order to estimate the first term of the right hand in (6.3), we can
assume that (2.13) holds for all =z E'Rd . Hence we obtain, by using the

result of Section 5, that there exists a positive constant vy(t) <1
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satisfying
|x, (x,7:0) | < v(©)glt,x,¥)/ (@ (t,x,¥)m(y))
Ul ., , - g1—9texy)
(6.4) + P IT(B(*;x,w)) 2 t|B(tsx,w) VS s n )
W
+ P [T(X(°;x,w)) £ tIX(t;x.w) =yl
We also have
glt,=,y) _ Pl (x(esx,w) > E|X(Erx,w) = y)
plt,x,y)m(y) PW[T(B(’inW)) > t]B(t;x,w) = vyl
<= L
P [t(B(;x,w)) > t|B(t;x,w) =yl

Hence for € = (1 —vy(t))/8 , there exists a positive constant R(t)

such that if 2(x,y)N B(0,R(t))

o

g(trX:!). <1+c¢

plt,x,v)m(y)
W
P IT(B( :ix,w)) £ t|B(tsx,w) =yl < ¢
W
PUIT(X(*5x,w)) < t|X(tix,w) =yl <€,
([2]1). Combining this with (6.4), we have
kv | sy® Q@+ o) +e@re +e 2

which completes the proof of (6.1).

LEMMA 6.2 There exist positive constants R, 2 R(1) and 0<B <1

such that if |z - y| 2 R,
(6.5) |k (x,v:0)] < 8

where R(t) <s the constant given by Lemma 6.1.
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Proof. It holds by the assumption 2.1 that

2
ST b 4

c.( ) exp
1 omt 2tml
1 .4 Ix--yl2 a
;p(t,x,Y) éc2( ) exp{‘—é‘t—'m‘—‘“] P £>0,xy ER
v2mt 2

where 0 < ml < m, <® ., 0 < Cl é=c2 < » , (for example, see [1l]). We

take a t such that

[¢]
3.2
(£, ==
3 11 1 0 4
=<t <1 and = - =) .
4 0 -
2 m, m, 4m2t0(l to)
We also choose an R1 such that
R, > 4R(1 - to)
(6.6) 2 ' 3.2
(c,) (t, =)
2 d-2 da 1.1 1 0 4 1
M (2) % (/m ) ® explR, (G(= - =) - )} <=
Cl 2 12 mom, 4m2t0(l-to) 2
where
M = sup m(z) .
Z€Rd
We fix points x and y such that
? = [x - y| > Rl .
We also take e_,e_,°°°,e (S5 Rd such that
ll 2’ 7 d—l
<ei,e.> = Sl,j B <ei,x -y>=0 , i,j=1,2,ece,d~- 1.
Setting
a-1 3 1
F+(x,y) = {x + aly - x) + .2 ciei Faxg. ey ER}
i=1
a-1 1 1
I (x,y) = {x + aly - x) + iza cje; i a < 7 ER},

we have
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I'+(x,y) N B(O,Rz) = ¢ or T (x,y) r"B(O,RZ) = ¢

where R2 = R(1 - to) . We first consider the case when

I, (=y) nB(O,R2) =9 .

We now consider the standard coordinate with x the origin with respect

to the basis

y-X .
(ly < rey 'ed—l) .
Then
x = (0,0,°22,0) , y = (r,0,°%%,0) , r = |y-x|
By (2.10) ,
]Kl(x,y;6)| ;p(l,x,y)_lf v p(ty,x,2)p(l -ty ,z,y)m(dz)
1"+(x,y)c
+ p(l,x,y)_ls(l-to)J p(to,x,z)p(l—torz,y)m(dz)
r,(x,y)
(6.7)

= s(l—to) + (1—B(l-to))

x p(Ll,x,y) "t p(ty,%,2)p(1-t ,2,y)m(dz)
C
r+(x,y)

where Rg(t) is the constant given in Lemma 6.1. On the other hand

p(l,x,y)—lf p(to,x,z)p(l—to,z,y)m(dz)
, 1“,_(x,y)c
( 2 2 2
=3 M(ccz) Py (ll—t ))d/2ex9{ﬁ}rr/4ex9{—2?n t _2§na-(lrit ylda
1 0 0 1 J-e 270 2 (]
2 3,2

(c.) (t, -7

M2 1 0 4 2 1
¢ —(/2m,) eXp{(—(—- g) - ——-——mzto(l_to))r }<3 . (by (6.6)).

Il
0
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Combining this with (6.7), we have
1
(6.8) Ry (%,y70) | < 5(L + B(L=-t))) <1.
Next we consider the case when
T_(x,y) N B(O,R,)) = ¢ .
Then we have, by (2.10) and Lemma 6.1,
|k, (xeyi0) | < B(L-ty)

+ (1-g(1 =tg) )p(l,x,y)—lf p(l=-ty,x,2)p(ty,z,yIm(dz) .
I_(x,y)°

By using the argument mentiond above, we also have

rx,z)p(toyz,y)m(dz) < 1/2

p(l,x,yflj p(l-t,

r_(x,9)°

which implies
K, (x,y10) | < 31 + B(L - £5)) < 1
1t = 2 0 °
Combining this with (6.8), we can complete the proof.

THE PROOF OF THEOREM 2.1 By combining Lemma 6.2 and results in

Section 4, there exists a positive constant B , 0 < B < 1 such that
d
|Kl(x,y;e)l 2B for %,y ER .

Hence

all,0) <1, afk,0 <a(l,0f, k=1,2,0 .

As stated in Section 5, by combining these results with (2.10) we can

complete the proof of (2.15).
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