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Abstract. In this article, we give a survey of spectral multipliers

and present (without proof) sharp H�ormander-type multiplier the-

orems for a self adjoint operatorA under the assumption that A has

Gaussian heat kernel bounds and satis�es appropriate estimates of

the L2 norm of the kernels of spectral multipliers. Our theorems

imply several important, previously known results on spectral mul-

tipliers and give new results for sharp estimates for the critical

exponent for the Riesz means summability.

1. Introduction

This paper contains discussion and survey of the topic of spectral
multipliers and main results of [DOS] without giving proofs. Readers
are referred to [DOS] for their proofs and more applications.
Suppose that A is a positive de�nite self-adjoint operator acting on

L2(X), where X is a measure space. Such an operator admits a spectral
decomposition EA(�) and for any bounded Borel function F : [0;1)!
C, we de�ne the operator F (A) by the formula

F (A) =

Z 1

0

F (�) dEA(�):(1)

By the spectral theorem the operator F (A) is continuous on L2(X).
Spectral multiplier theorems investigate su�cient conditions on func-
tion F which ensure that the operator F (A) extends to a bounded
operator on Lq for some q, 1 � q � 1.
Spectral multiplier has been a very active topic of Harmonic anal-

ysis. Roughly, it is su�cient that F is di�erentiable to some order
with appropriate bounds on its derivatives. The more information we
know about the underlying space X and the operator A, the sharper
multiplier results can be obtained, i.e. less derivatives on F are needed
for F (A) to be bounded. For example, when X is the Euclidean space

Rd and A is the Laplacian �d =
Pd

k=1
@2k a su�cient condition is that

F possesses [d=2] + 1 derivatives which satisfy certain size estimates
where [d=2] denotes the integral part of d=2. Recent results extend
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this to more general underlying spaces and more general self adjoint
operators. For example, see, [He3, He2, DO, CS, Ale2] when A is an
abstract positive self-adjoint operator which has heat kernel bounds (or
�nite propagation speed) and the underlying space X satis�es doubling
volume property. (See Assumption 2.1).
Let us discuss two important examples of spectral multiplier theo-

rems concerning group invariant Laplace operators acting on Lie groups
of polynomial growth. Let G be a Lie group of polynomial growth and
let X1; : : : ; Xk be a system of left-invariant vector �elds on a G satis-
fying the H�ormander condition. We de�ne Laplace operator L acting
on L2(G) by the formula

L =

kX
i=1

X2
i :(2)

If B(x; r) is a ball de�ned by the distance associated with system
X1; : : : ; Xk (see e.g. [VSC, xIII.4]), then there exist natural numbers
d0; d1 � 0 such that �(B(x; r)) � rd0 for r � 1 and �(B(x; r)) � rd1

for r > 1 (see e.g. [VSC, xVIII.2]). We call G a homogeneous group if
there exists a family of dilations on G. A family of dilations on a Lie

group G is a one-parameter group (~�t)t>0 (~�t � ~�s = ~�ts) of automor-
phisms of G determined by

~�tYj = tdjYj;(3)

where Y1; : : : ; Yl is a linear basis of Lie algebra of G and dj � 1 for
1 � j � l (see [FS]). We say that an operator L de�ned by (2) is

homogeneous if ~�tXi = tXi for 1 � i � k. For a homogeneous Laplace

operator d0 = d1 =
Pl

j=1
dj (see [FS]).

Spectral multiplier theorems for homogeneous Laplace operators act-
ing on homogeneous groups were investigated by Hulanicki and Stein
[HS] (see also [FS, Theorem 6.25]), De Michele and Mauceri [dMM].
The following theorem was obtained independently by Christ [Ch2] and
Mauceri and Meda [MM]. See also [Si3]. Its proof relies on heat kernel
bounds, L2 estimates from Plancherel theorems, translation and dila-
tion invariant structures of homogeneous groups, Calder�on Zygmund
operator theory and interpolation theory.

Theorem 1. Let L be a homogeneous operator de�ned by the formula

(2) acting on a homogeneous group G. Denote by d = d0 = d1 ho-
mogeneous dimension of the underlying group G. Next suppose that
s > d=2 and that F : [0;1)! C is a bounded Borel function such that

sup
t>0

k� �tFkW 2
s
<1;(4)
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where �tF (�) = F (t�), kFkW p
s
= k(I � d2= dx2)s=2FkLp and � 2

C1
c (R+) is a �xed function, not identically zero. Then F (L) is of

weak type (1; 1) and bounded on Lq when 1 < q <1.

Note that condition (4) is independent of the choice of � 2 C1
c (R+).

The H�ormander multiplier theorem describes the Fourier multiplier
on Rd (see [H�o1]). If we apply Theorem 1 to Rd we obtain a result
equivalent to the H�ormander multiplier theorem restricted to radial
Fourier multipliers. Therefore we call Theorem 1 the H�ormander-type
multiplier theorem and condition (4) the H�ormander-type condition.
Theorem 1.1 is optimal for a general homogeneous group, see esti-

mate 1.6. However, for speci�c groups such as Heisenberg and related
groups, it is possible to obtain multiplier results where the number of
derivatives needed is roughly half of the topological dimension n. Often
the homogeneous dimension d is strictly greater than the topological
dimension n, hence the number of derivatives needed could be less than
d=2. See for example, [MS, He4, Du, CS].
In the setting of general Lie groups of polynomial growth spectral

multipliers were investigated by Alexopoulos. Note that in this setting,
the local dimension d0 and dimension at in�nity d1 are di�erent in
general and the group G does not have dilation invariants as in the
case of a homogeneous group. Using �nite propagation speed property,
estimates on upper bounds of heat kernels and their space gradients,
Alexopoulos proved the following (see [Ale1]).

Theorem 2. Let L be a group invariant operator acting on a Lie
group of polynomial growth de�ned by (2). Suppose that s > d=2 =
max(d0; d1)=2 and that F : [0;1) ! C is a bounded Borel function
such that

sup
t>0

k� �tFkW1

s
<1;(5)

where �tF (�) = F (t�) and kFkW p
s
= k(I � d2= dx2)s=2FkLp. Then

F (L) is of weak type (1; 1) and bounded on Lq when 1 < q <1.

Condition (5) is also independent of the choice of �. We note that
Theorem 1.2 does not appear exactly the same but is essentially equiv-
alent to the results of [Ale1].
In [He3] Hebisch extended Theorem 2 to a class of abstract operators

acting on spaces satisfying \doubling condition" (see also [Ale2]). The
order of di�erentiability in the Alexopoulos-Hebisch multiplier theorem
is optimal. This means that for any s < d=2 we can �nd a function
F such that F satis�es condition (5) but F (A) is not of weak type
(1; 1). Indeed, let A be a uniformly elliptic, self-adjoint second-order
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di�erential operator on Rd, e.g. A = �d, where �d is the standard
Laplace operator. One can prove that

C1(1 + j�j)d=2 � kAi�kL1!L1;1 � C2(1 + j�j)d=2(6)

(see [SW]). (See also [St1, pp. 52] and Christ [Ch2]). However, if we
put F�(�) = j�ji�, then

C 0
1(1 + j�j)s=2 � sup

t>0

k��tF�kW1

s
� C 0

2(1 + j�j)s=2:

Therefore for any s < d=2 Theorem 2 does not hold.
If X is a manifold with exponential volume growth, i.e. V (x; r) �

cekr and L is the Laplace-Beltrami operator, spectral multipliers was
investigate by M. Taylor in [Tay] where it was shown that a su�cient

condition is that F is holomorphic on a strip of width k for F (
p
L) to

be bounded on Lp for 1 < p < 1. For more speci�c spaces such as
certain Iwasawa AN groups, see [He5, CGHM] where it was shown that
only a �nite number of derivatives are required for F (L) to be bounded
on L1 or to be of weak type (1,1). Note that the exponential volume
growth is like the dimension d =1.
The theory of spectral multipliers is related to and motivated by

the study of convergence of the Riesz means or convergence of other
eigenfunction expansions of self-adjoint operators. To de�ne the Riesz
means of the operator A we put

��R(�) =

�
(1� �=R)� for � � R

0 for � > R:
(7)

We then de�ne the operator ��R(A) using (1). We call ��R(A) the Riesz
or the Bochner-Riesz means of order �. The basic question in the
theory of Riesz means is to establish the critical exponent for the con-
tinuity and convergence of the Riesz means. More precisely we want
to study the optimal range of � for which the Riesz means ��R(A) are
uniformly bounded on L1(X) (or other Lq(X) spaces).
Since the publication of Riesz paper [Ri] the summability of the Riesz

means has been one of the most fundamental problems in Harmonic
Analysis (see e.g. [St2, IX.2 and xIX.6B]). Despite the fact that the
Riesz means have been extensively studied we do not have the full
description of the optimal range of � even if we study only the space
L1(X). On one hand we know that for the Laplace operator �d =Pd

k=1
@2k acting on Rd and the Laplace-Beltrami operator acting on

compact d-dimensional Riemannian manifolds the critical exponent is
equal (d�1)=2 (see [So1]). This means that Riesz means are uniformly
continuous on L1(X) if and only if � > (d� 1)=2 (see also [ChS, Ta]).
On the other hand, if we consider more general operators like e.g.
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uniformly elliptic operators on Rd it is only known that Riesz means
are uniformly continuous on L1(X) if � > d=2 (see [He1]). One of
the main points of our work is to investigate the summability of Riesz
means for d=2 � � > (d� 1)=2.
The Alexopoulos-Hebisch multiplier theorem discussed above gives

optimal value for the exponent d=2 of the number of derivatives needed
in spectral multipliers, but it does not give the optimal range of the
exponent � for the Riesz summability. Indeed, if k��1 kW1

s
< 1, then

� � s. However, kR�
1kW 2

s
<1 if and only if � > s� 1=2. This means

that in virtue of Theorem 2 one obtains uniform continuity of Riesz
means on Lq for any � > d=2 and for all q 2 (1;1), whereas Theorem 1
shows Riesz summability for � > (d�1)=2 (see also [Ch2, pp. 74]). As
we mentioned earlier (d�1)=2 is a critical index for Riesz summability
for standard Laplace operator on Rd and Laplace-Beltrami operator
on compact manifolds. To conclude we see that the optimal number
of derivatives in multiplier theorems is d=2. However, in condition (5)
we required d=2 derivatives in L1. In the H�ormander-type condition
(4) we required d=2 derivatives in L2. Note that functions ��tF are
compactly supported so condition (5) is strictly stronger than (4).
We would like to investigate when it is possible to replace condi-

tion (5) in the Alexopoulos-Hebisch multiplier theorem by condition
(4) from Theorem 1. As we investigate spectral multipliers in a general
setting of abstract operators rather than in a speci�c setting of group
invariant operators acting on Lie groups, we do not have certain es-
timates which are consequences of invariant structures of Lie groups.
Also we only assume suitable bounds on heat kernels but not pointwise
bounds on their space derivatives.
The subject of Bochner-Riesz means and spectral multipliers is so

broad that it is impossible to provide comprehensive bibliography of it
here. Hence we quote only papers directly related to our investigation
and refer reader to [Ale1, Ch2, Ch1, ChS, CS, dMM, Du, He1, He3, H�o1,
H�o3, HS, MM, SeSo, So1, So2, Si2, St1, St2, Ta] and their references.

2. Main results

In this section we �rst introduce some notation and describe the
hypotheses of our operators and underlying spaces. We then state our
main results.

Assumption 1. Let X be an open subset of eX, where eX is a topo-
logical space equipped with a Borel measure � and a distance �: Let

B(x; r) = fy 2 eX; �(x; y) < rg be the open ball (of eX) with centre at

x and radius r. We suppose throughout that eX satis�es the doubling
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property, i.e., there exists a constant C such that

�(B(x; 2r)) � C�(B(x; r)) 8x 2 eX; 8r > 0:(8)

Note that (8) implies that there exist positive constants C and d such

that

�(B(x; 
r)) � C(1 + 
)d�(B(x; r)) 8
 > 0; x 2 eX; r > 0:(9)

In a sequel we always assume that (9) holds.

We state our results in terms of the value d in (9). Of course for any
d0 � d (9) also holds. However, the smaller d the stronger multiplier
theorem we will be able to obtain. Therefore we want to take d as
small as possible. Note that in the case of the group of polynomial
growth the smallest possible d in (9) is equal to max(d0; d1). Hence
our notation is consistent with statements of Theorems 1 and 2.
Note that we do not assume that X satis�es doubling property. This

poses certain di�culties which we overcome by using results of singular
integral operators of [DM]. An example of such a space X is a domain
of Euclidean space Rd. If we do not assume any smoothness on its
boundary, then doubling property fails in general.
Now we describe the notion of the kernel of the operator. Suppose

that
T : L1(X; �) ! Lq(X; �) for q > 1. Then by KT (x; y) we denote the
kernel of the operator T de�ned by the formula

hTf1; f2i =
Z
X

Tf1f2 d� =

Z
X

KT (x; y)f1(y)f2(x) d�(x) d�(y):(10)

for all f1; f2 2 Cc(X). Note that

kTkL1(X;�)!Lq(X;�) = sup
y2X

kKT ( � ; y)kLq(X;�):

Hence if kTkL1(X;�)!Lq(X;�) < 1, then its kernel KT is a well de�ned
measurable function. Vice versa, if supy2X kKT ( � ; y)kLq(X;�) < 1,

then KT is a kernel of the bounded operator T : L1(X; �)! Lq(X; �),
even if q = 1.
Next we denote the weak type (1; 1) norm of an operator T on a

measure space (X; �) by kTkL1(X;�)!L1;1(X;�) = sup� �(fx 2 X :
jTf(x)j > �g), where the supremum is taken over � > 0 and func-
tions f with L1(X; �) norm less than one.

Assumption 2. Let A be a self-adjoint positive de�nite operator. We

suppose that the semigroup generated by A on L2 has kernel
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pt(x; y) = Kexp(�tA)(x; y) which for all t > 0 satis�es the following
Gaussian upper bound

jpt(x; y)j � C�(B(y; t))�1=m exp
�
� b

�(x; y)m=(m�1)

t1=(m�1)

�
(11)

where C; b and m are positive constants and m � 2.

Such estimates are typical Gaussian estimates for elliptic or sub-
elliptic di�erential operators of order m (see e.g. [Da1, Ro, VSC]). We
will call pt(x; y) the heat kernel associated with A. When order m = 2,
Gaussian estimates (2.4) is equivalent to �nite propagation speed, see
[Si1]. When m 6= 2, we can have (2.4) but �nite propagation speed
property does not hold.
In our following main results, we suppose that Assumptions 1 and 2

hold. The values d and m always refer to (9) and (11).

Theorem 3. Suppose that s > d=2 and assume that for any R > 0
and all Borel functions F such that suppF � [0; R]Z

X

jKF (
m
p
A)(x; y)j2 d�(x) � C�(B(y; R�1))�1k�RFk2Lp(12)

for some p 2 [2;1]. Then for any Borel bounded function F such that
sup
t>0

k��tFkW p
s
< 1 the operator F (A) is of weak type (1; 1) and is

bounded on Lq(X) for all 1 < q <1. In addition

kF (A)kL1(X;�)!L1;1(X;�) � Cs

�
sup
t>0

k��tFkW p
s
+ jF (0)j

�
:(13)

Note that if (12) holds for p <1, then the pointwise spectrum of A
is empty. Indeed, for all p <1 and all y 2 X

0 = Ck�f1=2gkLp = Ck�2a�fagkLp � �(B(y;
1

2a
)kK�

fag(
m
p
A)( � ; y)kL2(X;�)

(14)

so �fag(
m
p
A) = 0. Hence for elliptic operators on compact manifolds,

(12) cannot be true for any p <1. To be able to study these operators
as well we introduce some variation of assumption (12). Following [CS]
for a Borel function F such that suppF � [�1; 2] we de�ne the norm
kFkN;p by the formula

kFkN;p =
�
1

N

2NX
l=1�N

sup
�2[ l�1

N
; l
N
)

jF (�)jp
�1=p

;

where p 2 [1;1) and N 2 Z+. For p = 1 we put kFkN;1 = kFkL1.
It is obvious that kFkN;p increases monotonically in p. The next the-
orem is a variation of Theorem 3. This variation can be used in the
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case of operators with nonempty pointwise spectrum (compare [CS,
Theorem 3.6]).

Theorem 4. Suppose that � is a �xed natural number, s > d=2 and

that for any N 2 Z+ and for all Borel functions F such that suppF �
[�1; N + 1]Z

X

jKF (
m
p
A)( � ; y)j2 d�(x) � C�(B(y; 1=N))�1k�NFk2N�;p(15)

for some p � 2. In addition we assume that for any " > 0 there exists
a constant C" such that for all N 2 Z+ and all Borel functions F such
that suppF � [�1; N + 1]

kF ( m
p
A)k2L1(X;�)!L1(X;�) � C"N

�d+"k�NFk2N�;p:(16)

Then for any Borel bounded function F such that supt>1 k��tFkW p
s
<1

the operator F (A) is of weak type (1; 1) and is bounded on Lq(X) for
all q 2 (1;1). In addition

kF (A)kL1(X;�)!L1;1(X;�) � Cs

�
sup
t>1

k��tFkW p
s
+ kFkL1

�
:(17)

Remarks 1. It is straightforward that (12) always holds with p =1
as a consequence of spectral theory. This means that Alexopoulos' mul-
tiplier theorem i.e. Theorem 2 follows from Theorem 3. Theorem 1 also
follows from Theorem 3. Indeed, it is easy to check that for homoge-
neous operators (12) holds for p = 2 (see Section 6 [DOS] or [Ch2,
Proposition 3]).
2. The main point of our theorems is that if one can obtain (12)

or (15) then one can prove stronger multiplier results. If one shows
(12) or (15) for p = 2, then this implies the sharp H�ormander-type
multiplier result. Actually we believe that to obtain any sharp spectral
multiplier theorem one has to investigate conditions of the same type
as (12) or (15), i.e. conditions which allow us to estimate the norm
kKF (

m
p
A)( � ; y)kL2(X;�) in terms of some kind of Lp norm of the function

F .
3. We call hypotheses (12) or (15) the Plancherel estimates or the

Plancherel conditions. In the proof of Theorems 3 and 4 one does not
have to assume that p � 2 in estimates (12) or (15). However (12) or
(15) for p < 2 would imply Riesz summability for � < (d � 1)=2 and
we do not expect such a situation.
Note that (12) is weaker than (15) and we need additional hypothesis

(16) in this case. However, in practice once (15) is proved, (16) is
usually easy to check and we can often put " = 0.
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4. We conclude this paper with a theorem on Riesz summability for
d=2 � � > (d�1)=2. Theorem 3 with p = 2 implies Riesz summability
for all � > (d�1)=2 and that in addition it seems that Theorem 3 with
p = 2 is essentially stronger than sharp Riesz summability. However,
one can obtain only weak type (1; 1) estimates in virtue of Theorem 3
and formally Theorem 3 does not imply continuity and convergence of
Riesz means on L1(X; �). However, Theorem 3 and 4 can be modi�ed
to prove that uniform continuity of Riesz means of order greater than
(d=2�1=p) on all spaces Lq(X; �) for q 2 [1;1]. We claim the following
Theorem.

Theorem 5. Suppose that operator A satis�es condition (12), or (15)
and (16) for some p 2 [2;1]. Then for any � > d=2 � 1=p and

q 2 [1;1]

sup
R>0

k��R(A)kLq(X;�)!Lq(X;�) � C <1:

Hence for any q 2 [1;1) and f 2 Lq(X; �)

lim
R!1

k��R(A)f � fkLq(X;�)!Lq(X;�) = 0;

where ��R is de�ned by (7).

For the proofs of our Theorems, we refer reader to [DOS]. Here let us
only mention that the proofs of Theorems 5 and 3 are less complicated
than most of earlier spectral multiplier results. Our strategy is to
use the complex time heat kernel bounds (see [Da1, DO]) to show
W 2

(d+1)=2 functional calculus for the considered operator A. Then we use

Mauceri-Meda interpolation trick (see [MM]) and our Plancherel type
assumption (12) to obtainW p

d=2+"
functional calculus. This is enough to

show Riesz summability (i.e. Theorem 5. To prove Theorem 3 we need
also some Calder�on-Zygmund singular integral techniques. However in
contrast to the standard Calder�on-Zygmund singular integral estimates
we do not use estimates for the gradient of the kernel of singular integral
operators. Instead of that we follow the ideas of [DM, He3, He2].
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