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Contact geometry treats such questions as the existence and clas-
si�cation of contact structures on manifolds of odd dimension and
speci�ed topological structure. See inequality (1) below. The geo-
metric/analytic approach treated in this report introduces parabolic
systems of partial di�erential equations (PDEs) in a way which comple-
ments the more algebraic methods, which until now are better known
in contact geometry.
This is a report on joint work in progress with Hansj�org Geiges of the

University of Leiden, Netherlands and Matthias Schwarz of the Univer-
sity of Leipzig, Germany. Many of the speci�c results reported on here
appeared �rst in a paper [1] by Steve Altschuler, which introduced the
heat-ow method to study contact structures, and in a recent preprint
[2] of Altschuler and Lani Wu.

1. Introduction to Contact Geometry

Many of the participants in this conference apply analytical meth-
ods to geometrically motivated problems, or use geometric methods to
strengthen their analysis. However, it cannot be assumed that every-
one is familiar with all of the most modern concepts and techniques of
di�erential geometry. For that reason, this section will be devoted to
an introduction to contact geometry appropriate for analysts, among
others, and may be skipped by those with a good knowledge of the
area. I was until rather recently a complete novice in this area of ge-
ometry, and the reader should not expect a polished nor absolutely
concise presentation. See [4], [5] and [6] for more complete references
to the literature. I expect that analysts will be interested to see this
novel application of parabolic operators.
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A hyperplane distribution � in an open setM of R2n+1 ; or in a smooth
(2n+ 1)-dimensional manifold M; speci�es a subspace �x of dimension
2n in R2n+1 ; or rather in the tangent space to M at each point x 2M;
which depends smoothly on the point x:

1.1. Example: a foliation. A familiar example of a hyperplane dis-
tribution would be the two-dimensional distribution in R3 spanned by
the vector �elds e1(x) = (1; 0; 2x1) and e2(x) = (0; 1; 2x2): Here we
have written x = (x1; x2; x3): This distribution is especially easy to
visualize, since e1(x) and e2(x) are a basis for tangent vectors to the
family of paraboloids of revolution x3 � x 2

1 � x 2
2 = C; for various real

constants C: This family of surfaces is a foliation of R3 ; which means
that every point of R3 lies on one of the surfaces, the surfaces and the
family are smooth, and in some neighborhood of any point, the family
looks like the family of coordinate planes x3 = const :; up to a local
di�eomorphism. In this situation, we say that the distribution is inte-
grable, meaning in this case, where the �rst and second components of
e1 and e2 are (1; 0) and (0; 1); that their third components 2x1 and 2x2
are simultaneously the partial derivatives of a scalar function, locally.
(The scalar function is x 2

1 + x 2
2 +C; of course.) Integrability is equiva-

lent to saying that for any two vector �elds V;W in �; the Lie bracket
[V;W ] also lies in �: Alternatively, we may describe a hyperplane dis-
tribution as the kernel of a nowhere vanishing di�erential 1-form �:
(A 1-form is the dual of a vector �eld, so that for any vector �eld V;

�(V ) de�nes a scalar function and depends linearly and pointwise on
V:) Given �; the 1-form � is determined up to a nonvanishing scalar
factor by the requirement that �(e1) = �(e2) = 0; where e1; e2 form
a local basis for the distribution �: (Computationally, � has the same
components as the cross product of e1 and e2.) The integrability con-
dition for the distribution � may be written in terms of the 1-form � as
an identity between 3-forms: �^d� = 0: (The exterior derivative d� of
a 1-form � is the 2-form de�ned by the alternating part of the matrix
of �rst partial derivatives; the wedge product of di�erential forms is
the alternating part of their tensor product.)
A contact structure is a hyperplane distribution which is maximally

non-integrable. In terms of Lie brackets, we may write !(V;W ) for the
transversal component �([V;W ]) of the Lie bracket of two vector �elds
V;W in �: This makes ! a 2-form. The integrability condition requires
that ! � 0; for � to be a contact structure, we require not merely that
! 6= 0 but far more: that the 2n-form !n = ! ^! ^ � � � ^! be nowhere
zero on �. Via the appropriate Riemannian metric, this is equivalent to
saying that ! de�nes an almost-complex structure on the hyperplane
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distribution �: Restricted to � = ker�; ! is the same as �d�: Thus,
the contact criterion may be written entirely in terms of the 1-form � :

� ^ d�n 6= 0:(1)

Note that inequality (1) depends on � but is independent of the choice
of 1-form �; since if e� = f� for some nonvanishing scalar function f;
then e� ^ de�n � fn+1� ^ d�n: Note also that since d� is a two-form,
the left-hand side of (1) is a di�erential form of degree 2n + 1; so on
R
2n+1 or M2n+1; it has only one real component. In this sense, contact

structures and contact forms only have their full meaning in domains
and manifolds of odd dimension. A 1-form � on a (2n + 1)-manifold
which satis�es inequality (1) is called a contact form.
Inequality (1) is unusual, in the context of geometric analysis, for

two reasons: it is a strict partial di�erential inequality, and it is an
underdetermined \system" consisting of one real, �rst-order, fully non-
linear partial di�erential inequality for the 2n+1 real components ai(x)
of the 1-form �: Speci�cally, in the 5-dimensional case n = 2, we may
write � in local coordinates (x0; : : : ; x4) as

� =

4X
i=0

ai(x) dxi:

Then the contact inequality (1) is equivalent to the inequality

X
�

sgn(�) a�(0)
@a�(1)

@x�(3)

@a�(2)

@x�(4)
6= 0;

where the sum is over all permutations � of f0; 1; 2; 3; 4g: Systems of
partial di�erential equations of this general form are rather poorly un-
derstood at present. In the case of contact geometry, however, we shall
see that there is a parabolic method available to attack inequality (1);
see Section 2 below.

1.2. Example: the standard contact structure. A familiar exam-
ple of a contact structure would be the two-plane distribution � in R3

with the subspace �x at the point x = (x1; x2; x3) having basis vec-
tor �elds e1(x) = (x1; x2; 0) and e2(x) = (�x2; x1; r

2); where we have
written r2 = x 2

1 + x 2
2 : In order to visualize �; we note that e1 is the

horizontal vector �eld pointing away from the x3-axis, and that e2 is a
vector orthogonal to e1 and with slope r; as measured from the (x1; x2)-
plane. Then the distribution � is not a foliation, which may be seen
as follows. Suppose (x1(t); x2(t)); 0 � t � T; describes a closed curve
in the (x1; x2)-plane. Since �x is never vertical, there is a unique way
to lift this curve to a curve x(t) = (x1(t); x2(t); x3(t)) in R

3 ; so that
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the tangent vector x0(t) is always in the distribution �x(t): If � were
integrable, then the space curve would stay on the same surface of the
foliation, and would therefore be a closed curve. However, to be spe-
ci�c, suppose that the plane curve (x1(t); x2(t)) describes the boundary
@
; in the positive sense, of 
 = one-fourth of an annulus: in polar
coordinates (r; �); 
 is given by a < r < b; 0 < � < �=2: Then along
each of the two straight sides � � 0; � � �=2; the tangent vector lifts to
a multiple of e1 = (x1; x2; 0), so x3(t) remains constant. But along the
quarter-circle r � b; 0 < � < �=2; the tangent vector lifts to a multiple
of e2 = (�x2; x1; r

2), so x3(t) increases by the slope times the length
in the plane = �b2=2: Returning along the quarter-circle r � a; as �
decreases from �=2 to 0; x3(t) decreases by �a

2=2: Thus, the change in
x3(t) as t increases from 0 to T is �(b2 � a2)=2; which is exactly twice
the area of the quarter-annulus 
:
In fact, for any domain 
 in the (x1; x2)-plane, the change in x3(t)

as (x1(t); x2(t)) describes @
 equals twice the area of 
: This may be
seen by computing a form �0 so that � = ker�0:

�0 = x2 dx1 � x1 dx2 + dx3:

Since x0(t) is in the distribution �x(t); we get �0(x
0(t)) = 0; which means

that x03(t) = �x2(t)x
0

1(t)+x1(t)x
0

2(t); hence the change x3(T )�x3(0) in
the height as (x1(t); x2(t)) goes around @
 equals the integral around
@
 of �x2 dx1 + x1 dx2; which is twice the area of 
:
The 1-form �0 is the standard contact form on R3 ; and � is the stan-

dard contact structure. More precisely, this is the rotationally symmet-
ric version; the contact form x2 dx1+dx3 is translationally invariant in
two coordinate directions, and is also known as \the" standard contact
form. In higher dimensions, the standard contact form on R2n+1 is

�0 = dx0 +

nX
k=1

(x2k dx2k�1 � x2k�1 dx2k);(2)

which is invariant under the (n + 1)-dimensional group generated by
rotation in the
(x2k�1; x2k)-plane, 1 � k � n; plus translation along the x0-axis.

A natural question is: when are two contact forms equivalent? The
local version of this question has a surprisingly simple answer:

Theorem 1.1. (Darboux): Let � be a contact form on a neighbor-
hood of x in R

2n+1 : Then on a smaller neighborhood of x, there is a
di�eomorphism into R2n+1 such that � is mapped to the standard con-
tact form �0:
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Darboux' Theorem may be interpreted as saying that the contact
condition (1) is a very \soft" condition, as compared to the familiar par-
tial di�erential equations traditionally treated by geometric analysts.
This softness is apparent from the recent work of Gromov, Eliashberg
and others on noncompact manifolds, which showed, for example, that
any noncompact, odd-dimensional manifold which has a hyperplane
distribution with an almost-complex structure also carries a contact
structure (see [8] and references therein.)

1.3. Global non-uniqueness: the Lutz Twist. Since contact struc-
tures are locally unique, it might seem reasonable to think that a topo-
logically simple space like R3 has only one contact structure up to a
change of coordinates. However, there are subtle criteria which distin-
guish other contact structures on R3 from the standard �0:
Recall the description in subsection 1.2 of basis vector �elds e1; e2

for the standard contact structure on R3 : e2 is orthogonal to the radial
vector e1; and has slope r; which means that it makes an angle ' =
arctan r with the (x1; x2)-plane. As r ! 1; e2 becomes vertical, so
' ! �=2: Instead, suppose that ' = '(r) increases beyond �=2 to
make one or more revolutions before slowly approaching arctan r+2�m
(m 2 Z) as r ! R < 1: Outside the cylinder r < R; the contact
structure may be continued smoothly, to join up with the standard
contact structure. This construction is known as the Lutz twist (see
[9].)
In terms of the contact form, in cylindrical coordinates (r; �; x3);

�0 = dx3 � r2 d� is replaced by � = h0(r)dx3 � h1(r) d� for some
functions h0; h1 : [0;1) ! R with h01h0 � h1h

0

0 > 0; and with h0(r) =
1; h1(r) = r2 for all r � R: Then h1 and h0 are related to the angle '
by rh0(r) tan'(r) = h1(r):
This new contact structure is overtwisted, that is, there is a topolog-

ical disk D � R
3 with �jD nowhere zero along @D and �j@D � 0: In

fact, let r0 be the �rst value of r with '(r0) = �: Then we may choose
D = f(r; �; x3) : x3 = r20�r

2; 0 � � � 2�; 0 � r � r0g: It may be shown
that no such disk exists in R3 with the standard contact structure.

1.4. Compact Manifolds. What about compactmanifolds? The only
known obstruction to the existence of an orientable contact structure on
an oriented, odd-dimensional manifold M2n+1 is the requirement that
some hyperplane distribution on M should have an almost-complex
structure; this can be written as a topological condition onM , that the
even-dimensional Stiefel-Whitney classes w2i (certain natural cohomol-
ogy classes with Z=2Z coe�cients) are in the image of cohomology with
integer coe�cients. However, there are many manifolds which satisfy
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this condition but have not been shown to carry a contact structure.
Speci�cally, one would like to know whether there is a contact structure
on the odd-dimensional torus T 2n+1.
We shall assume for the rest of this paper that manifolds are com-

pact, oriented and have no boundary. A readily visualized exam-
ple is the interesting case of the torus T 2n+1, which is just the cube
[��; �]2n+1 � R

2n+1 after opposite faces have been identi�ed.
A contact form may be found on the three-torus T 3 as the �rst case

of a classical construction. Begin on the two-dimensional torus T 2;
introduce local coordinates (q0; q1) on T 2 and then extend these coor-
dinates to the 4-dimensional phase space, or cotangent bundle, T �(T 2):
Then a cotangent vector �x at the point x = (q0; q1) has components
(p0; p1), meaning that �x = p0 dq0 + p1 dq1: (In certain applications,
(q0; q1) are coordinates of position and (p0; p1) are components of the
momentum vector.) Then ! = dp0 ^ dq0 + dp1 ^ dq1 is the natural
symplectic form on phase space T �(T 2): One notes that ! is the exte-
rior derivative d�; where � is the canonical 1-form p0 dq0 + p1 dq1 on
phase space. When � is restricted to the unit-sphere bundle M3 :=
f(x; p) : x 2 T 2; p 2 T �

x (T
2); jpj2 = 1g, it satis�es the contact condition

(1). Here jpj2 = p20 + p21: The veri�cation of inequality (1) reduces to
showing that p0 @jpj

2=@p0+ p1 @jpj
2=@p1 6= 0 on M . Meanwhile, on T 2;

there is a global basis of tangent vector �elds, which implies that the
unit sphere bundle M3 of T 2 is T 2� S1 = T 3: In coordinates (q0; q1; �)
for T 3 = (R=2�Z)3; we have � = cos � dq0 + sin � dq1: This is the most
natural construction for a contact structure on T 3:
The construction above generalizes to higher dimensions. Let N be

an oriented (n+1)-dimensional manifold, equipped with a Riemannian
metric, and introduce local coordinates (q0; : : : ; qn; p0; : : : ; pn) for the
cotangent bundle T �N of N; where (q0; : : : ; qn) are local coordinates on
N and a cotangent vector is represented as

Pn

i=0 pi dqi: Let � be the
canonical 1-form

Pn

i=0 pi dqi: When � is restricted to the unit-sphere

bundleM2n+1; de�ned as
�
(q; p) : q 2 N; p 2 T �

qN; jpj
2 = 1

	
; it satis�es

the contact condition (1). That is, the unit sphere of the cotangent
bundle of any manifold carries a natural contact structure. This is
how contact structures arise naturally, on suitable energy surfaces in
Hamiltonian systems.
When one applies the same construction to N = T 3; n = 2; one �nds

a contact 1-form �1 on the 5-dimensional unit sphere bundle of T �N:
But the unit sphere bundle M5 is now T 3 � S2; not T 5: However, T 5

can still be given a contact structure, as was �rst shown by Lutz [9].
Another way to �nd a contact structure on T 5 is to apply the following
result of Gromov (see [8] and [5], p. 456):
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Theorem 1.2. : If M2 is a branched covering of M1; branched along
a codimension-2 submanifold � of M1; and if M1 has a contact form
�1 whose restriction to � also makes � into a contact manifold, then
M2 has a contact form � close to the pullback of �1:

In our case, T 2 may be written as a branched double cover F : T 2 !

S2 of the sphere, branched simply over four points of S2; which we may
assume are the four equidistant points (�1; 0; 0); (0;�1; 0) along the
equator fp2 = 0g of S2 � R

3 :

We construct a branched covering eF : M2 ! M1 from M2 = T 5 =
T 3�T 2 toM1 = T 3�S2; by twisting F; as follows. Let q = (q0; q1; q2) be
coordinates for T 3 = (R=2�Z)3; and let p = (p0; p1; p2) be coordinates
for S2; where p 20+p

2
1+p

2
2 = 1: For each q2 2 R=2�Z; let �(q2) : S

2 ! S2

be the rotation in the (p0; p1)-plane by angle q2; leaving p2 �xed. TheneF : M2 ! M1 is de�ned by eF (q0; q1; q2; z) := (q0; q1; q2;�(q2)(F (z))) :eF : M2 !M1 is a branched covering, with branch locus

� = f(q; p) 2 T 3 � S2 : p0 = cos(q2 + k�=2);

p1 = sin(q2 + k�=2); p2 = 0; k 2 Zg:

� has four connected components �k; k = 0; 1; 2; 3; each of which
projects di�eomorphically onto the the T 3 factor of M1:

Write �1 for the canonical contact 1-form
P2

i=0 pi dqi on M1; viewed
as the unit cotangent bundle of T 3: On each component �k of �; we
have �1 j�k

= cos(q2 + k�=2) dq0 + sin(q2 + k�=2) dq1: We compute
(�1 ^ d�1) j�k

= �dq0 ^ dq1 ^ dq2; k = 0; 1; 2; 3; which shows that
� is a (disconnected) contact 3-manifold with contact form �1 j� :
We may now apply Theorem 1.2 to �nd a contact form � onM2 = T 5

which is close to the pullback of �1: Thus, the 5-torus T
5 has a contact

structure.
The existence of a contact structure on the 7-torus, and on numerous

higher-dimensional manifolds, was unclear until now.

2. The Heat Flow

Recall that we are assuming that manifolds are compact, connected,
oriented and have no boundary. In addition, we will assume that a
Riemannian metric has been chosen.
A property of parabolic PDEs familiar to analysts is the strong

maximum principle: if the solution f(t; x) satis�es at the initial time
f(0; x) � 0 but f(0; x) 6� 0; then at time t > 0; f(t; x) will be positive
everywhere. That is, heat ows instantaneously to warm a connected
domain. This property makes parabolic methods ideal for the study
of strict inequalities such as the contact inequality (1). The idea is to
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use a hands-on construction to make f(0; x) > 0 for x in an appropri-
ate, possibly quite small, open set, while f(0; �) � 0 everywhere, and
then to replace f(0; x) with the strictly positive solution f(t; x) at some
small positive time t: Since f(t; x) is close to f(0; x) in certain strong
norms, other relevant conditions will be maintained.
Altschuler in [1] considers any orientable compact 3-manifold M :

he combines the Lutz twist with the strong maximum principle to con-
struct a contact form onM: (The result was proved using entirely di�er-
ent methods in [10]; see also [4].) Altschuler's technique is to start with
a foliation, or equivalently with a 1-form �1 satisfying �1 ^ d�1 � 0;
and then to use the Lutz twist to construct a 1-form �2 satisfying
�2 ^ d�2 > 0 on a certain open set U; with �2 = �1 near @U: The re-
sulting 1-form �2 on all of M satis�es �2 ^ d�2 � 0; such 1-forms have
been called confoliations by Eliashberg and Thurston [4]. Altschuler
then de�nes a degenerate parabolic system of equations for a 1-form
�(t; x); 0 < t < "; x 2 M; and uses �2 as the initial condition at
time t = 0: The system of PDEs is chosen so that the scalar quan-
tity f(t; x) := �(�^d�); which is initially nonnegative everywhere and
strictly positive on U; becomes everywhere positive for small t > 0:
One di�culty is that the system of PDEs is degenerate parabolic, so
that \heat" will ow reliably only in certain directions. Altschuler de-
�nes the system of equations so that heat ows in directions tangent to
ker�2; which is the original foliation ker�1 on the more troublesome
set MnU; and ensures that the Lutz twist was carried out so that the
open set U meets each leaf of ker�1:
A nonlinear version of the system of equations Altschuler uses on a

3-manifold is

@�

@t
= � (� ^ df) ;where f(t; x) = �(� ^ d�):(3)

Here, for a p-form � on an oriented Riemannian (2n+1)-manifold, �� is
a (2n+1�p)-form, the Hodge star of �; which depends linearly on � and
is de�ned at each point so that for any oriented orthonormal coframe
�0; : : : ; �2n of 1-forms, �(�p ^ : : : ^ �2n) = �0 ^ : : : ^ �p�1: The system
(3) appears quite complicated, but it may be dealt with successfully by
the following trick. The real-valued function f(t; x) satis�es a single
degenerate parabolic PDE:

@f

@t
= � (� ^ d � (� ^ df)) + h� ^ df; d�i:(4)

Thus, the system (3) uncouples weakly, in the sense that � appears
in the PDE (4) only as a coe�cient. Once f(t; x) is determined, the
equation (3) for �(t; x) becomes a parameterized system of ODEs. Of
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course, the unknown 1-form � also appears in the coe�cients of (4), so
this version of Altschuler's method succeeds by requiring t to remain
small, implying that �(t; �) is close to the initial 1-form �2:
More generally, on a (2n + 1)-manifold, choose a (2n � 1)-form 
,

and consider the system of equations

@�

@t
= � (
 ^ df) ;where f(t; x) := �(
 ^ d�):(5)

The PDE satis�ed by f is now

@f

@t
= � (
 ^ d � (
 ^ df)) + �

�
@


@t
^ d�

�
:(6)

Again, the system (5) uncouples weakly. Further, we have

Proposition 2.1. : Equation (6) is a weakly parabolic PDE, a degen-
erate heat equation, where the right-hand side de�nes a second-order
partial di�erential operator, which is strongly elliptic when restricted
to the distribution H � TM given by

H = (ker(�
))? :

Recall that for a 2-form � on M; ker �x := f v 2 TxM j �(v; �) =
0 on TxM g. The coe�cients of the principal part of the PDE (6) at
(t; x) are ATA; where the skew-symmetric matrix A represents �
x in
coordinates which are orthonormal at x; the subspace Hx is spanned
by the columns of ATA:
In the nonlinear version of Altschuler's heat ow on a 3-manifold,

as we have seen, one chooses 
 = �, the evolving 1-form itself. We
would like to apply Proposition 2.1 in this case. At a given small time
t > 0; the 1-form �(t; �) never vanishes, so we may complete to a local
orthonormal basis (�1; �2; �3) with � a nonvanishing scalar multiple of
�1: We compute ker(��) = ker(��1) = ker(�2^�3) = Re1 ; and therefore
H = (ker(��))? = Re2 + Re3 = ker�: In particular, for small positive
t; the distribution H is close to ker�2: Thus, if �2 is a contact form on
an open set U which is a neighborhood of some point on each leaf of
the original foliation ker�1, then heat will ow out of U to warm each
point of M:
In general, one may show that

Lemma 2.2. : If 
 is locally decomposable as a product of 1-forms,
then

H := (ker(�
))? = ker 
:
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3. The Higher Lutz Twist

For higher dimensions 2n+ 1, in the recent paper of Altschuler and
Wu [2], the degenerate parabolic system (5) is studied with the choice

 = � ^ (d�)n�1: They show the existence of a smooth solution for
all positive time, via a parabolic regularization. (More precisely, in [2]
Altschuler and Wu consider a partly linearized degenerate parabolic
system which is easier to analyze than equation (5), and slightly more
complicated, but has consequences equivalent to those of equation (5).)
The PDE (6) now becomes

@f

@t
= n � (
 ^ d � (
 ^ df)) + h
 ^ df; (d�)ni:(7)

Thus, the system of equations uncouples in the same sense as in the
3-dimensional case n = 1 (compare equations (3) and (4).)
Another part of their paper carries out a higher analogue of the

Lutz twist for the �ve-dimensional product case M5 = N3 � F 2; using
a contact structure on the 3-dimensional manifold N and its paralleliz-
ability. They are thereby able to prove that every product 5-manifold
of this form carries a contact structure. Incidentally, this gives another
construction of a contact form on the 5-torus T 5:
Let us proceed in an analogous, but in applications rather di�erent,

fashion. Consider a (2n+1)-manifoldM2n+1 = N2n�1�F 2 which is the
product of a contact (2n�1)-manifold (N;�N) and an oriented surface
F . We shall write �1 for the 1-form on M = N � F pulled back from
�N : For simplicity, assume that (N;�N) has a closed Reeb orbit . This
means that 0(s) 6= 0 and that d�(0(s); v) = 0 for all parameter values
s along the curve  and for all vectors v 2 T(s)M: Then, according
to an extension of Darboux' Theorem 1.1, in some neighborhood W

of  in N , there are multipolar coordinates (z; r1; �1; : : : ; rn�1; �n�1);
r 21 + : : : + r 2n�1 < R2; �k 2 R mod 2�; so that �N is the standard
contact form (2), which in these coordinates means that

�N = dz +

n�1X
k=1

r 2k d�k:

In a small ball B � F 2; let polar coordinates (rn; �n) be chosen, 0 �
rn < R; �n 2 R mod 2�: For some choice of real-valued functions
hk(r1; : : : ; rn), 0 � k � n; de�ne

�2 = h0(r1; : : : ; rn) dz +

nX
k=1

hk(r1; : : : ; rn) d�k :(8)
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Then �2 will satisfy the contact inequality (1) in U :=W �B provided

1

r1 � : : : � rn

��������

h0 h1 : : : hn
@1h0 @1h1 : : : @1hn
...

...
...

@nh0 @nh1 : : : @nhn

��������
> 0; for ri � 0 :(9)

Here the operator @k denotes @=@rk: Inequality (9) is equivalent to
the orientation preserving local di�eomorphism property for the cen-
tral projection of (h0; : : : ; hn) 2 R

n+1 to the sphere Sn: Observe that
inequality (9) continues to hold when �2 is multiplied by a positive
scalar function.
Recall that we wish to carry out this higher Lutz twist on the open

set U , but we need to construct �2 on all of M . Therefore it will be
necessary for the coe�cients hk(r1; : : : ; rn) to satisfy boundary con-
ditions on @U , so that the extension of �2 to all of M by de�ning
�2 = �1 on MnU will be smooth. However, only the oriented con-
tact structure is important to us, which means that �2 only needs
to be de�ned modulo a (nonconstant) positive multiple. Speci�cally,
there needs to hold on the boundary hk(r1; : : : ; rn) = r 2k h0(r1; : : : ; rn);
1 � k � n � 1; and hn(r1; : : : ; rn) = 0; as well as inequality (9) in
the interior of U: This requires us to �nd a mapping from the sector
V := f(r1; : : : ; rn) 2 (0;1)n : r 21 + : : : + r 2n < R2g to the sphere Sn

which is a di�eomorphism of V with an open subset of Sn; having the
following boundary values on @V . On the curved part of the boundary
fr 21 + : : :+r 2n = R2g; we require hk = r 2k h0; 1 � k � n�1; and hn = 0:
For 1 � k � n; on the face frk = 0g; we require hk = 0; 1 � k � n: In
the �ve-dimensional case n = 2; this may be done using a conformal
mapping from the quarter-disk V to the hemisphere of S2 with a slit
from an interior point to the equator removed. The boundary of the
quarter-disk covers the slit twice and the equator once. For the general
case n � 2, another more hands-on construction of the map from V
into the hemisphere of Sn may be carried out.
Closed Reeb orbits may be rare for a given contact manifold (N;�N),

but the above procedure may be modi�ed appropriately.
A covering argument may then be used to arrange disjoint open sets

of M of the above form so that their projections from M = N � F
to N cover all of N: For small time t > 0; the solution �(t; �) will
be close to the initial value �2: On the complement of the union of
the sets U where the higher Lutz twist has been carried out, we have
�2 = �1: Write 
1 = �1 ^ (d�1)

n�1: Since �1 is the pullback of the
contact form �N ; we see that 
1 is the pullback of a volume form on
N; and thus is decomposable as a product of 1-forms. It follows from
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Lemma 2.2 that on the complement of the sets U; the distribution H1

of elliptic directions for the system (5), with 
 replaced by 
1; equals
ker 
1; which is the tangent plane TF to fyg�F 2 in TM = TN �TF:
Therefore, for small time t > 0; the distribution H is close to the
foliation TF: It follows by Proposition 2.1, for small time t > 0; that
heat ows out of the union of open sets U along directions arbitrarily
close to TF to warm all ofM = N�F: Numerous points omitted here,
in part rather technical, will be treated in [7] to prove

Theorem 3.1. : If N2n�1 is a compact contact manifold and F 2 is a
compact oriented surface, then M2n+1 = N � F has a contact 1-form,
which is C2-close to a 1-form �2 obtained from the contact form of N
by means of the higher Lutz twist.

By induction on n = 2; 3; : : : ; with N = T 2n�1 and F = T 2; we
deduce

Corollary 3.2. : Any odd-dimensional torus T 2n+1 carries a contact
structure.
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