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Abstract. The existence theorem for quasiconformal mappings

has found a central rôle in a diverse variety of areas such as holo-

morphic dynamics, Teichm�uller theory, low dimensional topology

and geometry, and the planar theory of PDEs. Anticipating the

needs of future researchers we give an account of the \state of the

art" as it pertains to this theorem, that is to the existence and

uniqueness theory of the planar Beltrami equation, and various

properties of the solutions to this equation.

This paper surveys the recent work of the authors' paper [14] and

parts of our monograph [15]. Readers interested in more details, and in
particular rather greater discussion of related work by others, should
consult those works. In what follows we use fairly standard notation,
in particular B denotes a disk, usually the unit disk, in the complex

plane C and C = C [ f1g is the Riemann sphere.

The Beltrami equation has a long history. Gauss �rst studied the
equation, with smooth coe�cients, in the 1820's while investigating the
problem of existence of isothermal coordinates on a given surface. The

complex Beltrami equation was intensively studied by Morrey in the
late 1930's, and he established the existence of homeomorphic solutions
for measurable � [18]. It took another 20 years before Bers recognised
that homeomorphic solutions are quasiconformal mappings. Since then
these ideas have found diverse applications in a variety of areas such as

holomorphic dynamics, Teichm�uller theory, low dimensional topology
and geometry, and the planar theory of PDEs.

1. PDEs

There is a strong interaction between linear and non-linear elliptic
systems in the plane and quasiconformal mappings. The most general
�rst order linear (over R) elliptic system takes the form

@ f = �1 @f + �2 @f
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where �1 and �2 are complex valued measurable functions such that

j�1(z)j + j�2(z)j �
K � 1

K + 1
< 1 a:e: 


The complex Beltrami equation is simply that equation which is linear
over the complex numbers.

@f(z) = �(z) @f(z)(1)

Classically one assumes ellipticity bounds:

k�k1 =
K � 1

K + 1
< 1(2)

When � = 0 we have the Cauchy{Riemann system.
These sets of equations are particular cases of the genuine non-linear

�rst ord er system

@f = H(z; @f)M(3)

where H : 
� C ! C is Lipschitz in the second variable,

jH(z; �)�H(z; �)j �
K � 1

K + 1
j� � �j; H(z; 0) � 0

A feature of (3) is that the di�erence of two solutions need not solve
the same equation but it is K{quasiregular (the term used to describe
non-injective quasiconformal functions). Thus quasiconformal maps
are a central tool used to establish a priori estimates needed for the

existence and uniqueness.

2. Classical Regularity Theory

Typically one seeks solutions to the Beltrami equation in the Sobolev

space W
1;2
loc (
). However, the solutions to this equation have the fol-

lowing striking regularity result �nally established in complete form by
K. Astala (the Area Distortion Theorem) [2].

Theorem 2.1. Let � be a measurable function de�ned in 
 with k�k1 =

k < 1. Let f be any solution to the Beltrami equation with f 2 W
1;q
loc (
),

q > 1 + k. Then f 2 W
1;p
loc (
) for all p < 1 + 1

k
.

Moreover, there may be solutions in W
1;1+k
loc (
) not in any higher

Sobolev space, and there may be solutions inW
1;2
loc (
) not inW

1+1=k
loc (
).

Notice the indices p and q in the above result form a H�older conjugate
pair.

The Neumann iteration procedure based on invertibility of the Bel-
trami operator I � �S, (S the complex Hilbert transform) yields a

representation formula (�rst found by Bojarski [5]) and existence.
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Theorem 2.2. Let � be a measurable function in 
 � C and suppose

k�k1 < 1. Then there is a homeomorphic solution g : 
 ! C to the
Beltrami equation.

Moreover every W
1;2
loc (
; C ) solution f is of the form

f(z) = 	(g(z))

where 	 : g(
)! C is a holomorphic function.

This last fact is known as \factorisation".

3. A Fundamental Example

This example reects what is possible in the degenerate elliptic set-
ting, and shows why it is necessary to use the Orlicz-Sobolev spaces in

order to discuss the �ne properties of solutions.

Theorem 3.1. Let A : [1;1) ! [1;1) be a smooth increasing func-
tion with A(1) = 1 and such thatZ

1

1

A(s)

s2
ds <1:(4)

Then there is a Beltrami coe�cient � compactly supported in the unit
disk, j�(z)j < 1, with the following properties:

1. The ellipticity bound K(z) =
1+j�(z)j

1�j�(z)j
satis�esZ

B

eA(K(z))dz <1(5)

2. Every W
1;1
loc (B){solution to the Beltrami equation

fz = �fz a:e: B(6)

continuous at the origin is constant.

3. There is a bounded solution w = f(z) to the Beltrami equation in
the space weak-W 1;2(B) �

T
1�q<2W

1;q(B) which homeomorphi-

cally maps the punctured disk onto the annulus 1 < jwj < R.

A few remarks.

First, W
1;1
loc (B) is really the weakest space in which one can begin to

discuss what it means to be a solution.

Secondly, the integrability condition (4) implies that A is sublinear.
As examples the function

A(�) =
�

(log �)1+�
(7)
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satis�es (4) for all � > 0, but not for � = 0. More generally, if we put

log1 � = log �; logn+1 � = log(logn �)

we have the iterated logarithm functions. Then for each n > 0 the
function

�

log1(1 + �) log2(e+ �) log3(e
e + �) � � � (logn(e

e�
�

�

e

+ �))1+�

again satis�es (4) for all � > 0, but not for � = 0.

Finally, (3) is no accident. We can prove that if eA(K) 2 L
p
loc(B) for

some p � 0 and certain types of A (and in particular the log log : : :
examples), with Z

B

eA(K(z))dz =1

then there is a homeomorphic (and hence continuous) solution inW 1;p(B)
for all p < 2. In fact the solution lies in an Orlicz{Sobolev class just

below W
1;2
loc

4. Mappings of Finite Distortion

We next give a general de�nition of the mappings which mostly oc-
cur. Roughly, solutions to a Beltrami equation with ellipticity bounds
which are pointwise �nite will be mappings of �nite distortion as soon
as they are ACL{absolutely continuous on lines.

De�nition A mapping f : 
! C is said to have �nite distortion if:

1. f 2 W
1;1
loc (
),

2. The Jacobian determinant, J(z; f) = detDf(z), of f is locally
integrable and does not change sign in 


3. There is a measurable function K = K(z) � 1, �nite almost ev-
erywhere, such that f satis�es the distortion inequality

jDf(z)j2 � K(z) jJ(z; f)j a:e: 
(8)

Notice that the hypotheses are not su�cient to guarantee that f 2

W
1;2
loc (
) unless the distortion function K is bounded. Nor do they

imply that the Jacobian does not vanish on a set of positive measure.

The motivational philosophy behind the condition that the distortion
function is exponentially integrable is now clear. We wish to exploit the

BMO�H1 duality (and even more re�ned versions of this) to achieve
uniform estimates on approximating sequences of solutions.
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5. Maximum Principle and Continuity

One of the �rst tasks is to establish a maximum type principle and
modulus of continuity estimates.
A continuous function u : 
! R de�ned in a domain 
 is monotone

if

oscB u � osc@B u

for every ball B � 
. This de�nition in fact goes back to Lebesgue in
1907 where he �rst showed the relevance of the notion of monotonicity

to elliptic PDEs in the plane. In order to handle very weak solutions
of di�erential inequalities, such as the distortion inequality, we need to
extend this concept, dropping the assumption of continuity, and to the
setting of Orlicz{Sobolev spaces.

De�nition. A real valued function u 2 W 1;P (
) is said to be weakly
monotone if for every ball B � 
 and all constants m �M such that

jM � uj � ju�mj+ 2u�m�M 2 W
1;P
0 (B)(9)

we have

m � u(x) � M(10)

for almost every x 2 B.

For continuous functions (9) holds if and only if m � u(x) � M

on @B. Then (10) says we want the same condition in B, that is the

maximum and minimum principles.
Here, and in what follows we assume, unless otherwise stated, that

the Orlicz function P satis�esZ
1

1

P (t)
dt

t3
=1(11)

and that the function t 7! t
5

8 is convex. For example Orlicz functions
of the form

P (�) =
� 2

log1(1 + �) log2(e+ �) log3(e
e + �) � � � (logn e

e�
�

�

e

+ �)

are of this form.

The Orlicz{Sobolev space W
1;P
loc (
) consists of functions which, to-

gether with their �rst derivatives, lie in the space LP (
). Thus in the
example given above we are looking in Zygmund type spaces just below

W
1;2
loc (
).
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Lemma 5.1. Let 
 be a bounded domain and suppose that u 2 W 1;P (
)\

C(
) is weakly monotone. Then

min
@


u � u(x) � max
@


u(12)

for every x 2 
.

The paper [17] by Manfredi should be mentioned as the beginning

of the systematic study of weakly monotone functions.
We now recall a fundamental monotonicity result in the Orlicz{

Sobolev classes.

Theorem 5.1. The coordinate functions of mappings with �nite dis-

tortion in W 1;P (
) are weakly monotone.

There is a particularly elegant geometric approach to the continuity
estimates of monotone functions. The idea goes back to Gehring in
his study of the Liouville theorem in space where he developed the
Oscillation Lemma.

We need the P{modulus of continuity �P (�) de�ned for 0 � � < 1
as follows. For � > 0 the value t of �P at � is uniquely determined by
the equation Z 1=�

1

P (st)
ds

s3
= P (1):(13)

Certainly �P is a non-decreasing function with

lim
�!0

�P (�) = 0:(14)

Given the transcendental nature of the equation one must solve, it
is impossible in all but the most elementary situations, to calculate
�. Here are a few explicit formulas for �(�) which exhibit the correct
asymptotics for � near 0.

P (t) = t2; �(�) = j log � j�
1

2

More generally for all � > 0 we have,

P (t) = t2 log��1(e+ t); � > 0; �(�) � j log � j�
�
2

P (t) =
t2

log(e + t)
; �(�) � [log j log � j]�

1

2 ;

and �nally

P (t) =
t2

log(e+ t) log log(3 + t)
; �(�) � [log log j log � j]�

1

2 ;

We now have the fundamental modulus of continuity estimate.
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Theorem 5.2. Let u 2 W 1;P (B) be weakly monotone inB = B(z0; 2R)

. Then for all Lebesgue points a; b 2 B(z0; R) we have

ju(a)� u(b)j � 16�RkrukB;P �

�
ja� bj

2R

�
:(15)

In particular, u has a continuous representative for which (15) holds

for all a and b in the disk B(z0; R).

In the statement above we have used

krukB;P = inf

�
1

�
:
1

jBj

Z
B

P (�jruj) � P (1)

�
(16)

to denote the P -average of ru over the ball B.

Theorem 5.3. Every mapping with �nite distortion in the Orlicz{

Sobolev class W
1;P
loc (
), is continuous.

6. Liouville Type Theorem

Here is a �rst taste of the power of Theorem 5.1.

Theorem 6.1. Let f : C ! C be a mapping of �nite distortion whose
di�erential belongs to LP (C ). Then f is constant.

The proof consists in showing that R krukB;P ! 0 as R ! 1 in
(15) using the Dominated Convergence Theorem.

7. Solutions

A principal solution is a homeomorphism h : C ! C with

1. a discrete set E (the singular set) such that h 2 W
1;1
loc (C nE),

2. the Beltrami equation hz(z) = �(z)hz(z) holds for a.e. z 2 C , and

3. we have the normalisation h(z) = z + o(1) at 1

It will become clear that the key to understanding the Beltrami equa-
tion and its local solutions is in the existence and uniqueness properties
of the principal solutions.

A function f , not necessarily a homeomorphism, is a very weak so-
lution if it satis�es:

� there is a discrete set Ef � 
 (the singular set) such that h 2

W
1;1
loc (
 n Ef ).

� the Beltrami equation

fz(z) = �(z)fz(z)

holds for almost every z 2 
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The point is that one expects a solution f to be the composition

of the principal solution h with a meromorphic function ' de�ned on
h(
),

f = ' � h;

(the Stoilow factorisation theorem). Thus away from the poles, the

solution f is locally as good as the principal solution.

7.1. Uniqueness of Principal Solutions. Here is the most general
uniqueness result that we are aware of.

Theorem 7.1. Every elliptic equation

hz = H(z; hz)

admits at most one principal solution in the Sobolev-Orlicz class z +
W 1;P (C )

We use the term z +W 1;P (C ) to denote the mappings h with jhzj+
jhz� 1j 2 LP (C ). As far as the ellipticity is concerned, we assume that

there is a measurable compactly supported function k : C ! B such
that for almost every z 2 C and all �; � 2 C

jH(z; �)�H(z; �)j � k(z)j� � �j

Proof. Let h be a solution to the equation. Thus hz(z) = 0 for
z su�ciently large. The point is that given two principal solutions h1

and h2, the mapping f = h1�h2 has �nite distortion and its di�erential
Df = Dh1 �Dh2 belongs to LP (C ). To see this note

j(h1 � h2)zj = jh1z � h2zj

= jH(z; h1z)�H(z; h2z)j

� k(z)j(h1 � h2)zj

whence J(z; h1�h2) � 0. It follows that f is constant from the Liouville

theorem. The normalisation at 1 implies that this constant is 0.

8. Stoilow Factorisation

We now state that if a Beltrami equation admits a homeomorphic
solution, then all other solutions in the same class are obtained from
this solution via composition with a holomorphic mapping.

Theorem 8.1. Suppose we are given a homeomorphic solution h 2

W
1;P
loc (
) to the Beltrami equation

hz = �(z)hz a:e: 
(17)
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Then every solution f 2 W
1;P
loc (
) takes the form

f(z) = �(h(z)); z 2 


where � : h(
)! C is holomorphic.

9. Failure of Factorisation

Now an example which shows that for fairly nice solutions one cannot
expect a factorisation theorem even in the case of bounded distortion.

Theorem 9.1. Let K > 1 and q0 <
2K
K+1

. Then there is a Beltrami

coe�cient � supported in the unit disk with the following properties.

� k�k1 = K�1
K+1

,

� The Beltrami equation hz = �hz admits a H�older continuous so-

lution h 2 z +W 1;q0(C ) which fails to be in W
1;2
loc (C ),

� The solution h is not quasiregular, and therefore not the principal
solution, nor obtained from the principal solution by factorisation.

10. Distortion in the Exponential Class

Theorem 10.1. There exists a number p0 > 1 such that every Bel-

trami equation

hz(z) = �(z) hz(z) a:e: C

with Beltrami coe�cient � such that

j�(z)j �
K(z)� 1

K(z) + 1
�B(z)

and

eK 2 Lp(B)(18)

with p � p0, admits a unique principal solution h 2 z +W 1;2(C ).

There are examples to show that in order for there to be a principal
solution in the natural Sobolev space z +W 1;2(C ) it is necessary that
the exponent p at (18) is large, at least p � 1.

As a matter of fact, somewhat more is true in Theorem 10.1. The

higher the exponent of integrability of epK the better the regularity of
the solution. That is even beyond L2, such as L2 logL with any � � 0,
see [16].

The situation is di�erent if the integrability exponent of eK is smaller

than the critical exponent p0. Here the principal solution need not be
in z +W 1;2(C ), but we still obtain a satisfactory class of solutions.
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Theorem 10.2. Suppose the distortion function K = K(z) for the

Beltrami equation is such that eK 2 Lp(B) for some positive p. Then
the equation admits a unique principal solution h

h 2 z +W 1;Q(C ); Q(t) = t2 log�1(e+ t)(19)

Moreover, every W
1;Q
loc (
) solution is factorisable.

11. Distortion in the Subexponential Class

We assume here that the Beltrami coe�cient is supported in the unit

disk B.

Theorem 11.1. There is a number p� � 1 such that every Beltrami
equation whose distortion function has

exp

�
K(z)

1 + logK(z)

�
2 Lp(B)

for p > p�, admits a unique principal solution h 2 z +W 1;Q(C ) with

Orlicz function Q(t) = t2 log�1(e+ t). Moreover we have

� Modulus of Continuity;

jh(a)� h(b)j2 �
CK

log log(1 + 1
ja�bj

)
(20)

for all a; b 2 2B.
� Inverse; The inverse map g = h�1(w) has �nite distortion K =

K(w) and

logK 2 L1(C )

� Factorization; each solution g 2 W
1;Q
loc (
) to the equation

gz = �(z)gz; a:e: 


admits a Stoilow factorisation

g(z) = � � h(z)(21)

where � is holomorphic in h�1(
). In particular, all non-constant

solutions in W
1;Q
loc (
) are open and discrete.

12. Existence Theory.

Various reductions show the important case to be when the Beltrami
coe�cient � is compactly supported in the unit disk B. Then any

solution is analytic outside the unit disk.
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12.1. Results from Harmonic Analysis. The existence proof pre-

sented here exploits a number of substantial results in harmonic analy-
sis. The arguments clearly illustrate the important rôle that the higher
integrability properties of the Jacobians have to play. The critical ex-
ponent p0 in Theorem 10.1 depends only on the constants in three

inequalities which we now state.
The �rst is a direct consequence of [8].

Theorem 12.1. (Coifman, Lions, Meyer, Semmes) The Jacobian de-

terminant J(x; �) of a mapping � 2 W 1;2(C ) belongs to the Hardy space
H1(C ) and we have the estimate

kJ(x; �)kH1(C) � C1

Z
C

jD�j2(22)

Next we have from [9]

Theorem 12.2. (Coifman, Rochberg) Let � be a Borel measure in
C such that its Hardy{Littlewood maximal function M(x; �) is �nite
at a single point (and therefore at every point). Then logM(x; �) 2

BMO(C ) and its norm is bounded by an absolute constant,

k logM(x; �)kBMO � C2:(23)

Finally we shall need the constant C3 which appears in the H
1-BMO

duality theorem of Fe�erman, [12].

Theorem 12.3. (Fe�erman) For K 2 BMO(C ) and J 2 H1(C ) we
have ����

Z
K(x) J(x) dx

���� � C3kKkBMOkJkH1(24)

Having these prerequisites we can reveal that the exponent in The-
orem 10.1 is

p0 = 8C1C2C3:(25)

13. Sketch of Proof for Theorem 10.1

We again refer the reader to [14] for more details, but the basic ideas
can be found here.

Let K be the distortion function. Set

Ap =

Z
C

�
epK(z) � ep

�
dz <1
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We approximate � by smooth functions �� via molli�cation. We have

K� � K and the uniform boundZ
C

�
epK�(z) � ep

�
dz �

Z
C

�
epK(z) � ep

�
dz = Ap(26)

Put  = p

2
to see

�
eK�(z) � e

�
2 L2(C ).

Next, the maximal function of eK�(z) is �nite everywhere,

M(z; eK� ) = e +M(z; eK� � e))(27)

and this last term is a constant plus a function in L2(C ).
Now consider the BMO functions

K�(z) =
1


logM(z; eK� )(28)

By Theorem 12.2, the BMO norm of this function does not depend on
�,

kK�kBMO �
2C2

p
(29)

Moreover this function pointwise majorises the distortion function. We
need a uniform L2 bound for K� . Clearly

1

j2Bj

Z
2B

K�(z)
2 dz

=
1

42j2Bj

Z
2B

log2 [M(z; eK� )]2

�
1

42
log2

1

j2Bj

Z
2B

[M(z; eK� � e) + e]2

�
1

42
log2

�
2e2 +

2C

j2Bj

Z
C

(eK� � e)2
�

Here we have used the L2 inequality for the maximal operator. This
gives Z

2B

jK�(z)j
2 dz � C4 log

2(1 + Ap)(30)

where C4 is an absolute constant.
Let us now return to the molli�ed Beltrami equation,

f �z = ��(z)f
�
z(31)

We look for a C1{solution of (31) in the form

f �z (z) = e�(z); f �z (z) = ��(z)e
�(z)(32)
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where � 2 W 1;p�(C ; C ), for some p� > 2, is compactly supported. The

necessary and su�cient condition for � is that

(e�)z = (��e
�)z

or equivalently

�z = ���z + (��)z(33)

This equation is uniquely solved using the Beurling{Ahlfors transform,
that is the singular integral operator de�ned by

(Sg)(z) = �
1

2�i

Z
C

g(�)jd� ^ d�

(z � �)2

Note that �z = S�z and so equation (33) reduces to

(I� ��S)�z = (��)z(34)

As kSk2 = 1 and as k��k1 < 1, there is p� > 2 such that

k��k1kSkp� < 1

In this case the operator I� ��S has a continuous inverse. Thus

�z = (I� ��S)
�1(��)z 2 Lp� (C )(35)

and also

�z = S�z 2 Lp� (C )(36)

Note that �z vanishes outside the support of �� which is contained
in B(0; 2). Also �z = S�z = O(z�2) as z ! 1. Thus �(z) � C

z

asymptotically, for a suitable constant C. In fact

�(z) = (T�z)(z) =
1

2�i

Z
C

�z(�)

� � z
d� ^ d�(37)

where T is the complex Riesz Potential. Hence � is H�older continuous

with exponent 1� 2
p�
, by the Sobolev Imbedding Theorem.

Now the solution f � of equation (32) is unique up to a constant as
f �z = 0 outside 2B and as f �z � 1 2 Lp� (C ). That is, f � is a principal
solution to the Beltrami equation (31). It is important to realise here

that the Jacobian of f � is strictly positive,

J(z; f �) = jf �z j
2 � jf �z j

2 = (1� j��j
2)e2� > 0(38)

The Implicit Function Theorem tells us that f � is locally one-to-one.
Another observation to make is that limz!1 f �(z) = 1. It is an el-
ementary topological exercise to show that f � : C ! C is a global

homeomorphism of C . It's inverse is C1{smooth of course.
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We now digress for a second to outline the existence proof in the clas-

sical setting where K(z) � K < 1. As the sequence K� is uniformly
bounded we �nd there is an exponent p = p(K) > 2 such that

kf �z kp + kf �z � 1kp � CK(39)

where CK is a constant independent of �. Hence the Sobolev Imbedding
Theorem yields the uniform bound

jf �(a)� f �(b)j � CKja� bj1�
2

p + ja� bj(40)

The same inequality holds for the inverse map and hence

jf �(a)� f �(b)j �
ja� bj

p

p�2

CK + ja� bj
2

p�2

(41)

We may assume that f �(0) = 0. As the p{norms of f �z and f �z � 1
are uniformly bounded, we may assume that each converges weakly

in Lp(C ) after possibly passing to a subsequence. From the uniform
continuity estimates and Ascoli's Theorem, we may further assume
f � ! f locally uniformly in C . Obviously f satis�es the same modulus
of continuity estimates and is therefore a homeomorphism. Moreover,

it follows that the weak limits of f �z and f �z �1 must in fact be equal to
fz and fz�1 respectively. Hence f is a homeomorphism in the Sobolev
class z +W 1;p(C ), that is fz and fz � 1 in Lp(C ). Finally observe that
�� ! � pointwise almost everywhere, and hence in Lq(C ), where q is
the H�older conjugate of p. The weak convergence of the derivatives

shows that f is a solution to the Beltrami equation.

Back to the more general setting. If we followed the above argument
we �nd the Lp� bounds are useless as we cannot keep them uniform.
We therefore seek an alternative route via a Sobolev-Orlicz class where
uniform bounds might be available. We note the elementary inequality

(juj+ jvj)2 � 2K(juj2 � jvj2) + 4K2jv � wj2(42)

whenever u; v; w are complex numbers such that jwj � K�1
K+1

juj and

K � 1. We apply this inequality pointwise with

u = ��z ; v = ��z ; w = ���
�
z

and K = K�(z) as de�ned at (28), where

��(z) = f �(z)� z 2 W 1;2(C ); K = K�(z)(43)

and use equations (31), (29) we can write

(j��z j+ j��z j)
2 � 2K�(j�

�
z j
2 � j��z j

2) + 4(K�)
2j��j

2
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and hence

jD��(z)j2 � 2K�J(z; �
�) + 4j��K�j

2(44)

Next we integrate this and use Theorems 12.1 and 12.3 to obtain

Z
C

jD��j2 � 2C3kK�kBMOkJ(z; �
�)kH1 + 4

Z
2B

jK�j
2

�
4C1C2C3

p

Z
C

jD��j2 + 4C4 log
2(1 + Ap)

where in the latter step we have used the uniform bounds at (29) and

(30).
It is clear at this point why we have chosen p0 = 8C1C2C3 at (25).

The term
R
C
jD��j2 in the right hand side can be absorbed in the left

hand side. After doing this we obtain the uniform bounds in L2

Z
C

jD��j2 � 8C4 log
2(1 + Ap)(45)

which read as

kD��kL2(C) � C5 log

�Z
B

epK
�

(46)

and in turn leaves us with the local estimate for the mapping f �(z) =

��(z) + z, namely

kDf �kL2(BR) � C5

�
R + log

�Z
B

epK
��

(47)

where BR = B(0; R). As f � is monotone (being a C1 homeomorphism)
we can apply the modulus of continuity estimate of Theorem 5.2,

jf �(a)� f �(b)j � C6

R + log
�R
B
epK

�
log

1

2

�
e+ R

ja�bj

�(48)

for all a; b 2 BR.

Now consider the inverse map to f �. Let us denote it by h� =

(f �)�1 : C ! C . As both f � and h� are smooth di�eomorphisms we
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�nd Z
BR

jDh�(w)j2 dw =

Z
BR

K(w; h�)J(w; h�) dw

=

Z
h�(BR)

K(z; f �) dz

�

Z
C

(K(z)� 1) dz + jh�(BR)j

� CpR
2 +

Z
B

(K(z)� 1) dz

In this last inequality we have put in the uniform bound jh�(BR)j �
CpR

2. One interesting way to see this estimate (though perhaps not
the easiest) is via the Koebe distortion theorem. Anyway, we haveZ

B(0;R)

jDh�j2 � C (R2 +

Z
B

K)(49)

and consequently we have the continuity estimate at (5.2) for h� ,

jh�(x)� h�(y)j2 �
CR2

R
B
K

log
�
e + R

jx�yj

�(50)

For f � this reads as

jf �(a)� f �(b)j � R exp

�
�CR2

R
B
K

ja� bj2

�
(51)

whenever a; b 2 B(0; R) and R � 1. The uniform W 1;2 bounds, and

the continuity estimates from above and below now enable us to pass
to the limit. We �nd f � ! f and h� ! h = f�1 locally uniformly in
C and Df � and Dh� converging weakly in L2

loc(C ). As in the classical
setting this implies that f is a homeomorphic solution to the Beltrami

equation. Moreover fz; fz � 1 2 L2(C ) and the same is true of the
inverse function
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