L² HARMONIC FORMS ON NON-COMPACT Riemannian Manifolds

GILLES CARRON

First, I want to present some questions on L² harmonic forms on non-compact Riemannian manifolds. Second, I will present an answer to an old question of J. Dodziuk on L² harmonic forms on manifolds with flat ends. In fact some of the analytical tools presented here apply in other situations (see [C4]).

1. The space of harmonic forms

Let (Mⁿ, g) be a complete Riemannian manifold. We denote by \(\mathcal{H}^k(M, g) \) its space of L²-harmonic k-forms, that is to say the space of L² k-forms which are closed and coclosed:

\[
\mathcal{H}^k(M) = \{ \alpha \in L^2(\Lambda^k T^* M), \, d\alpha = \delta\alpha = 0 \},
\]

where

\[
d : C_0^\infty(\Lambda^k T^* M) \rightarrow C_0^\infty(\Lambda^{k+1} T^* M)
\]

is the exterior differentiation operator and

\[
\delta : C_0^\infty(\Lambda^{k+1} T^* M) \rightarrow C_0^\infty(\Lambda^k T^* M)
\]

its formal adjoint. The operator \(d \) does not depend on \(g \) but \(\delta \) does; \(\delta \) is defined with the formula:

\[
\forall \alpha \in C_0^\infty(\Lambda^k T^* M), \, \forall \beta \in C_0^\infty(\Lambda^{k+1} T^* M), \, \int_M (d\alpha, \beta) = \int_M (\alpha, \delta\beta).
\]

The operator \((d + \delta) \) is elliptic hence the elements of \(\mathcal{H}^k(M) \) are smooth and the \(L^2 \) condition is only a decay condition at infinity.

2. If the manifold \(M \) is compact without boundary

If \(M \) is compact without boundary, then these spaces have finite dimension, and we have the theorem of Hodge-DeRham: the spaces \(\mathcal{H}^k(M) \) are isomorphic to the real cohomology groups of \(M \):

\[
\mathcal{H}^k(M) \simeq H^k(M, \mathbb{R}).
\]
Hence the dimension of $\mathcal{H}^k(M)$ is a homotopy invariant of M, i.e. it does not depend on g. A corollary of this and of the Chern-Gauss-Bonnet formula is:

$$\chi(M) = \sum_{k=0}^{n} (-1)^k \dim \mathcal{H}^k(M) = \int_M \Omega^g,$$

where Ω^g is the Euler form of (M^n, g); for instance if $\dim M = 2$ then $\Omega^g = \frac{K dA}{2\pi}$, where K is the Gaussian curvature and dA the area form.

3. **What is true on a non-compact manifold**

Almost nothing is true in general:

The space $\mathcal{H}^k(M, g)$ can have infinite dimension and the dimension, if finite, can depend on g. For instance, if M is connected we have

$$\mathcal{H}^0(M) = \{ f \in L^2(M, d\text{vol}_g), f = \text{constant} \}.$$

Hence $\mathcal{H}^0(M) = \mathbb{R}$ if $\text{vol} M < \infty$,
and $\mathcal{H}^0(M) = \{0\}$ if $\text{vol} M = \infty$.

For instance if \mathbb{R}^2 is equipped with the euclidean metric, we have $\mathcal{H}^0(\mathbb{R}^2, \text{eucl}) = \{0\}$, and if \mathbb{R}^2 is equipped with the metric $g = dr^2 + r^2 e^{-2r} d\theta^2$ in polar coordinates, then $\mathcal{H}^0(\mathbb{R}^2, g) = \mathbb{R}$. We have also that $\mathcal{H}^k(\mathbb{R}^n, \text{eucl}) = \{0\}$, for any $k \leq n$. But if we consider the unit disk in \mathbb{R}^2 equipped with the hyperbolic metric $4|dz|^2/(1-|z|^2)^2$ then it is isometric to the metric $g_1 = dr^2 + \sinh r^2 d\theta^2$ on \mathbb{R}^2. And then we have

$$\dim \mathcal{H}^1(\mathbb{R}^2, g_1) = \infty.$$

As a matter of fact if $P(z) \in \mathbb{C}[z]$ is a polynomial, then $\alpha = P'(z)dz$ is a L^2 harmonic form on the unit disk for the hyperbolic metric (this comes from the conformal invariance, see 5.2).

So we get an injection $\mathbb{C}[z]/\mathbb{C} \rightarrow \mathcal{H}^1(\mathbb{R}^2, g_1)$. However, the spaces $\mathcal{H}^k(M, g)$ satisfy the following two properties:

- These spaces have a reduced L^2 cohomology interpretation:

Let $Z^k_2(M)$ be the kernel of the unbounded operator d acting on $L^2(\Lambda^k T^* M)$, or equivalently

$$Z^k_2(M) = \{ \alpha \in L^2(\Lambda^k T^* M), \ d\alpha = 0 \},$$

where the equation $d\alpha = 0$ has to be understood in the distribution sense i.e. $\alpha \in Z^k_2(M)$ if and only if
∀β ∈ \(C_0^\infty(\Lambda^{k+1}T^*M) \), \(\int_M \langle \alpha, \delta \beta \rangle = 0 \).

That is to say \(Z_2^k(M) = (\delta C_0^\infty(\Lambda^{k+1}T^*M))^\perp \). The space \(L^2(\Lambda^kT^*M) \) has the following Hodge-DeRham-Kodaira orthogonal decomposition

\[
L^2(\Lambda^kT^*M) = H^k(M) \oplus dC_0^\infty(\Lambda^{k-1}T^*M) \oplus \delta C_0^\infty(\Lambda^{k+1}T^*M),
\]

where the closure is taken with respect to the \(L^2 \) topology. We also have

\[
Z_2^k(M) = H^k(M) \oplus dC_0^\infty(\Lambda^{k-1}T^*M),
\]

hence we have

\[
H^k(M) \simeq Z_2^k(M)/dC_0^\infty(\Lambda^{k-1}T^*M).
\]

A corollary of this identification is the following:

Proposition 3.1. The space \(H^k(M, g) \) are quasi-isometric invariant of \((M, g)\). That is to say if \(g_1 \) and \(g_2 \) are two complete Riemannian metrics such that for a \(C > 1 \) we have

\[
C^{-1}g_1 \leq g_2 \leq Cg_1,
\]

then \(H^k(M, g_1) \simeq H^k(M, g_2) \).

In fact, the spaces \(H^k(M, g) \) are biLipschitz-homotopy invariants of \((M, g)\).

- The finiteness of \(\dim H^k(M, g) \) depends only of the geometry of ends :

Theorem 3.2. (J. Lott, [L]) The spaces of \(L^2 \)-harmonic forms of two complete Riemannian manifolds, which are isometric outside some compact set, have simultaneously finite or infinite dimension.

4. A general problem

In view of the Hodge-DeRham theorem and of J. Lott’s result, we can ask the following questions :

1. What geometrical condition on the ends of \(M \) insure the finiteness of the dimension of the spaces \(H^k(M) \)?

Within a class of Riemannian manifold having the same geometry at infinity:

2. What are the links of the spaces \(H^k(M) \) with the topology of \(M \) and with the geometry ‘at infinity’ of \((M, g)\)?
(3) And what kind of Chern-Gauss-Bonnet formula could we hope for the L^2-Euler characteristic

$$\chi_{L^2}(M) = \sum_{k=0}^{n} (-1)^k \dim \mathcal{H}^k(M) ?$$

There are many articles dealing with these questions. I mention only three of them:

(1) In the pioneering article of Atiyah-Patodi-Singer ([A-P-S]), the authors considered manifolds with cylindrical ends: that is to say there is a compact subset K of M such that $M \setminus K$ is isometric to the Riemannian product $\partial K \times [0, \infty]$. Then they show that the dimension of the space of L^2-harmonic forms is finite; and that these spaces are isomorphic to the image of the relative cohomology in the absolute cohomology. These results were used by Atiyah-Patodi-Singer in order to obtain a formula for the signature of compact manifolds with boundary.

(2) In [M, M-P], R. Mazzeo and R. Phillips give a cohomological interpretation of the space $\mathcal{H}^k(M)$ for geometrically finite real hyperbolic manifolds.

(3) The solution of the Zucker’s conjecture by Saper and Stern ([S-S]) shows that the spaces of L^2 harmonic forms on hermitian locally symmetric space with finite volume are isomorphic to the middle intersection cohomology of the Borel-Serre compactification of the manifold.

5. An example

I want now to discuss the L^2 Gauss-Bonnet formula through one example. The sort of L^2 Gauss-Bonnet formula one might expect is a formula of the type

$$\chi_{L^2}(M) = \int_K \Omega^g + \text{terms depending only on } (M - K, g),$$

where $K \subset M$ is a compact subset of M; i.e. $\chi_{L^2}(M)$ is the sum of a local term $\int_K \Omega^g$ and of a boundary (at infinity) term. Such a result will imply a relative index formula:

If (M_1, g_1) and (M_2, g_2) are isometric outside compact set $K_i \subset M_i$, $i = 1, 2$, then

$$\chi_{L^2}(M_1) - \chi_{L^2}(M_2) = \int_{K_1} \Omega^{g_1} - \int_{K_2} \Omega^{g_2}.$$
It had been shown by Gromov-Lawson and Donnelly that when zero is not in the essential spectrum of the Gauss-Bonnet operator $d + \delta$ then this relative index formula is true ([G-L, Do]). For instance, by the work of Borel and Casselman [BC], the Gauss-Bonnet operator is a Fredholm operator if M is an even dimensional locally symmetric space of finite volume and negative curvature.

In fact such a relative formula is not true in general. The following counterexample is given in [C2]:

(M_1, g_1) is the disjoint union of two copies of the euclidean plane and (M_2, g_2) is two copies of the euclidean plane glued along a disk. As these surface are oriented with infinite volume, we have $i = 1, 2$:

$$\mathcal{H}^0(M_1, g_i) = \mathcal{H}^2(M_1, g_i) = \{0\}.$$

And we also have $\mathcal{H}^1(M_1, g_1) = \{0\}$. Moreover

Lemma 5.1. $\mathcal{H}^1(M_2, g_2) = \{0\}$.

This comes from the conformal invariance of this space. Indeed, it is a general fact:

Proposition 5.2. If (M^n, g) is a Riemannian manifold of dimension $n = 2k$, and if $f \in C^\infty(M)$ then

$$\mathcal{H}^k(M, g) = \mathcal{H}^k(M, e^{2fg}).$$

Proof. As a matter of fact the two Hilbert spaces $L^2(\Lambda^k T^*M, g)$ and $L^2(\Lambda^k T^*M, e^{2fg})$ are the same: if $\alpha \in \Lambda^k T^*_x M$, then

$$\|\alpha\|_{e^{2fg}}(x) = e^{-2kf(x)} \|\alpha\|_g(x)$$

and $d\text{vol}_{e^{2fg}} = e^{-2kf}d\text{vol}_g$.

We have

$$\mathcal{H}^k(M, e^{2fg}) = Z^k_1(M, e^{2fg}) \cap dC^\infty_0(\Lambda^{k-1} T^*M)$$

and

$$\mathcal{H}^k(M, g) = Z^k_2(M, g) \cap dC^\infty_0(\Lambda^{k-1} T^*M).$$

As the two Hilbert space $L^2(\Lambda^k T^*M, g)$ and $L^2(\Lambda^k T^*M, e^{2fg})$ are the same, these two spaces are the same.

But (M_2, g_2) is conformally equivalent to the 2-sphere with two points removed.

A L^2 harmonic form on the 2-sphere with two points removed extends smoothly on the sphere.

The sphere has no non trivial L^2 harmonic 1-form, hence Lemma 5.1 follows.
The surfaces \((M_1, g_1)\) and \((M_2, g_2)\) are isometric outside some compact set but
\[
\chi_{L^2}(M_1) - \int_{M_1} \frac{K_{g_1} dA_{g_1}}{2\pi} = 0 - 0 = 0
\]
whereas
\[
\chi_{L^2}(M_2) - \int_{M_2} \frac{K_{g_2} dA_{g_2}}{2\pi} = -\int_{M_2} \frac{K_{g_2} dA_{g_2}}{2\pi} = -2.
\]
Hence the relative index formula is not true in general. A corollary of this argument is the following

Corollary 5.3. If \((S, g)\) is a complete surface with integrable Gaussian curvature, according to a theorem of A. Huber [H], we know that such a surface is conformally equivalent to a compact surface \(\bar{S}\) with a finite number of points removed. Then
\[
\dim \mathcal{H}^1(S, g) = b_1(\bar{S}).
\]

6. MANIFOLDS WITH FLAT ENDS

In (1982, [D]), J. Dodziuk asked the following question: according to Vesentini ([V]) if \(M\) is flat outside a compact set, the spaces \(\mathcal{H}^k(M)\) are finite dimensional. Do they admit a topological interpretation?

My aim is to present an answer to this question. For the detail, the reader may look at [C4]:

6.1. Visentini’s finiteness result.

Theorem 6.1. Let \((M, g)\) be a complete Riemannian manifold such that for a compact set \(K_0 \subset M\), the curvature of \((M, g)\) vanishes on \(M - K_0\). Then for every \(p\)
\[
\dim \mathcal{H}^p(M, g) < \infty.
\]

We give here a proof of this result; this proof will furnish some analytical tools to answer J. Dodziuk’s question.

We begin to define a Sobolev space adapted to our situation:

Definition 6.2. Let \(D\) be a bounded open set containing \(K_0\), and let \(W_D(\Lambda^* M)\) be the completion of \(C^\infty(\Lambda^* M)\) for the quadratic form
\[
\alpha \mapsto \int_D |\alpha|^2 + \int_M |(d + \delta)\alpha|^2 = N_D^2(\alpha).
\]
Proposition 6.3. The space W_D doesn’t depend on D, that is to say if D and D' are two bounded open sets containing K_0, then the two norms N_D and $N_{D'}$ are equivalent.

We write W for W_D.

Proof.– The proof goes by contradiction. We notice that with the Bochner-Weitzenböck formula:

$$\forall \alpha \in C_0^\infty(\Lambda T^* M), \int_M |(d + \delta)\alpha|^2 = \int_M |\nabla \alpha|^2 + \int_{K_0} |\alpha|^2.$$

Hence, by standard elliptic estimates, the norm N_D is equivalent to the norm

$$Q_D(\alpha) = \sqrt{\int_M |\nabla \alpha|^2 + \int_D |\alpha|^2}.$$

If D and D' are two connected bounded open set containing K_0, such that $D \subset D'$ then $Q_D \leq Q_{D'}$. Hence if Q_D and $Q_{D'}$ are not equivalent there is a sequence $(\alpha_l)_{l \in \mathbb{N}} \in C_0^\infty(\Lambda T^* M)$, such that $Q_{D'}(\alpha_l) = 1$ whereas $\lim_{l \to \infty} Q_D(\alpha_l) = 0$.

This implies that the sequence $(\alpha_l)_{l \in \mathbb{N}}$ is bounded in $W^{1,2}(D')$ and $\lim_{l \to \infty} \|\nabla \alpha_l\|_{L^2(M)} = 0$. Hence we can extract a subsequence converging weakly in $W^{1,2}(D')$ and strongly in $L^2(\Lambda T^* D')$ to a $\alpha_\infty \in W^{1,2}(D')$. We can suppose this subsequence is $(\alpha_l)_{l}$. We must have $\nabla \alpha_\infty = 0$ and $\alpha_\infty = 0$ on D and $\|\alpha_\infty\|_{L^2(D')} = 1$. This is impossible. Hence the two norms Q_D and $Q_{D'}$ are equivalent.

Q.E.D

We have the corollary

Corollary 6.4. The inclusion $C_0^\infty \longrightarrow W^{1,2}_{loc}$ extends by continuity to a injection $W \longrightarrow W^{1,2}_{loc}$.

We remark that the domain of the Gauss-Bonnet operator $D(d + \delta) = \{\alpha \in L^2, (d + \delta)\alpha \in L^2\}$ is in W. As a matter of fact, because (M, g) is complete $D(d + \delta)$ is the completion of $C_0^\infty(\Lambda T^* M)$ equiped with the quadratic form

$$\alpha \mapsto \int_M |\alpha|^2 + \int_M |(d + \delta)\alpha|^2.$$

This norm is larger that the one used for defined W. Hence $D(d + \delta) \subset W$. As a corollary we get that a L^2 harmonic form is in W. The Visentini’s finiteness result will follow from:

Proposition 6.5. The operator $(d + \delta) : W \longrightarrow L^2$ is Fredholm. That is to say its kernel and its cokernel have finite dimension and its image is closed.
Proof. Let A be the operator $(d + \delta)^2 + 1_D$, where

$$1_D(\alpha)(x) = \begin{cases} \alpha(x) & \text{if } x \in D \\ 0 & \text{if } x \notin D \end{cases}$$

We have

$$N_D(\alpha)^2 = \langle A\alpha, \alpha \rangle.$$

So the operator $A^{-1/2} = \int_0^\infty e^{-tA} \frac{dt}{\sqrt{\pi t}}$ realizes an isometry between L^2 and W. It is enough to show that the operator $(d + \delta)A^{-1/2} = B$ is Fredholm on L^2. But

$$B^*B = A^{-1/2}(d + \delta)^2A^{-1/2} = \text{Id} - A^{-1/2}1_D1_DA^{-1/2}.$$

The operator $1_DA^{-1/2}$ is the composition of the operator $A^{-1/2} : L^2 \rightarrow W$ then of the natural injection from W to $W^{1,2}_{loc}$ and finally of the map 1_D from $W^{1,2}_{loc}$ to L^2. D being a bounded set, this operator is a compact one by the Rellich compactness theorem. Hence $1_DA^{-1/2}$ is a compact operator. Hence, B has a closed range and a finite dimensional kernel. So the operator $(d + \delta) : W \rightarrow L^2$ has a closed range and a finite kernel. But the cokernel of this operator is the orthogonal space to $(d + \delta)C_0^\infty(\Lambda T^*M)$ in L^2. Hence the cokernel of this operator is the L^2 kernel of the Gauss-Bonnet operator. We notice that this space is included in the space of the W kernel of $(d + \delta)$. Hence it has finite dimension.

We also get the following corollary:

Corollary 6.6. There is a Green operator $G : W \rightarrow L^2$, such that

$$\text{on } L^2, \ (d + \delta)G = \text{Id} - P^{L^2}$$

where P^{L^2} is the orthogonal projection on $\oplus H^k(M)$.

$$\text{On } W, \ G(d + \delta) = \text{Id} - P^W$$

where P^W is the W orthogonal projection on $\ker W(d + \delta)$.

Moreover, $\alpha \in Z_2^k(M)$ is L^2 cohomologous to zero if and only if there is a $\beta \in W(\Lambda^{k-1}T^*M)$ such that $\alpha = d\beta$.

6.2. **A long exact sequence.** In the DeRham cohomology, we have a long exact sequence linking the cohomology with compact support and the absolute cohomology. And this exact sequence is very useful to compute the DeRham cohomology groups. In L^2 cohomology, we can also define this sequence but generally it is not an exact sequence.

Let $\mathcal{O} \subset M$ be a bounded open subset, we can define the sequence:
Here \(H^k(M \setminus \mathcal{O}, \partial \mathcal{O}) = \{ h \in L^2(\Lambda^k T^* (M \setminus \mathcal{O})), \, dh = \delta h = 0 \, \text{and} \, i^* h = 0 \} \), where \(i : \partial \mathcal{O} \longrightarrow M \setminus \mathcal{O} \) is the inclusion map, and

- \(e \) is the extension by zero map: to \(h \in H^k(M \setminus \mathcal{O}, \partial \mathcal{O}) \) it associates the \(L^2 \) cohomology class of \(\hat{h} \), where \(\hat{h} = 0 \) on \(\mathcal{O} \) and \(\hat{h} = h \) on \(M \setminus \mathcal{O} \). It is well defined because of the Stokes formula:
 - if \(\beta \in C_\infty^0(\Lambda^{k+1} T^* M) \), then
 \[
 \langle \hat{h}, \delta \beta \rangle = \langle dh, \beta \rangle_{L^2(\mathcal{O})} - \int_{\partial \mathcal{O}} i^* h \wedge i^* \ast \beta = 0
 \]

- \(j^* \) is associated to the inclusion map \(j : \mathcal{O} \longrightarrow M \); to \(h \in H^k(M) \) it associates \([j^* h]\), the cohomology class of \(h|_\mathcal{O} \) in \(H^k(\mathcal{O}) \).
- \(b \) is the coboundary operator: if \([\alpha] \in H^k(\mathcal{O}) \), and if \(\bar{\alpha} \) is a smooth extension of \(\alpha \), with compact support, then \(b[\alpha] \) is the orthogonal projection of \(d\bar{\alpha} \) on \(H^{k+1}(M \setminus \mathcal{O}, \partial \mathcal{O}) \). The map \(b \) is well defined, that is to say, it does not depend on the choice of \(\alpha \) nor of its extension.

It is relatively easy to check that

\[j^* \circ e = 0, \quad b \circ j^* = 0 \, \text{and} \, e \circ b = 0 ; \]

Hence we have the inclusion:

\[\text{Im } e \subset \text{Ker } j^* , \text{ Im } j^* \subset \text{Ker } b \, \text{and} \, \text{Im } b \subset \text{Ker } e . \]

In [C1], we observed that

Proposition 6.7. The equality \(\text{ker } b = \text{Im } j^* \) always holds.

This comes from the long exact sequence in DeRham cohomology. Moreover, we have the following:

Proposition 6.8. On a manifold with flat ends, the equality \(\text{Im } b = \text{Ker } e \) always holds.

Proof. As a matter of fact, if \(h \in \text{Ker } e \) then by (6.6) we get a \(\beta \in W \), such that \(h = d\beta \) on \(M \). Hence \(h = b[\beta|_\mathcal{O}] \).

Q.E.D

The last fact requires more analysis:
Theorem 6.9. If \((M, g)\) is a complete manifold with flat ends and if for every end \(E\) of \(M\) we have

\[
\lim_{r \to \infty} \frac{\text{vol} E \cap B_x(r)}{r^2} = \infty,
\]

then the long sequence (6.1) is exact.

6.3. Hodge theorem for manifolds with flat ends. With the help of the geometric description of flat ends due to Eschenburg and Schroeder ([E-S], see also [G-P-Z]), we can compute the \(L^2\)-cohomology on flat ends. Then with the long sequence (6.1), we can give an answer to J. Dodziuk’s question; for sake of simplicity, we give here only the result for manifolds with one flat end.

Theorem 6.10. Let \((M^n, g)\) be a complete Riemannian manifold with one flat end \(E\). Then

1. If \((M^n, g)\) is parabolic, that is to say if the volume growth of geodesic ball is at most quadratic

\[
\lim_{r \to \infty} \frac{\text{vol} B_x(r)}{r^2} < \infty,
\]

then we have

\[
\mathcal{H}^k(M, g) \simeq \text{Im} \left(H^k_c(M) \to H^k(M) \right).
\]

2. If \((M^n, g)\) is non-parabolic (i.e. if \(\lim_{r \to \infty} \frac{\text{vol} B_x(r)}{r^2} = \infty\), then the boundary of \(E\) has a finite covering diffeomorphic to the product \(S^{n-1} \times T\) where \(T\) is a flat \((n-\nu)\)-torus. Let \(\pi : T \to \partial E\) the induced immersion, then

\[
\mathcal{H}^k(M, g) \simeq H^k(M \setminus E, \ker \pi^*),
\]

where \(H^k(M \setminus E, \ker \pi^*)\) is the cohomology associated to the subcomplex of differential forms on \(M \setminus E\) : \(\ker \pi^* = \{ \alpha \in C^\infty(\Lambda^\bullet T^\ast(M \setminus E)) \mid \pi^\ast \alpha = 0 \}\).

References

L^2 HARMONIC FORMS ON NON-COMPACT RIEMANNIAN MANIFOLDS 59

Universite de Nantes, 44322 Nantes Cedex 02, FRANCE
E-mail address: Gilles.Carron@math.univ-nantes.fr