A SYMMETRIC FUNCTIONAL CALCULUS FOR NONCOMMUTING SYSTEMS OF SECTORIAL OPERATORS

BRIAN JEFFERIES

ABSTRACT. Given a system $A = (A_1, \ldots, A_n)$ of linear operators whose real linear combinations have spectra contained in a fixed sector in \mathbb{C} and satisfy resolvent bounds there, functions f(A) of the system A of operators can be formed for monogenic functions f having decay at zero and infinity in a corresponding sector in \mathbb{R}^{n+1} . The paper discusses how the functional calculus $f \mapsto f(A)$ might be extended to a larger class of monogenic functions and its relationship with a functional calculus for analytic functions in a sector of \mathbb{C}^n .

1. INTRODUCTION

Given a finite system $A = (A_1, \ldots, A_n)$ of bounded linear operators acting on a Banach space X, it has recently been shown how functions f(A) of the *n*-tuple A can be formed for a large class of functions f, just under the assumption that the spectrum $\sigma(\langle A, \xi \rangle)$ of the operator $\langle A, \xi \rangle := \sum_{j=1}^n A_j \xi_j$ is a subset of \mathbb{R} for every $\xi \in \mathbb{R}^n$ [5]. The operators A_1, \ldots, A_n do not necessarily commute with each other.

A distinguished subset $\gamma(A)$ of \mathbb{R}^n with the property that the bounded linear operator f(A) is defined for any real analytic function $f: U \to \mathbb{C}$ defined in a neighbourhood U of $\gamma(A)$ in \mathbb{R}^n arises in the approach considered in [5]. For a polynomial p in n real variables, p(A) is the operator formed by substituting symmetric products in the bounded linear operators A_1, \ldots, A_n for the monomial expressions in p, that is, we have a symmetric functional calculus in the n operators A_1, \ldots, A_n . Another way of expressing this symmetry property is that for any $\xi \in \mathbb{R}^n$ and any polynomial $q: \mathbb{C} \to \mathbb{C}$ in one variable, the equality $p(A) = q(\langle A, \xi \rangle)$ holds for the polynomial $p: x \mapsto q(\langle x, \xi \rangle), x \in \mathbb{R}^n$. Moreover, the mapping $f \mapsto f(A)$ is continuous for a certain topology

Date: 3 January 2003.

¹⁹⁹¹ Mathematics Subject Classification. Primary 47A60, 46H30; Secondary 47A25, 30G35.

Key words and phrases. lacunas, Weyl functional calculus, Clifford algebra, monogenic function, symmetric hyperbolic system.

defined on the space of functions real analytic in a neighbourhood of $\gamma(A)$ in \mathbb{R}^n [5, Proposition 3.3].

These properties are analogous to the Riesz-Dunford functional calculus of a single bounded linear operator T acting on X, by which a function $f(T): X \to X$ of T is defined by the Cauchy integral formula

(1)
$$f(T) = \frac{1}{2\pi i} \int_C (\lambda I - T)^{-1} f(\lambda) \, d\lambda,$$

for f analytic in a neighbourhood of the spectrum $\sigma(T)$ of T and for Ca simple closed contour about $\sigma(T)$. It is by this analogy that the set $\gamma(A)$ mentioned above may be thought of as the "joint spectrum" of the system A, especially if there is no set smaller than $\gamma(A)$ possessing the desirable properties alluded to.

Now for a single operator T, the spectrum $\sigma(T)$ has a simple algebraic definition as the set of all $\lambda \in \mathbb{C}$ for which the operator $\lambda I - T$ is not invertible in the space $\mathcal{L}(X)$ of bounded linear operators acting on X. In the case that A consists of a system of n commuting, possibly unbounded, linear operators with real spectra, A. McIntosh and A. Pryde [14, 15] gave a simple algebraic definition of the joint spectrum $\gamma(A)$ of A and used this to obtain operator bounds for solutions of operator equations. Work of A. McIntosh, A. Pryde and W. Ricker [16] established the equivalence of $\gamma(A)$ with other notions of *joint spectrum*.

In the noncommutative case, we cannot expect such a straightforward algebraic definition of the joint spectrum $\gamma(A)$, although such a definition was proposed in [8]. Another example of a symmetric functional calculus is the Weyl calculus \mathcal{W}_A considered in [19] for *n* selfadjoint operators $A = (A_1, \ldots, A_n)$. In the case that the system *A* consists of bounded selfadjoint operators, it was shown in [4] that $\gamma(A)$ is precisely the support of the operator valued distribution \mathcal{W}_A , and E. Nelson characterised this set as the Gelfand spectrum of a certain subalgebra of the Banach algebra of *operants* [17]. Further work along these lines was conducted by E. Albrecht [1].

If we now pass to unbounded operators, then a similar analysis holds if we retain the spectral reality condition $\sigma(\langle A, \xi \rangle) \subset \mathbb{R}$ for $\xi \in \mathbb{R}^n$, provided that we suitably account for operator domains. However, much of the work [14, 15, 16] on functional calculi just mentioned was motivated by Alan M^cIntosh's study of the commuting *n*-tuple $D_{\Sigma} = (D_1, \ldots, D_n)$ of differentiation operators on a Lipschitz surface Σ in \mathbb{R}^{n+1} . In the case that Σ is just the flat surface \mathbb{R}^n , the operators $D_j = \frac{1}{i} \frac{\partial}{\partial x_j}, j = 1, \ldots, n$,

commute with each other and are selfadjoint, otherwise, the unbounded operators D_j , j = 1, ..., n, have spectra $\sigma(D_j)$ contained in a complex sector $S_{\omega}(\mathbb{C}) = \{z \in \mathbb{C} : z \neq 0, |\arg(z)| \leq \omega\}$ with an angle ω depending on the variation of the directions normal to the surface Σ .

Although the existence and properties of the H^{∞} -functional calculus for the commuting *n*-tuple D_{Σ} are now well-understood, see for example [13], the purpose of the present paper is to initiate a study of the symmetric functional calculus for an *n*-tuple *A* of unbounded sectorial operators — we do not assume that the operators commute with each other. In particular, the spectral reality condition

(2)
$$\sigma(\langle A, \xi \rangle) \subset \mathbb{R}, \text{ for all } \xi \in \mathbb{R}^n$$

needs to be relaxed. An alternative approach to forming an H^{∞} functional calculus for commuting operators using exponential bounds
is given in [11].

Before proceeding with further discussion, we note the definition of the joint spectrum $\gamma(A)$ for a system A satisfying condition (2). The key idea behind [14, 15] in the commuting case and [4, 5, 8, 9] in the noncommuting case, is to produce a higher-dimensional analogue of the Riesz-Dunford formula (1). So what we need is a higher-dimensional analogue of the Cauchy integral formula in complex analysis and then, in the time-honoured fashion of operator theory, substitute an *n*-tuple of numbers by an *n*-tuple of unbounded linear operators. But this is easier said than done.

It turns out that Clifford analysis provides a higher dimensional analogue of the Cauchy integral formula especially well-suited to the noncommutative setting. Even for the commuting *n*-tuple D_{Σ} of operators mentioned above, it provides the connection between multiplier operators and singular convolution operators for functions defined on a Lipschitz surface. A brief résumé of Clifford analysis [2, 3] and the monogenic functional calculus treated in [5] follows.

Let $\mathbb{C}_{(n)}$ be the *Clifford algebra* generated over the field \mathbb{C} by the standard basis vectors e_0, e_1, \ldots, e_n of \mathbb{R}^{n+1} with conjugation $u \mapsto \overline{u}$. The generalized Cauchy-Riemann operator is given by $D = \sum_{j=0}^n e_j \frac{\partial}{\partial x_j}$.

Let $U \subset \mathbb{R}^{n+1}$ be an open set. A function $f: U \to \mathbb{C}_{(n)}$ is called *left* monogenic if Df = 0 in U and right monogenic if fD = 0 in U. The Cauchy kernel is given by

(3)
$$G_x(y) = \frac{1}{\sigma_n} \frac{\overline{x-y}}{|x-y|^{n+1}}, \quad x, y \in \mathbb{R}^{n+1}, x \neq y,$$

with $\sigma_n = 2\pi^{\frac{n+1}{2}}/\Gamma\left(\frac{n+1}{2}\right)$ the volume of unit *n*-sphere in \mathbb{R}^{n+1} . So, given a left monogenic function $f: U \to \mathbb{C}_{(n)}$ defined in an open subset U of \mathbb{R}^{n+1} and an open subset Ω of U such that the closure $\overline{\Omega}$ of Ω is contained in U, and the boundary $\partial\Omega$ of Ω is a smooth oriented *n*-manifold, then the Cauchy integral formula

$$f(y) = \int_{\partial\Omega} G_x(y) \boldsymbol{n}(x) f(x) \, d\mu(x), \quad y \in \Omega$$

is valid. Here $\mathbf{n}(x)$ is the outward unit normal at $x \in \partial\Omega$ and μ is the volume measure of the oriented manifold $\partial\Omega$. An element $x = (x_0, x_1, \ldots, x_n)$ of \mathbb{R}^{n+1} will often be written as $x = x_0 e_0 + \vec{x}$ with $\vec{x} = \sum_{j=1}^n x_j e_j$.

By analogy with formula (1), our aim is to define

(4)
$$f(A) = \int_{\partial\Omega} G_x(A) \boldsymbol{n}(x) f(x) \, d\mu(x)$$

for the *n*-tuple $A = (A_1, \ldots, A_n)$ of bounded linear operators on X. A difficulty occurs in making sense of the Cauchy kernel $x \mapsto G_x(A)$, a function with values in the space $\mathcal{L}(X) \otimes \mathbb{C}_{(n)}$ that should be defined and two-sided monogenic for all x off a nonempty closed subset $\gamma(A)$ of \mathbb{R}^n inside Ω . The set $\partial\Omega$ can be smoothly varied in the region where $x \mapsto G_x(A)$ is right-monogenic. Of course, one would also like f(A) to be the 'correct' operator in the case that f is the unique monogenic extension to \mathbb{R}^{n+1} of a polynomial in n variables.

In the Riesz-Dunford functional calculus for T, the set of singularities of the resolvent $\lambda \mapsto (\lambda I - T)^{-1}$ is precisely the spectrum $\sigma(T)$ of T, so the set $\gamma(A)$ may be interpreted as a higher-dimensional analogue of the spectrum of a single operator. It seems reasonable to call the set $\gamma(A)$ the monogenic spectrum of the *n*-tuple A by analogy with the case of a single operator.

The program was implemented by A. M^cIntosh and A. Pryde for commuting *n*-tuples of bounded operators with real spectrum in order to give estimates on the solution of systems of operator equations [14, 15]. In the case that n is odd, we have

$$\gamma(A) = \left\{ \lambda \in \mathbb{R}^n : \sum_{j=1}^n (\lambda_j I - A_j)^2 \text{ is invertible in } \mathcal{L}(X) \right\}^c$$

and

$$G_x(A) = \frac{1}{\sigma_n} (\overline{x - A}) \left(x_0^2 I + \sum_{j=1}^n (x_j I - A_j)^2 \right)^{-\frac{n+1}{2}}$$

for all $x = (x_0, \ldots, x_n) \in \mathbb{R}^{n+1} \setminus (\{0\} \times \gamma(A))$. It turns out that $\gamma(A)$ coincides with the Taylor spectrum for commuting systems of bounded linear operators [16].

If the *n*-tuple A of bounded linear operators satisfies exponential growth conditions, such as when A_1, \ldots, A_n are selfadjoint, then Weyl's functional calculus \mathcal{W}_A is associated with A and $G_x(A) = \mathcal{W}(G_x)$ is an obvious way to define the Cauchy kernel for all x outside the support of \mathcal{W}_A . It is shown in [4] that formula (4) holds. However, in this case, we actually have a symmetric functional calculus defined over $\gamma(A)$ richer than just all real analytic functions.

The Cauchy kernel $G_x(A)$ can also be written as a series expansion like the Neuman series for the resolvent of a single operator if $x \in \mathbb{R}^{n+1}$ lies outside a sufficiently large ball [8, 9], but the expansion does not allow us to identify $\gamma(A)$ as a subset of \mathbb{R}^n in the case that the spectral reality condition (2) holds.

A third way to define the Cauchy kernel $G_x(A)$ for the monogenic functional calculus whenever the spectral reality condition (2) holds, is by the plane wave decomposition for the Cauchy kernel (3) given by F. Sommen [18]. This was investigated by A. M^cIntosh and J. Picton-Warlow soon after the papers [14, 15] appeared. The formula is

(5)
$$G_x(A) = \frac{(n-1)!}{2} \left(\frac{i}{2\pi}\right)^n \operatorname{sgn}(x_0)^{n-1} \\ \times \int_{S^{n-1}} (e_0 + is) \left(\langle \vec{x}, s \rangle I - \langle A, s \rangle - x_0 s I\right)^{-n} ds$$

for all $x = x_0 e_0 + \vec{x}$ with x_0 a nonzero real number and $\vec{x} \in \mathbb{R}^n$. Here S^{n-1} is the unit (n-1)-sphere in \mathbb{R}^n , ds is surface measure and the inverse power $(\langle \vec{x}I - A, s \rangle - x_0 s)^{-n}$ is taken in the Clifford module $\mathcal{L}(X) \otimes C_{(n)}$. The spectral reality condition (2) ensures the invertibility of $(\langle \vec{x}I - A, s \rangle - x_0 s)$ for all $x_0 \neq 0$ and $s \in S^{n-1}$ by the spectral mapping theorem.

Even if A satisfies exponential growth conditions, with the left hand side given by formula (5), the equality $G_x(A) = \mathcal{W}_A(G_x)$ can still be used to good effect. In [6], it was used to geometrically characterise the support of fundamental solution of the symmetric hyperbolic system associated with a pair A of hermitian matrices in the case n = 2. Greater understanding of Clifford residue theory would enable a similar treatment in higher dimensions.

In Section 2, it is shown how formula (5) for the Cauchy kernel associated with the system A of sectorial operators still works if the

spectral reality condition (2) is replaced by a sectoriality condition with the appropriate resolvent bounds. The system D_{Σ} of commuting sectorial operators described above is of this type. By this means functions f(A) of the operators A can be formed, provided that f is, say, left monogenic in a sector in \mathbb{R}^{n+1} and satisfies suitable decay estimates at 0 and ∞ , in a fashion similar to the case of a single operator of type ω [12]. Because $G_x(A)$ is only defined for x outside a sector in \mathbb{R}^{n+1} , the monogenic spectrum $\gamma(A)$ is now contained in that sector in \mathbb{R}^{n+1} . Recall that under condition (2), $\gamma(A)$ is a subset of \mathbb{R}^n .

A function $f(D_{\Sigma})$ of the system D_{Σ} has a natural interpretation as a multiplier operator acting on L^p -spaces of functions defined on the Lipschitz surface Σ , as well as a singular convolution operator, so the multiplier f should be a bounded analytic function defined on a sector in \mathbb{C}^n [13], rather than, say, a bounded monogenic function defined in a sector in \mathbb{R}^{n+1} . The monogenic functional calculus for a system A of sectorial operators appears to be moving us inexorably in the wrong direction.

The problem arises of establishing a bijection between monogenic functions defined on a sector in \mathbb{R}^{n+1} and analytic functions defined on a sector in \mathbb{C}^n , together with the appropriate norms — this is a question of function theory rather than operator theory. The association is via the Cauchy-Kowaleski extension to a sector in \mathbb{R}^{n+1} of the restriction of the analytic function to $\mathbb{R}^n \setminus \{0\}$.

The purpose of this paper is to make some observations about the relationship between monogenic functions defined in a sector in \mathbb{R}^{n+1} and analytic functions defined in the corresponding sector in \mathbb{C}^n , with applications to functional calculi of systems of operators firmly in mind. In Section 3, the spectral properties of multiplication operators in $\mathbb{C}_{(n)}$ are examined along the lines of Lecture 1 of [13]. In Section 4, this enables us to uniquely associate a bounded analytic function defined in a sector in \mathbb{C}^n with a suitably decaying monogenic function defined in the corresponding sector in \mathbb{R}^{n+1} via the Cauchy integral formula.

2. The plane wave decomposition

Let $A = (A_1, \ldots, A_n)$ be an *n*-tuple of densely defined linear operators $A_j : \mathcal{D}(A_j) \to X$ acting in X such that $\bigcap_{j=1}^n \mathcal{D}(A_j)$ is dense in X. The space $\mathcal{L}_{(n)}(X_{(n)})$ of left module homomorphisms of $X_{(n)} = X \otimes \mathbb{C}_{(n)}$ is identified with $\mathcal{L}(X) \otimes \mathbb{C}_{(n)}$ in the natural way and becomes a right Banach module under the uniform operator topology. If we take formula (5) as the definition of $G_x(A)$, then the convergence of the integral

$$\int_{S^{n-1}} (e_0 + is) \left(\langle \vec{x}I - A, s \rangle - x_0 sI \right)^{-n} ds$$

for particular values of $x = x_0 e_0 + \vec{x} \in \mathbb{R}^{n+1}$ is at issue. Now

$$(\langle \vec{x}I - A, s \rangle - x_0 sI)^{-1} = (\langle \vec{x}I - A, s \rangle + x_0 sI) \left(\langle \vec{x}I - A, s \rangle^2 + x_0^2 I \right)^{-1}$$

if $0 \notin \sigma (\langle \vec{x}I - A, s \rangle^2 + x_0^2)$. Thus, we need to ensure the appropriate uniform operator bounds for

$$(\langle \vec{x}I - A, s \rangle^2 + x_0^2 I)^{-1}, \quad s \in S^{n-1}$$

as $x = x_0 e_0 + x$ ranges over a subset of \mathbb{R}^{n+1} . In the case that $\sigma(\langle A, s \rangle) \subset \mathbb{R}$ and $(\lambda I - \langle A, s \rangle)^{-1}$ is suitably bounded for all $s \in S^{n-1}$ and $\lambda \in \mathbb{C} \setminus \mathbb{R}$, then $G_{x_0 e_0 + \vec{x}}(A)$ is defined for all $x_0 \neq 0$. First, for each $0 < \nu < \pi/2$, set

$$S_{\nu+}(\mathbb{C}) = \{z \in \mathbb{C} : |\arg z| \le \nu\} \cup \{0\},\$$

$$S_{\nu}(\mathbb{C}) = S_{\nu+}(\mathbb{C}) \cup \underline{i}g(-S_{\nu+}(\mathbb{C})),\$$

$$S_{\nu+}^{\circ}(\mathbb{C}) = \{z \in \mathbb{C} : |\arg z| < \nu\},\$$

$$S_{\nu}^{\circ}(\mathbb{C}) = S_{\nu+}^{\circ}(\mathbb{C}) \cup (-S_{\nu+}^{\circ}(\mathbb{C})).\$$

The (n-1)-sphere in \mathbb{R}^n is denoted by S^{n-1} .

Definition 2.1. Let $A = (A_1, \ldots, A_n)$ be an *n*-tuple of densely defined linear operators $A_j : \mathcal{D}(A_j) \to X$ acting in X such that $\bigcap_{j=1}^n \mathcal{D}(A_j)$ is dense in X and let $0 \leq \omega < \frac{\pi}{2}$. Then A is said to be *uniformly of type* ω if for every $s \in S^{n-1}$, the operator $\langle A, s \rangle$ is closable with closure $\overline{\langle A, s \rangle}$, the inclusion $\sigma(\overline{\langle A, s \rangle}) \subset S_{\omega}(\mathbb{C})$ holds, and for each $\nu > \omega$, there exists $C_{\nu} > 0$ such that

(6)
$$\|(zI - \overline{\langle A, s \rangle})^{-1}\| \le C_{\nu}|z|^{-1}, \quad z \notin S_{\nu}^{\circ}(\mathbb{C}), \ s \in S^{n-1}.$$

It follows that $s \mapsto \overline{\langle A, s \rangle}$ is continuous on S^{n-1} in the sense of strong resolvent convergence [7, Theorem VIII.1.5]. Because $(zI - \langle A, s \rangle)^{-1}$ is densely defined and uniformly bounded in X, the closure symbol will be omitted.

Now suppose that equation (6) is satisfied and let $z = \langle \vec{x}, s \rangle + ix_0$. Then $z \notin S_{\nu}^{\circ}(\mathbb{C})$ means that $|\arg z| \geq \nu$ for $-\frac{\pi}{2} \leq \arg z \leq \frac{\pi}{2}$ or $\pi - \arg z \geq \nu$ for $\frac{\pi}{2} \leq \arg z \leq \pi$ or $\pi + \arg z \geq \nu$ for $-\pi \leq \arg z \leq -\frac{\pi}{2}$. Hence, we have $|x_0| \geq \tan \nu |\langle \vec{x}, s \rangle|$.

First, let

$$N_{\nu} = \{ x \in \mathbb{R}^{n+1} : x = x_0 e_0 + \vec{x}, |x_0| \ge \tan \nu |\vec{x}| \}, \\ S_{\nu}(\mathbb{R}^{n+1}) = \{ x \in \mathbb{R}^{n+1} : x = x_0 e_0 + \vec{x}, |x_0| \le \tan \nu |\vec{x}| \}, \\ S_{\nu}^{\circ}(\mathbb{R}^{n+1}) = \{ x \in \mathbb{R}^{n+1} : x = x_0 e_0 + \vec{x}, |x_0| < \tan \nu |\vec{x}| \}.$$

Note that if $x_0e_0 + x \in N_{\nu}$, then $z = \langle \vec{x}, s \rangle + ix_0 \notin S_{\nu}^{\circ}(\mathbb{C})$ for every $s \in S^{n-1}$, because either $|x_0| \ge \tan \nu |\vec{x}| \ge \tan \nu |\langle \vec{x}, s \rangle|$.

Lemma 2.2. Let $\omega < \nu < \pi/2$. Suppose that the n-tuple A of linear operators is uniformly of type ω . Then for all $x_0e_0 + \vec{x} \in N_{\nu}$, the integral

$$\int_{S^{n-1}} \left\| (\langle \vec{x}I - A, s \rangle - x_0 s I)^{-n} \right\|_{\mathcal{L}_{(n)}(X_{(n)})} ds$$

converges and satisfies the bound

$$\int_{S^{n-1}} \left\| \left(\langle \vec{x}I - A, s \rangle - x_0 s I \right)^{-n} \right\|_{\mathcal{L}_{(n)}(X_{(n)})} ds \le \frac{C'_{\nu}}{|x_0|^n}.$$

Proof. For every $x_0e_0 + \vec{x} \in N_{\nu}$, we have $z = \langle x, s \rangle \pm ix_0 \notin S_{\nu}(\mathbb{C})$ so that the operator $(\langle \vec{x}, s \rangle \pm ix_0)I - \langle A, s \rangle$ is invertible and the bound

$$\left\| \left(\left(\langle \vec{x}, s \rangle \pm i x_0 \right) I - \langle A, s \rangle \right)^{-1} \right\|_{\mathcal{L}(X)} \le \frac{C_{\nu}}{\sqrt{\langle \vec{x}, s \rangle^2 + x_0^2}}$$

holds. Now

$$(\langle \vec{x}I - A, s \rangle - x_0 s I)^{-1}$$

= $(\langle \vec{x}I - A, s \rangle + x_0 s I) (\langle \vec{x}I - A, s \rangle^2 + x_0^2 I)^{-1}$

where

$$\left(\langle \vec{x}I - A, s \rangle^2 + x_0^2 I \right)^{-1}$$

= $\left(\left(\langle \vec{x}, s \rangle + ix_0 \right) I - \langle A, s \rangle \right)^{-1} \left(\left(\langle \vec{x}, s \rangle - ix_0 \right) I - \langle A, s \rangle \right)^{-1} \right)$

Writing $(\langle \vec{x}I - A, s \rangle + x_0 sI) = ((\langle \vec{x}, s \rangle + ix_0)I - \langle A, s \rangle) - ix_0I + x_0 sI$, we obtain

$$\left(\langle \vec{x}I - A, s \rangle - x_0 sI \right)^{-1} = \left(\left(\langle \vec{x}, s \rangle - i x_0 \right) I - \langle A, s \rangle \right)^{-1} \\ - i x_0 (e_0 + i s) \left(\langle \vec{x}I - A, s \rangle^2 + x_0^2 I \right)^{-1},$$

so that by the estimate (6) we have

$$\begin{aligned} \left\| \left(\langle \vec{x}I - A, s \rangle - x_0 s I \right)^{-1} \right\|_{\mathcal{L}_{(n)}(X_{(n)})} &\leq \frac{C_{\nu}}{\sqrt{\langle \vec{x}, s \rangle^2 + x_0^2}} + \frac{2|x_0| C_{\nu}^2}{\langle \vec{x}, s \rangle^2 + x_0^2} \\ &\leq \frac{C_{\nu} + 2C_{\nu}^2}{|x_0|}, \end{aligned}$$

from which the stated bound follows.

Thus, if A is uniformly of type ω , then $x_0e_0 + \vec{x} \mapsto G_{x_0e_0+\vec{x}}(A)$ is defined by equation (5) for all $x_0e_0 + \vec{x} \in N_{\nu}$ with $\omega < \nu < \pi/2$. Standard arguments ensure that $x_0e_0 + \vec{x} \mapsto G_{x_0e_0+\vec{x}}(A)$ is both left and right monogenic as an element of $\mathcal{L}(X) \otimes \mathbb{C}_{(n)}$. If we denote by $\gamma(A) \subset \mathbb{R}^{n+1}$ the set of all singularities of the function $x_0e_0 + \vec{x} \mapsto G_{x_0e_0+\vec{x}}(A)$, then

$$\gamma(A) \subseteq S_{\omega}(\mathbb{R}^{n+1}).$$

Suppose that $\omega < \nu < \pi/2$, 0 < s < n and f is a left monogenic function defined on $S_{\nu}^{\circ}(\mathbb{R}^{n+1})$ such that for every $0 < \theta < \nu$ there exists $C_{\theta} > 0$ such that

(7)
$$|f(x)| \le C_{\theta} \frac{|x|^s}{(1+|x|^{2s})}, \quad x \in S_{\theta}^{\circ}(\mathbb{R}^{n+1}).$$

According to Lemma 2.2, for every $\omega < \nu' < \theta < \nu$, we have

$$||G_x(A)|| \cdot |f(x)| \le C_{\theta,\nu'} \frac{|x|^s}{|x_0|^n (1+|x|^{2s})}, \quad x = x_0 e_0 + \bar{x}$$

for all $x \in S^{\circ}_{\theta}(\mathbb{R}^{n+1}) \cap N_{\nu'}$.

Now if $\omega < \theta < \nu$ and

(8)
$$H_{\theta} = \{x \in \mathbb{R}^{n+1} : x = x_0 e_0 + \vec{x}, |x_0|/|x| = \tan \theta\} \subset S_{\nu}^{\circ}(\mathbb{R}^{n+1}).$$

it follows that $||G_x(A)||.|f(x)| = O(1/|x|^{n-s})$ as $x \to 0$ in H_{θ} . Hence, $x \mapsto G_x(A)\boldsymbol{n}(x)f(x)$ is locally integrable at zero with respect to *n*dimensional surface measure on H_{θ} . Similarly, $||G_x(A)||.|f(x)| = O(1/|x|^{n+s})$ as $|x| \to \infty$ in H_{θ} , so $x \mapsto G_x(A)\boldsymbol{n}(x)f(x)$ is integrable with respect to *n*-dimensional surface measure on H_{θ} .

Therefore, we define

(9)
$$f(A) = \int_{H_{\theta}} G_x(A) \boldsymbol{n}(x) f(x) \, d\mu(x)$$

If $\psi : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{C}$ has a two-sided monogenic extension $\tilde{\psi}$ to $S^{\circ}_{\nu}(\mathbb{R}^{n+1})$ that satisfies the bound (7) for all $0 < \theta < \nu$, then $\tilde{\psi}(A)$ is written just as $\psi(A)$.

Formula (9) does just what we would expect in the noncommuting situation. For example, let p be a polynomial of degree n with p(0) = 0and $b_{\lambda}(z) = p(z)(\lambda - z)^{-n-1}$ for some $\lambda \notin S_{\nu}^{\circ}(\mathbb{C})$. Let $\xi \in \mathbb{R}^{n}$ and set $\phi_{\lambda,\xi}(x) = b_{\lambda}(\langle x, \xi \rangle)$ for all $x \in \mathbb{R}^{n}$. Denote the two-sided monogenic extension of $\phi_{\lambda,\xi}$ to $S_{\nu}^{\circ}(\mathbb{R}^{n+1})$ by $\tilde{\phi}_{\lambda,\xi}$. Then $\tilde{\phi}_{\lambda,\xi}$ has decay at zero and infinity and we have $\phi_{\lambda,\xi}(A) = \tilde{\phi}_{\lambda,\xi}(A) = p(\langle A, \xi \rangle)(\lambda I - \langle A, \xi \rangle)^{-n-1}$ is a bounded linear operator.

In order to form functions f(A) of the system A of operators for a class of monogenic functions f larger than those which satisfy a

bound like (7), a greater understanding of function theory in the sector $S_{\omega}(\mathbb{R}^{n+1})$ is needed. To this end, the simple system $A = \zeta = (\zeta_1, \ldots, \zeta_n) \in \mathbb{C}^n$ of multiplication operators in the algebra $\mathbb{C}_{(n)}$ is considered in the next section.

3. Joint spectral theory in the algebra $\mathbb{C}_{(n)}$

Let $\zeta = (\zeta_1, \ldots, \zeta_n)$ be a vector belonging to \mathbb{C}^n . The complex spectrum $\sigma(i\zeta)$ of the element $i\zeta = i(\zeta_1e_1 + \cdots + \zeta_ne_n)$ of the algebra $\mathbb{C}_{(n)}$ is

 $\sigma(i\zeta) = \{\lambda \in \mathbb{C} : (\lambda e_0 - i\zeta) \text{ does not have an inverse in } \mathbb{C}_{(n)} \}.$

Following [13, Section 5.2], we check that

$$(\lambda e_0 + i\zeta)(\lambda e_0 - i\zeta) = \lambda^2 e_0 - i^2 \zeta^2 = (\lambda^2 - |\zeta|^2_{\mathbb{C}})e_0,$$

where $|\zeta|_{\mathbb{C}}^2 = \sum_{j=1}^n \zeta_j^2$. So, for all $\lambda \in \mathbb{C}$ for which, $\lambda \neq \pm |\zeta|_{\mathbb{C}}$, the element $(\lambda e_0 - i\zeta)$ of the algebra $\mathbb{C}_{(n)}$ is invertible and

$$(\lambda e_0 - i\zeta)^{-1} = \frac{\lambda e_0 + i\zeta}{\lambda^2 - |\zeta|_{\mathbb{C}}^2}$$

If $|\zeta|_{\mathbb{C}}^2 \neq 0$, the two square roots of $|\zeta|_{\mathbb{C}}^2$ are written as $\pm |\zeta|_{\mathbb{C}}$ and $|\zeta|_{\mathbb{C}} = 0$ for $|\zeta|_{\mathbb{C}}^2 = 0$. Hence $\sigma(i\zeta) = \{\pm |\zeta|_{\mathbb{C}}\}$. When $|\zeta|_{\mathbb{C}}^2 \neq 0$, the spectral projections

$$\chi_{\pm}(\zeta) = \frac{1}{2} \left(e_0 + \frac{i\zeta}{\pm |\zeta|_{\mathbb{C}}} \right)$$

are associated with each element $\pm |\zeta|_{\mathbb{C}}$ of the spectrum $\sigma(i\zeta)$ and $i\zeta$ has the spectral representation $i\zeta = |\zeta|_{\mathbb{C}}\chi_+(\zeta) + (-|\zeta|_{\mathbb{C}})\chi_-(\zeta)$. Henceforth, we use the symbol $|\zeta|_{\mathbb{C}}$ to denote the positive square root of $|\zeta|_{\mathbb{C}}^2$ in the case that $|\zeta|_{\mathbb{C}}^2 \notin (- \in fty, 0]$.

On the other hand, according to the point of view mentioned in the Introduction, the monogenic spectrum $\gamma(\zeta)$ of $\zeta \in \mathbb{C}^n$ should be the set of singularities of the Cauchy kernel $x \mapsto G_x(\zeta)$ in the algebra $\mathbb{C}_{(n)}$. Although $G_x(\zeta)$ is defined by formula (3) only for $\zeta \in \mathbb{R}^n$ and $x \neq \zeta$, a natural choice for the Cauchy kernel for $\zeta \in \mathbb{C}^n$ is to take the maximal analytic extension $\zeta \mapsto G_x(\zeta)$ of formula (3) for $\zeta \in \mathbb{C}^n$, that is, (10)

$$G_x(\zeta) = \frac{1}{\sigma_n} \frac{\overline{x} + \zeta}{|x - \zeta|_{\mathbb{C}}^{n+1}}, \quad x \in \mathbb{R}^{n+1}, \quad \begin{cases} |x - \zeta|_{\mathbb{C}}^2 \notin (-\infty, 0], & n \text{ even} \\ |x - \zeta|_{\mathbb{C}}^2 \neq 0, & n \text{ odd} \end{cases}$$

Here $|x - \zeta|_{\mathbb{C}}^2 = x_0^2 + \sum_{j=1}^n (x_j - \zeta_j)^2$ and $|x - \zeta|_{\mathbb{C}}$ is the positive square root of $|x - \zeta|_{\mathbb{C}}^2$, coinciding with the analytic extension of the modulus function $\xi \mapsto |x - \xi|, \xi \in \mathbb{R}^n \setminus \{x\}$.

The analogous reasoning for multiplication by $x \in \mathbb{R}^{n+1}$ in the algebra $\mathbb{C}_{(n)}$ just gives us the Cauchy kernel (3), so that $\gamma(x) = \{x\}$, as expected.

Remark 3.1. If $\zeta = (\zeta_1, \ldots, \zeta_n)$ satisfies the conditions of Definition 2.1, then there exists $\theta \in [-\omega, \omega]$ and $x \in \mathbb{R}^n$ such that $\zeta = e^{i\theta}x$. To see this, write $\zeta = \alpha + i\beta$ for $\alpha, \beta \in \mathbb{R}^n$. If $|\langle \beta, \xi \rangle| \le |\langle \alpha, \xi \rangle| \tan \omega$ for all $\xi \in \mathbb{R}^n$, then $\alpha^{\perp} \subset \beta^{\perp}$, so that $\beta \in \text{span}\{\alpha\}$.

In this case, the plane wave formula (5) with $A = \zeta$ and equation (10) agree by analytic continuation, at least for $x \in N_{\nu}$ with $\nu > |\theta|$.

Given $\zeta \in \mathbb{C}^n$, if singularities of (10) occur at $x \in \mathbb{R}^{n+1}$, then $|x - \zeta|_{\mathbb{C}}^2 \in (-\infty, 0]$, otherwise we can simply take the positive square root of $|x - \zeta|_{\mathbb{C}}^2$ in formula (10) to obtain a monogenic function of x. To determine this set, write $\zeta = \xi + i\eta$ for $\xi, \eta \in \mathbb{R}^n$ and $x = x_0 e_0 + \vec{x}$ for $x_0 \in \mathbb{R}$ and $\vec{x} \in \mathbb{R}^n$. Then

(11)

$$\begin{aligned} |x-\zeta|_{\mathbb{C}}^{2} &= x_{0}^{2} + \sum_{j=1}^{n} (x_{j} - \zeta_{j})^{2} \\ &= x_{0}^{2} + \sum_{j=1}^{n} (x_{j} - \xi_{j} - i\eta_{j})^{2} \\ &= x_{0}^{2} + |\vec{x} - \xi|^{2} - |\eta|^{2} - 2i\langle \vec{x} - \xi, \eta \rangle. \end{aligned}$$

Thus, $|x - \zeta|_{\mathbb{C}}^2$ belongs to $(-\infty, 0]$ if and only if x lies in the intersection of the hyperplane $\langle \vec{x} - \xi, \eta \rangle = 0$ passing through ξ and with normal η , and the ball $x_0^2 + |\vec{x} - \xi|^2 \leq |\eta|^2$ centred at ξ with radius $|\eta|$. If n is even, then

(12)
$$\gamma(\zeta) = \{x = x_0 e_0 + \vec{x} \in \mathbb{R}^{n+1} : \langle \vec{x} - \xi, \eta \rangle = 0, \ x_0^2 + |\vec{x} - \xi|^2 \le |\eta|^2 \}.$$

and if n is odd, then

(13)
$$\gamma(\zeta) = \{x = x_0 e_0 + \vec{x} \in \mathbb{R}^{n+1} : \langle \vec{x} - \xi, \eta \rangle = 0, \ x_0^2 + |\vec{x} - \xi|^2 = |\eta|^2 \}.$$

In particular, if $\Im(\zeta) = 0$, then $\gamma(\zeta) = \{\zeta\} \subset \mathbb{R}^n$.

Remark 3.2. The distinction between n odd and even is reminiscent of the support of the fundamental solution of the wave equation in even and odd dimensions.

Off $\gamma(\zeta)$, the function $x \mapsto G_x(\zeta)$ is clearly two-sided monogenic, so the Cauchy integral formula gives

(14)
$$\tilde{f}(\zeta) = \int_{\partial\Omega} G_x(\zeta) \boldsymbol{n}(x) f(x) \, d\mu(x)$$

for a bounded open neighbourhood Ω of $\gamma(\zeta)$ with smooth oriented boundary $\partial\Omega$, outward unit normal $\mathbf{n}(x)$ at $x \in \partial\Omega$ and surface measure μ . The function f is assumed to be left monogenic in a neighbourhood of $\overline{\Omega}$, but $\zeta \mapsto \tilde{f}(\zeta)$ is an analytic $\mathbb{C}_{(n)}$ -valued function as the closed set $\gamma(\zeta)$ varies inside Ω . Moreover, \tilde{f} equals f on $\Omega \cap \mathbb{R}^n$ by the usual Cauchy integral formula of Clifford analysis, so if f is, say, the monogenic extension of a polynomial $p : \mathbb{C}^n \to \mathbb{C}$ restricted to \mathbb{R}^n , then $\tilde{f}(\zeta) = p(\zeta)$, as expected. In this way, for each left monogenic function f defined in a neighbourhood of $\gamma(\zeta)$, in a natural way we associate an analytic function \tilde{f} defined in a neighbourhood of ζ .

It is clear that if $\zeta = \xi + i\eta$ lies in a sector in \mathbb{C}^n , say, $|\eta| \leq |\xi| \tan \nu$, then the monogenic spectrum $\gamma(\zeta)$ lies in a corresponding sector in \mathbb{R}^{n+1} . More precisely, we have

Proposition 3.3. Let $\zeta \in \mathbb{C}^n \setminus \{0\}$ and $0 < \omega < \pi/2$. Then $\gamma(\zeta) \subset S_{\omega}(\mathbb{R}^{n+1})$ if and only if

(15) $|\zeta|^2_{\mathbb{C}} \neq (-\infty, 0] \text{ and } |\Im(\zeta)| \leq \Re(|\zeta|_{\mathbb{C}}) \tan \omega.$

Proof. The statement is trivially valid if $\zeta \in \mathbb{R}^n \setminus \{0\}$, so suppose that $\Im(\zeta) \neq 0$. Then the monogenic spectrum $\gamma(\zeta)$ of ζ given by (12) is a subset of $S_{\omega}(\mathbb{R}^{n+1})$ if and only if there exists $0 < \theta \leq \omega$ such that the cone

$$H_{\theta}^{+} = \{ x_0 e_0 + \vec{x} \in \mathbb{R}^{n+1} : x_0 > 0, \ x_0 = |x| \tan \theta \}$$

is tangential to the boundary of $\gamma(\zeta)$. A calculation shows that H_{θ}^+ is tangential to the boundary of $\gamma(\zeta)$ for all $\zeta = \xi + i\eta$ with $\xi, \eta \in \mathbb{R}^n$, satisfying

(16)
$$|\eta|^2 = \sin^2 \theta (|\xi|^2 + \tan^2 \theta |P_{\eta}\xi|^2).$$

Here $P_{\eta} : u \mapsto \langle u, \eta \rangle \eta / |\eta|^2$, $u \in \mathbb{R}^n$, is the projection operator onto span{ η }.

To relate condition (16) to the inequality (15), suppose that $m = m_0 e_0 + \vec{m}$ is the unit vector normal to H_{θ} such that \vec{m} lies in the direction of η . Hence, $m_0 = \cot \theta |\vec{m}|$, $\tan \theta = |\vec{m}|/m_0$ and $P_{\eta}\xi = \langle \xi, \vec{m} \rangle \vec{m} / |\vec{m}|^2$. Then equation (15) becomes

$$\eta = \sin \theta (m_0^2 |\xi|^2 + \langle \xi, \vec{m} \rangle^2)^{1/2} \frac{\dot{m}}{|\vec{m}|m_0|}$$

But $|m_0 e_0 + \vec{m}| = 1$, so $(\cot^2 \theta + 1)|\vec{m}|^2 = 1$. We have $|\vec{m}| = \sin \theta$ and

(17)
$$\eta = (m_0^2 |\xi|^2 + \langle \xi, \vec{m} \rangle^2)^{1/2} \frac{\dot{m}}{m_0}.$$

As mentioned in [13, p67], the set of all $\zeta = \xi + i\eta$ with $\eta \neq 0$ satisfying (17) is equal to the set of all $\zeta = \xi + i\eta$ with $\eta \neq 0$ satisfying

$$|\zeta|_{\mathbb{C}}^2 \neq (-\infty, 0]$$
 and $\eta = \Re(|\zeta|_{\mathbb{C}}) \frac{m}{m_0}$.

Because $|\vec{m}|/m_0 = \tan \theta \leq \tan \omega$, we obtain the desired equivalence by letting \vec{m} vary over all directions in \mathbb{R}^n .

For each $0 < \omega < \pi/2$, let $S_{\omega}(\mathbb{C}^n)$ denote the set of all $\zeta \in \mathbb{C}^n$ satisfying condition (8) and let $S_{\omega}^{\circ}(\mathbb{C}^n)$ be its interior.

Corollary 3.4. Let $f: S^{\circ}_{\omega}(\mathbb{R}^{n+1}) \to \mathbb{C}_{(n)}$ be a left monogenic function such that the restriction \tilde{f} of f to $\mathbb{R}^n \setminus \{0\}$ takes values in \mathbb{C} . Then \tilde{f} is the restriction to $\mathbb{R}^n \setminus \{0\}$ of an analytic function defined on $S^{\circ}_{\omega}(\mathbb{C}^n)$

The sectors $S_{\omega}(\mathbb{C}^n) \subset \mathbb{C}^n$ and $S_{\omega}(\mathbb{R}^{n+1}) \subset \mathbb{R}^{n+1}$ are dual to each other in the sense that the mapping

$$(\omega,\zeta) \mapsto G_{\omega}(\zeta), \quad \omega \in \mathbb{R}^{n+1} \setminus S_{\omega}(\mathbb{R}^{n+1}), \ \zeta \in S_{\omega}^{\circ}(\mathbb{C}^n)$$

is two-sided monogenic in ω and analytic in ζ .

The sector $S_{\omega}(\mathbb{C}^n)$ arose in [10] as the set of $\zeta \in \mathbb{C}^n$ for which the exponential functions

$$e_+(x,\zeta) = e^{i\langle \vec{x},\zeta\rangle} e^{-x_0|\zeta|_{\mathbb{C}}} \chi_+(\zeta), \quad x = x_0 e_0 + \vec{x},$$

have decay at infinity for all $x \in \mathbb{R}^{n+1}$ with $\langle x, m \rangle > 0$ and all unit vectors $m = m_0 e_0 + \vec{m} \in \mathbb{R}^{n+1}$ satisfying $m_0 \ge \cot \omega |\vec{m}|$.

4. Joint spectral theory of sectorial multiplication operators

By means of the higher-dimensional analogue(4) of the Riesz-Dunford functional calculus, we can form functions f(A) of a noncommuting system A of operators uniformly of type ω for left monogenic functions f defined on a sector $S_{\nu}(\mathbb{R}^{n+1})$, $\omega < \nu < \pi/2$, provided that f has decay at zero and infinity.

The observations of the preceding section mean that we can do something similar for the commutative system of multiplication operators in the sector $S_{\omega}(\mathbb{C}^n)$, although these are not uniformly of type ω . The problem mentioned in the Introduction of connecting monogenic functions defined on a sector in \mathbb{R}^{n+1} with analytic functions defined on a sector in \mathbb{C}^n can be reformulated simply in terms of studying the monogenic functional calculus for multiplication operators.

More precisely, let $0 < \omega < \pi/2$ and set $X = L^2(S_{\omega}(\mathbb{C}^n), \mathbb{C}_{(n)})$. Integration is with respect to Lebesgue measure on $\mathbb{C}^n \equiv \mathbb{R}^{2n}$. Let

 M_j be the operator of multiplication by the *j*'th coordinate function defined on $S_{\omega}(\mathbb{C}^n)$, that is, the domain $\mathcal{D}(M_j)$ of M_j is the set of all functions $\psi \in X$ such that the function $M_j \psi$ defined by

(18)
$$(M_j\psi)(\zeta) = \zeta_j\psi(\zeta), \quad \zeta \in S_{\omega}(\mathbb{C}^n),$$

belongs to X, and the unbounded operator M_j is given by formula (18) for each $\psi \in \mathcal{D}(M_j)$. Set $M = (M_1, \ldots, M_n)$. Then M is a commuting *n*-tuple of normal operators. Unlike the *n*-tuple D_{Σ} of operators mentioned in the Introduction, the existence of a joint functional calculus for M is not an issue.

Indeed, the joint spectral measure $P: \mathcal{B}(S_{\omega}(\mathbb{C}^n)) \to \mathcal{L}(X)$ given by

$$P(B)\psi = \chi_B.\psi, \quad \psi \in X, \ B \in \mathcal{B}(S_\omega(\mathbb{C}^n)),$$

has support $S_{\omega}(\mathbb{C}^n)$. For any bounded Borel measurable function $f : S_{\omega}(\mathbb{C}^n) \to \mathbb{C}$, the bounded linear operator

$$f(M) = \int_{S_{\omega}(\mathbb{C}^n)} f \, dP$$

is given by the functional calculus for commuting normal operators, and explicitly, by

$$f(M): \psi \mapsto f.\psi, \quad \psi \in X.$$

Thus we have a functional calculus for M for a class of functions far richer than uniformly bounded analytic functions f defined in a sector $S^{\circ}_{\nu}(\mathbb{C}^n)$ with $\omega < \nu < \pi/2$.

Nevertheless, it is not so obvious that bounded linear operators f(M)can also be formed naturally for functions f that are monogenic in a sector $S_{\nu}^{\circ}(\mathbb{R}^{n+1})$ with $\omega < \nu < \pi/2$.

The Cauchy kernel $G_x(M)$ is defined for all $x \in N_{\nu}$ and all ν such that $\omega < \nu < \pi/2$ simply by setting

(19)
$$(G_x(M)\psi)(\zeta) = \psi(\zeta)G_x(\zeta), \quad \zeta \in S_\omega(\mathbb{C}^n),$$

for all $\psi \in X$ and $x \in N_{\nu}$, so that $G_x(M)$ is a left module homomorphism of X. The proof of the next lemma is straightforward and is omitted.

Lemma 4.1. Let $\omega < \nu < \pi/2$. Then $G_x(M)$ is a bounded linear operator on X for all $x \in N_{\nu} \setminus \{0\}$. Furthermore, the operator valued function $x \mapsto G_x(M), x \in N_{\nu} \setminus \{0\}$, is continuous for the strong operator topology, right monogenic in the interior of N_{ν} and $||G_x(M)|| = O(|x|^{-n})$ as $|x| \to \infty$ and $|x| \to 0$ in N_{ν}

Let $\omega < \nu < \pi/2$. Suppose that f is a left monogenic function defined on $S_{\nu}^{\circ}(\mathbb{R}^{n+1})$ such that for every $0 < \theta < \nu$, the bound (7) holds.

Now if $\omega < \theta < \nu$ and H_{θ} is the two-sheeted cone (8) in \mathbb{R}^{n+1} , then the bounded linear operator $f(M): X \to X$ is defined by the formula

(20)
$$f(M) = \int_{H_{\theta}} G_x(M) \boldsymbol{n}(x) f(x) \, d\mu(x)$$

by the same argument by which (9) is defined. Then f(M) is a left module homomorphism of X. The operator f(M) is identified in the next statement.

Proposition 4.2. Suppose that f is a left monogenic function defined on $S^{\circ}_{\nu}(\mathbb{R}^{n+1})$ satisfying the bound (7) for every $0 < \theta < \nu$ and f(M)is defined by formula (20). Let \tilde{f} be the $C_{(n)}$ -valued analytic function defined from f by formula (14). Then \tilde{f} is uniformly bounded on the sector $S_{\omega}(\mathbb{C}^n)$,

(21)
$$(f(M)\psi)(\zeta) = \psi(\zeta)f(\zeta), \quad \zeta \in S_{\omega}(\mathbb{C}^n),$$

for all $\psi \in X$ and $||f(M)|| = ||\tilde{f}||_{H^{\infty}(S_{\omega}(\mathbb{C}^n))}$.

The problem remains of obtaining better bounds for the operator norm of f(M) in terms of bounds of the left monogenic function defined on $S^{\circ}_{\nu}(\mathbb{R}^{n+1})$ and feeding these bounds back into formula (9) for a system A uniformly of type ω .

References

- E. Albrecht, Several variable spectral theory in the non-commutative case, Spectral Theory, Banach Center Publications, Volume 8, PWN-Polish Scientific Publishers, Warsaw, 1982, 9–30.
- [2] F. Brackx, R. Delanghe and F. Sommen, Clifford Analysis, Research Notes in Mathematics 76, Pitman, Boston/London/Melbourne, 1982.
- [3] R. Delanghe, F. Sommen and V. Soucek, Clifford Algebras and Spinor Valued Functions: A Function Theory for the Dirac Operator, Kluwer, Dordrecht, 1992.
- [4] B. Jefferies and A. M^cIntosh, The Weyl calculus and Clifford analysis, Bull. Austral. Math. Soc. 57 (1998), 329–341.
- [5] B. Jefferies, A. M^cIntosh and J. Picton-Warlow, The monogenic functional calculus, *Studia Math.* 136 (1999), 99–119.
- [6] B. Jefferies and B. Straub, Lacunas in the support of the Weyl calculus for two hermitian matrices, J. Austral. Math. Soc. (Series A), to appear.
- [7] T. Kato, Perturbation Theory for Linear Operators, 2nd Ed., Springer-Verlag, Berlin/Heidelberg/New York, 1980.
- [8] V. V. Kisil, Möbius transformations and monogenic functional calculus, ERA Amer. Math. Soc. 2 (1996), 26–33

- [9] V. V. Kisil and E. Ramírez de Arellano, The Riesz-Clifford functional calculus for non-commuting operators and quantum field theory, *Math. Methods Appl. Sci.* **19** (1996), 593–605.
- [10] C. Li, A. M^cIntosh, T. Qian, Clifford algebras, Fourier transforms and singular convolution operators on Lipschitz surfaces, *Rev. Mat. Iberoamericana* 10 (1994), 665–721.
- [11] C. Li, A. M^cIntosh, Clifford algebras and H_{∞} functional calculi of commuting operators, *Clifford algebras in analysis and related topics* (Fayetteville, AR, 1993), 89–101, Stud. Adv. Math., CRC, Boca Raton, FL, 1996.
- [12] A. M^cIntosh, Operators which have an H_{∞} -functional calculus, in: Miniconference on Operator Theory and Partial Differential Equations 1986, 212–222 *Proc. Centre for Mathematical Analysis* 14, ANU, Canberra, 1986.
- [13] _____, Clifford algebras, Fourier theory, singular integrals, and harmonic functions on Lipschitz domains, *Clifford algebras in analysis and related topics* (Fayetteville, AR, 1993), 33–87, Stud. Adv. Math., CRC, Boca Raton, FL, 1996.
- [14] A. M^cIntosh and A. Pryde, The solution of systems of operator equations using Clifford algebras, in: Miniconference on Linear Analysis and Function Spaces 1984, 212–222, Proc. Centre for Mathematical Analysis 9, ANU, Canberra, 1985.
- [15] _____, A functional calculus for several commuting operators, Indiana U. Math. J. 36 (1987), 421–439.
- [16] A. M^cIntosh, A. Pryde and W. Ricker, Comparison of joint spectra for certain classes of commuting operators, *Studia Math.* 88 (1988), 23–36.
- [17] E. Nelson, Operants: A functional calculus for non-commuting operators, in: Functional analysis and related fields, Proceedings of a conference in honour of Professor Marshal Stone, Univ. of Chicago, May 1968 (F.E. Browder, ed.), Springer-Verlag, Berlin/Heidelberg/New York, 1970, pp. 172–187.
- [18] F. Sommen, Plane wave decompositions of monogenic functions, Annales Pol. Math. 49 (1988), 101–114.
- [19] M.E. Taylor, Functions of several self-adjoint operators, Proc. Amer. Math. Soc. 19 (1968), 91–98.

School of Mathematics, The University of New South Wales, Sydney, NSW 2052, Australia

E-mail address: b.jefferies@unsw.edu.au