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Abstract. Given a system A = (A1, . . . , An) of linear operators
whose real linear combinations have spectra contained in a fixed
sector in C and satisfy resolvent bounds there, functions f(A) of
the system A of operators can be formed for monogenic functions
f having decay at zero and infinity in a corresponding sector in
Rn+1. The paper discusses how the functional calculus f 7→ f(A)
might be extended to a larger class of monogenic functions and its
relationship with a functional calculus for analytic functions in a
sector of Cn.

1. Introduction

Given a finite system A = (A1, . . . , An) of bounded linear operators

acting on a Banach space X, it has recently been shown how functions

f(A) of the n-tuple A can be formed for a large class of functions f ,

just under the assumption that the spectrum σ(〈A, ξ〉) of the operator

〈A, ξ〉 :=
∑n

j=1Ajξj is a subset of R for every ξ ∈ Rn [5]. The operators

A1, . . . , An do not necessarily commute with each other.

A distinguished subset γ(A) of Rn with the property that the bounded

linear operator f(A) is defined for any real analytic function f : U → C
defined in a neighbourhood U of γ(A) in Rn arises in the approach con-

sidered in [5]. For a polynomial p in n real variables, p(A) is the oper-

ator formed by substituting symmetric products in the bounded linear

operators A1, . . . , An for the monomial expressions in p, that is, we

have a symmetric functional calculus in the n operators A1, . . . , An.

Another way of expressing this symmetry property is that for any

ξ ∈ Rn and any polynomial q : C → C in one variable, the equal-

ity p(A) = q(〈A, ξ〉) holds for the polynomial p : x 7→ q(〈x, ξ〉), x ∈ Rn.

Moreover, the mapping f 7→ f(A) is continuous for a certain topology
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defined on the space of functions real analytic in a neighbourhood of

γ(A) in Rn [5, Proposition 3.3].

These properties are analogous to the Riesz-Dunford functional cal-

culus of a single bounded linear operator T acting on X, by which a

function f(T ) : X → X of T is defined by the Cauchy integral formula

(1) f(T ) =
1

2πi

∫
C

(λI − T )−1f(λ) dλ,

for f analytic in a neighbourhood of the spectrum σ(T ) of T and for C

a simple closed contour about σ(T ). It is by this analogy that the set

γ(A) mentioned above may be thought of as the “joint spectrum” of

the system A, especially if there is no set smaller than γ(A) possessing

the desirable properties alluded to.

Now for a single operator T , the spectrum σ(T ) has a simple alge-

braic definition as the set of all λ ∈ C for which the operator λI − T

is not invertible in the space L(X) of bounded linear operators act-

ing on X. In the case that A consists of a system of n commuting,

possibly unbounded, linear operators with real spectra, A. McIntosh

and A. Pryde [14, 15] gave a simple algebraic definition of the joint

spectrum γ(A) of A and used this to obtain operator bounds for solu-

tions of operator equations. Work of A. McIntosh, A. Pryde and W.

Ricker [16] established the equivalence of γ(A) with other notions of

joint spectrum.

In the noncommutative case, we cannot expect such a straightfor-

ward algebraic definition of the joint spectrum γ(A), although such

a definition was proposed in [8]. Another example of a symmetric

functional calculus is the Weyl calculus WA considered in [19] for n

selfadjoint operators A = (A1, . . . , An). In the case that the system A

consists of bounded selfadjoint operators, it was shown in [4] that γ(A)

is precisely the support of the operator valued distribution WA, and

E. Nelson characterised this set as the Gelfand spectrum of a certain

subalgebra of the Banach algebra of operants [17]. Further work along

these lines was conducted by E. Albrecht [1].

If we now pass to unbounded operators, then a similar analysis holds

if we retain the spectral reality condition σ(〈A, ξ〉) ⊂ R for ξ ∈ Rn, pro-

vided that we suitably account for operator domains. However, much of

the work [14, 15, 16] on functional calculi just mentioned was motivated

by Alan McIntosh’s study of the commuting n-tupleDΣ = (D1, . . . , Dn)

of differentiation operators on a Lipschitz surface Σ in Rn+1. In the case

that Σ is just the flat surface Rn, the operatorsDj = 1
i

∂
∂xj

, j = 1, . . . , n,
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commute with each other and are selfadjoint, otherwise, the unbounded

operators Dj, j = 1, . . . , n, have spectra σ(Dj) contained in a complex

sector Sω(C) = {z ∈ C : z 6= 0, | arg(z)| ≤ ω} with an angle ω depend-

ing on the variation of the directions normal to the surface Σ.

Although the existence and properties of the H∞-functional calculus

for the commuting n-tupleDΣ are now well-understood, see for example

[13], the purpose of the present paper is to initiate a study of the

symmetric functional calculus for an n-tuple A of unbounded sectorial

operators — we do not assume that the operators commute with each

other. In particular, the spectral reality condition

(2) σ(〈A, ξ〉) ⊂ R, for all ξ ∈ Rn

needs to be relaxed. An alternative approach to forming an H∞-

functional calculus for commuting operators using exponential bounds

is given in [11].

Before proceeding with further discussion, we note the definition of

the joint spectrum γ(A) for a system A satisfying condition (2). The

key idea behind [14, 15] in the commuting case and [4, 5, 8, 9] in the

noncommuting case, is to produce a higher-dimensional analogue of the

Riesz-Dunford formula (1). So what we need is a higher-dimensional

analogue of the Cauchy integral formula in complex analysis and then,

in the time-honoured fashion of operator theory, substitute an n-tuple

of numbers by an n-tuple of unbounded linear operators. But this is

easier said than done.

It turns out that Clifford analysis provides a higher dimensional ana-

logue of the Cauchy integral formula especially well-suited to the non-

commutative setting. Even for the commuting n-tuple DΣ of operators

mentioned above, it provides the connection between multiplier op-

erators and singular convolution operators for functions defined on a

Lipschitz surface. A brief résumé of Clifford analysis [2, 3] and the

monogenic functional calculus treated in [5] follows.

Let C(n) be the Clifford algebra generated over the field C by the

standard basis vectors e0, e1, . . . , en of Rn+1 with conjugation u 7→ u.

The generalized Cauchy-Riemann operator is given by D =
∑n

j=0 ej
∂

∂xj
.

Let U ⊂ Rn+1 be an open set. A function f : U → C(n) is called left

monogenic if Df = 0 in U and right monogenic if fD = 0 in U . The

Cauchy kernel is given by

(3) Gx(y) =
1

σn

x− y

|x− y|n+1
, x, y ∈ Rn+1, x 6= y,
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with σn = 2π
n+1

2 /Γ
(

n+1
2

)
the volume of unit n-sphere in Rn+1. So,

given a left monogenic function f : U → C(n) defined in an open subset

U of Rn+1 and an open subset Ω of U such that the closure Ω of Ω

is contained in U , and the boundary ∂Ω of Ω is a smooth oriented

n-manifold, then the Cauchy integral formula

f(y) =

∫
∂Ω

Gx(y)n(x)f(x) dµ(x), y ∈ Ω

is valid. Here n(x) is the outward unit normal at x ∈ ∂Ω and µ is

the volume measure of the oriented manifold ∂Ω. An element x =

(x0, x1, . . . , xn) of Rn+1 will often be written as x = x0e0 + ~x with

~x =
∑n

j=1 xjej.

By analogy with formula (1), our aim is to define

(4) f(A) =

∫
∂Ω

Gx(A)n(x)f(x) dµ(x)

for the n-tuple A = (A1, . . . , An) of bounded linear operators on X. A

difficulty occurs in making sense of the Cauchy kernel x 7→ Gx(A), a

function with values in the space L(X) ⊗ C(n) that should be defined

and two-sided monogenic for all x off a nonempty closed subset γ(A)

of Rn inside Ω. The set ∂Ω can be smoothly varied in the region where

x 7→ Gx(A) is right-monogenic. Of course, one would also like f(A) to

be the ‘correct’ operator in the case that f is the unique monogenic

extension to Rn+1 of a polynomial in n variables.

In the Riesz-Dunford functional calculus for T , the set of singularities

of the resolvent λ 7→ (λI − T )−1 is precisely the spectrum σ(T ) of T ,

so the set γ(A) may be interpreted as a higher-dimensional analogue

of the spectrum of a single operator. It seems reasonable to call the

set γ(A) the monogenic spectrum of the n-tuple A by analogy with the

case of a single operator.

The program was implemented by A. McIntosh and A. Pryde for

commuting n-tuples of bounded operators with real spectrum in order

to give estimates on the solution of systems of operator equations [14,

15]. In the case that n is odd, we have

γ(A) =

{
λ ∈ Rn :

n∑
j=1

(λjI − Aj)
2 is invertible in L(X)

}c

and

Gx(A) =
1

σn

(x− A)

(
x2

0I +
n∑

j=1

(xjI − Aj)
2

)−n+1
2

,
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for all x = (x0, . . . , xn) ∈ Rn+1 \ ({0} × γ(A)). It turns out that γ(A)

coincides with the Taylor spectrum for commuting systems of bounded

linear operators [16].

If the n-tuple A of bounded linear operators satisfies exponential

growth conditions, such as when A1, . . . , An are selfadjoint, then Weyl’s

functional calculus WA is associated with A and Gx(A) = W(Gx) is an

obvious way to define the Cauchy kernel for all x outside the support of

WA. It is shown in [4] that formula (4) holds. However, in this case, we

actually have a symmetric functional calculus defined over γ(A) richer

than just all real analytic functions.

The Cauchy kernel Gx(A) can also be written as a series expansion

like the Neuman series for the resolvent of a single operator if x ∈ Rn+1

lies outside a sufficiently large ball [8, 9], but the expansion does not

allow us to identify γ(A) as a subset of Rn in the case that the spectral

reality condition (2) holds.

A third way to define the Cauchy kernel Gx(A) for the monogenic

functional calculus whenever the spectral reality condition (2) holds,

is by the plane wave decomposition for the Cauchy kernel (3) given by

F. Sommen [18]. This was investigated by A. McIntosh and J. Picton-

Warlow soon after the papers [14, 15] appeared. The formula is

Gx(A) =
(n− 1)!

2

(
i

2π

)n

sgn(x0)
n−1

×
∫

Sn−1

(e0 + is) (〈~x, s〉I − 〈A, s〉 − x0sI)
−n ds

(5)

for all x = x0e0 + ~x with x0 a nonzero real number and ~x ∈ Rn.

Here Sn−1 is the unit (n − 1)-sphere in Rn, ds is surface measure and

the inverse power (〈~xI − A, s〉 − x0s)
−n is taken in the Clifford module

L(X)⊗C(n). The spectral reality condition (2) ensures the invertibility

of (〈~xI − A, s〉 − x0s) for all x0 6= 0 and s ∈ Sn−1 by the spectral

mapping theorem.

Even if A satisfies exponential growth conditions, with the left hand

side given by formula (5), the equality Gx(A) = WA(Gx) can still be

used to good effect. In [6], it was used to geometrically characterise the

support of fundamental solution of the symmetric hyperbolic system

associated with a pair A of hermitian matrices in the case n = 2.

Greater understanding of Clifford residue theory would enable a similar

treatment in higher dimensions.

In Section 2, it is shown how formula (5) for the Cauchy kernel

associated with the system A of sectorial operators still works if the
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spectral reality condition (2) is replaced by a sectoriality condition with

the appropriate resolvent bounds. The system DΣ of commuting secto-

rial operators described above is of this type. By this means functions

f(A) of the operators A can be formed, provided that f is, say, left

monogenic in a sector in Rn+1 and satisfies suitable decay estimates at

0 and ∞, in a fashion similar to the case of a single operator of type

ω [12]. Because Gx(A) is only defined for x outside a sector in Rn+1,

the monogenic spectrum γ(A) is now contained in that sector in Rn+1.

Recall that under condition (2), γ(A) is a subset of Rn.

A function f(DΣ) of the system DΣ has a natural interpretation as

a multiplier operator acting on Lp-spaces of functions defined on the

Lipschitz surface Σ, as well as a singular convolution operator, so the

multiplier f should be a bounded analytic function defined on a sector

in Cn [13], rather than, say, a bounded monogenic function defined in

a sector in Rn+1. The monogenic functional calculus for a system A of

sectorial operators appears to be moving us inexorably in the wrong

direction.

The problem arises of establishing a bijection between monogenic

functions defined on a sector in Rn+1 and analytic functions defined on

a sector in Cn, together with the appropriate norms — this is a question

of function theory rather than operator theory. The association is via

the Cauchy-Kowaleski extension to a sector in Rn+1 of the restriction

of the analytic function to Rn \ {0}.
The purpose of this paper is to make some observations about the

relationship between monogenic functions defined in a sector in Rn+1

and analytic functions defined in the corresponding sector in Cn, with

applications to functional calculi of systems of operators firmly in mind.

In Section 3, the spectral properties of multiplication operators in C(n)

are examined along the lines of Lecture 1 of [13]. In Section 4, this

enables us to uniquely associate a bounded analytic function defined

in a sector in Cn with a suitably decaying monogenic function defined

in the corresponding sector in Rn+1 via the Cauchy integral formula.

2. The plane wave decomposition

Let A = (A1, . . . , An) be an n-tuple of densely defined linear opera-

tors Aj : D(Aj) → X acting in X such that ∩n
j=1D(Aj) is dense in X.

The space L(n)(X(n)) of left module homomorphisms of X(n) = X⊗C(n)

is identified with L(X)⊗ C(n) in the natural way and becomes a right

Banach module under the uniform operator topology.
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If we take formula (5) as the definition of Gx(A), then the conver-

gence of the integral∫
Sn−1

(e0 + is) (〈~xI − A, s〉 − x0sI)
−n ds

for particular values of x = x0e0 + ~x ∈ Rn+1 is at issue. Now

(〈~xI − A, s〉 − x0sI)
−1 = (〈~xI − A, s〉+ x0sI)

(
〈~xI − A, s〉2 + x2

0I
)−1

if 0 /∈ σ (〈~xI − A, s〉2 + x2
0). Thus, we need to ensure the appropriate

uniform operator bounds for(
〈~xI − A, s〉2 + x2

0I
)−1

, s ∈ Sn−1

as x = x0e0 + x ranges over a subset of Rn+1. In the case that

σ(〈A, s〉) ⊂ R and (λI − 〈A, s〉)−1 is suitably bounded for all s ∈ Sn−1

and λ ∈ C\R, then Gx0e0+~x(A) is defined for all x0 6= 0. First, for each

0 < ν < π/2, set

Sν+(C) = {z ∈ C : | arg z| ≤ ν} ∪ {0},
Sν(C) = Sν+(C) ∪ i

¯
g(−Sν+(C)

)
,

S◦ν+(C) = {z ∈ C : | arg z| < ν},
S◦ν(C) = S◦ν+(C) ∪

(
− S◦ν+(C)

)
.

The (n− 1)-sphere in Rn is denoted by Sn−1.

Definition 2.1. Let A = (A1, . . . , An) be an n-tuple of densely defined

linear operators Aj : D(Aj) → X acting in X such that
⋂n

j=1D(Aj) is

dense in X and let 0 ≤ ω < π
2
. Then A is said to be uniformly of type ω

if for every s ∈ Sn−1, the operator 〈A, s〉 is closable with closure 〈A, s〉,
the inclusion σ

(
〈A, s〉

)
⊂ Sω(C) holds, and for each ν > ω, there exists

Cν > 0 such that

(6) ‖
(
zI − 〈A, s〉

)−1‖ ≤ Cν |z|−1, z /∈ S◦ν(C), s ∈ Sn−1.

It follows that s 7→ 〈A, s〉 is continuous on Sn−1 in the sense of strong

resolvent convergence [7, Theorem VIII.1.5]. Because
(
zI − 〈A, s〉

)−1

is densely defined and uniformly bounded in X, the closure symbol will

be omitted.

Now suppose that equation (6) is satisfied and let z = 〈~x, s〉 + ix0.

Then z /∈ S◦ν(C) means that | arg z| ≥ ν for −π
2
≤ arg z ≤ π

2
or

π− arg z ≥ ν for π
2
≤ arg z ≤ π or π+ arg z ≥ ν for −π ≤ arg z ≤ −π

2
.

Hence, we have |x0| ≥ tan ν|〈~x, s〉|.
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First, let

Nν = {x ∈ Rn+1 : x = x0e0 + ~x, |x0| ≥ tan ν|~x| },
Sν(Rn+1) = {x ∈ Rn+1 : x = x0e0 + ~x, |x0| ≤ tan ν|~x| },
S◦ν(Rn+1) = {x ∈ Rn+1 : x = x0e0 + ~x, |x0| < tan ν|~x| }.

Note that if x0e0 + x ∈ Nν , then z = 〈~x, s〉 + ix0 /∈ S◦ν(C) for every

s ∈ Sn−1, because either |x0| ≥ tan ν|~x| ≥ tan ν|〈~x, s〉|.

Lemma 2.2. Let ω < ν < π/2. Suppose that the n-tuple A of linear

operators is uniformly of type ω. Then for all x0e0 + ~x ∈ Nν, the

integral ∫
Sn−1

∥∥(〈~xI − A, s〉 − x0sI)
−n
∥∥
L(n)(X(n))

ds

converges and satisfies the bound∫
Sn−1

∥∥(〈~xI − A, s〉 − x0sI)
−n
∥∥
L(n)(X(n))

ds ≤ C ′
ν

|x0|n
.

Proof. For every x0e0 + ~x ∈ Nν , we have z = 〈x, s〉 ± ix0 /∈ Sν(C) so

that the operator (〈~x, s〉 ± ix0)I − 〈A, s〉 is invertible and the bound∥∥((〈~x, s〉 ± ix0)I − 〈A, s〉)−1
∥∥
L(X)

≤ Cν√
〈~x, s〉2 + x2

0

holds. Now

(〈~xI − A, s〉 − x0sI)
−1

= (〈~xI − A, s〉+ x0sI)
(
〈~xI − A, s〉2 + x2

0I
)−1

where(
〈~xI − A, s〉2 + x2

0I
)−1

= ((〈~x, s〉+ ix0)I − 〈A, s〉)−1 ((〈~x, s〉 − ix0)I − 〈A, s〉)−1 .

Writing (〈~xI − A, s〉+ x0sI) = ((〈~x, s〉+ ix0)I − 〈A, s〉)− ix0I + x0sI,

we obtain

(〈~xI − A, s〉 − x0sI)
−1 = ((〈~x, s〉 − ix0)I − 〈A, s〉)−1

− ix0(e0 + is)
(
〈~xI − A, s〉2 + x2

0I
)−1

,

so that by the estimate (6) we have∥∥(〈~xI − A, s〉 − x0sI)
−1
∥∥
L(n)(X(n))

≤ Cν√
〈~x, s〉2 + x2

0

+
2|x0|C2

ν

〈~x, s〉2 + x2
0

≤ Cν + 2C2
ν

|x0|
,

from which the stated bound follows. �
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Thus, if A is uniformly of type ω, then x0e0 + ~x 7→ Gx0e0+~x(A) is

defined by equation (5) for all x0e0 + ~x ∈ Nν with ω < ν < π/2.

Standard arguments ensure that x0e0 + ~x 7→ Gx0e0+~x(A) is both left

and right monogenic as an element of L(X) ⊗ C(n). If we denote by

γ(A) ⊂ Rn+1 the set of all singularities of the function x0e0 + ~x 7→
Gx0e0+~x(A), then

γ(A) ⊆ Sω(Rn+1).

Suppose that ω < ν < π/2, 0 < s < n and f is a left monogenic

function defined on S◦ν(Rn+1) such that for every 0 < θ < ν there exists

Cθ > 0 such that

(7) |f(x)| ≤ Cθ
|x|s

(1 + |x|2s)
, x ∈ S◦θ (Rn+1).

According to Lemma 2.2, for every ω < ν ′ < θ < ν, we have

‖Gx(A)‖.|f(x)| ≤ Cθ,ν′
|x|s

|x0|n(1 + |x|2s)
, x = x0e0 + ~x

for all x ∈ S◦θ (Rn+1) ∩Nν′ .

Now if ω < θ < ν and

(8) Hθ = {x ∈ Rn+1 : x = x0e0 + ~x, |x0|/|x| = tan θ} ⊂ S◦ν(Rn+1).

it follows that ‖Gx(A)‖.|f(x)| = O(1/|x|n−s) as x → 0 in Hθ. Hence,

x 7→ Gx(A)n(x)f(x) is locally integrable at zero with respect to n-

dimensional surface measure on Hθ. Similarly, ‖Gx(A)‖.|f(x)| =

O(1/|x|n+s) as |x| → ∞ in Hθ, so x 7→ Gx(A)n(x)f(x) is integrable

with respect to n-dimensional surface measure on Hθ.

Therefore, we define

(9) f(A) =

∫
Hθ

Gx(A)n(x)f(x) dµ(x).

If ψ : Rn+1 \ {0} → C has a two-sided monogenic extension ψ̃ to

S◦ν(Rn+1) that satisfies the bound (7) for all 0 < θ < ν, then ψ̃(A) is

written just as ψ(A).

Formula (9) does just what we would expect in the noncommuting

situation. For example, let p be a polynomial of degree n with p(0) = 0

and bλ(z) = p(z)(λ − z)−n−1 for some λ /∈ S◦ν(C). Let ξ ∈ Rn and set

φλ,ξ(x) = bλ(〈x, ξ〉) for all x ∈ Rn. Denote the two-sided monogenic

extension of φλ,ξ to S◦ν(Rn+1) by φ̃λ,ξ. Then φ̃λ,ξ has decay at zero and

infinity and we have φλ,ξ(A) = φ̃λ,ξ(A) = p(〈A, ξ〉)(λI − 〈A, ξ〉)−n−1 is

a bounded linear operator.

In order to form functions f(A) of the system A of operators for

a class of monogenic functions f larger than those which satisfy a
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bound like (7), a greater understanding of function theory in the sec-

tor Sω(Rn+1) is needed. To this end, the simple system A = ζ =

(ζ1, . . . , ζn) ∈ Cn of multiplication operators in the algebra C(n) is con-

sidered in the next section.

3. Joint spectral theory in the algebra C(n)

Let ζ = (ζ1, . . . , ζn) be a vector belonging to Cn. The complex

spectrum σ(iζ) of the element iζ = i(ζ1e1 + · · · + ζnen) of the algebra

C(n) is

σ(iζ) = {λ ∈ C : (λe0 − iζ) does not have an inverse in C(n) }.

Following [13, Section 5.2], we check that

(λe0 + iζ)(λe0 − iζ) = λ2e0 − i2ζ2 = (λ2 − |ζ|2C)e0,

where |ζ|2C =
∑n

j=1 ζ
2
j . So, for all λ ∈ C for which, λ 6= ±|ζ|C, the

element (λe0 − iζ) of the algebra C(n) is invertible and

(λe0 − iζ)−1 =
λe0 + iζ

λ2 − |ζ|2C
.

If |ζ|2C 6= 0, the two square roots of |ζ|2C are written as ±|ζ|C and

|ζ|C = 0 for |ζ|2C = 0. Hence σ(iζ) = {±|ζ|C}. When |ζ|2C 6= 0, the

spectral projections

χ±(ζ) =
1

2

(
e0 +

iζ

±|ζ|C

)
are associated with each element±|ζ|C of the spectrum σ(iζ) and iζ has

the spectral representation iζ = |ζ|Cχ+(ζ)+(−|ζ|C)χ−(ζ). Henceforth,

we use the symbol |ζ|C to denote the positive square root of |ζ|2C in the

case that |ζ|2C /∈ (− ∈ fty, 0].

On the other hand, according to the point of view mentioned in the

Introduction, the monogenic spectrum γ(ζ) of ζ ∈ Cn should be the set

of singularities of the Cauchy kernel x 7→ Gx(ζ) in the algebra C(n).

Although Gx(ζ) is defined by formula (3) only for ζ ∈ Rn and x 6= ζ, a

natural choice for the Cauchy kernel for ζ ∈ Cn is to take the maximal

analytic extension ζ 7→ Gx(ζ) of formula (3) for ζ ∈ Cn, that is,

(10)

Gx(ζ) =
1

σn

x+ ζ

|x− ζ|n+1
C

, x ∈ Rn+1,

{
|x− ζ|2C /∈ (−∞, 0], n even
|x− ζ|2C 6= 0, n odd

Here |x− ζ|2C = x2
0 +
∑n

j=1(xj − ζj)2 and |x− ζ|C is the positive square

root of |x− ζ|2C, coinciding with the analytic extension of the modulus

function ξ 7→ |x− ξ|, ξ ∈ Rn \ {x}.
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The analogous reasoning for multiplication by x ∈ Rn+1 in the al-

gebra C(n) just gives us the Cauchy kernel (3), so that γ(x) = {x}, as

expected.

Remark 3.1. If ζ = (ζ1, . . . , ζn) satisfies the conditions of Definition

2.1, then there exists θ ∈ [−ω, ω] and x ∈ Rn such that ζ = eiθx. To

see this, write ζ = α + iβ for α, β ∈ Rn. If |〈β, ξ〉| ≤ |〈α, ξ〉| tanω for

all ξ ∈ Rn, then α⊥ ⊂ β⊥, so that β ∈ span{α}.
In this case, the plane wave formula (5) with A = ζ and equation

(10) agree by analytic continuation, at least for x ∈ Nν with ν > |θ|.

Given ζ ∈ Cn, if singularities of (10) occur at x ∈ Rn+1, then |x −
ζ|2C ∈ (−∞, 0], otherwise we can simply take the positive square root

of |x − ζ|2C in formula (10) to obtain a monogenic function of x. To

determine this set, write ζ = ξ + iη for ξ, η ∈ Rn and x = x0e0 + ~x for

x0 ∈ R and ~x ∈ Rn. Then

|x− ζ|2C = x2
0 +

n∑
j=1

(xj − ζj)
2

= x2
0 +

n∑
j=1

(xj − ξj − iηj)
2

= x2
0 + |~x− ξ|2 − |η|2 − 2i〈~x− ξ, η〉.(11)

Thus, |x−ζ|2C belongs to (−∞, 0] if and only if x lies in the intersection

of the hyperplane 〈~x− ξ, η〉 = 0 passing through ξ and with normal η,

and the ball x2
0 + |~x − ξ|2 ≤ |η|2 centred at ξ with radius |η|. If n is

even, then

(12) γ(ζ) = {x = x0e0+~x ∈ Rn+1 : 〈~x−ξ, η〉 = 0, x2
0+|~x−ξ|2 ≤ |η|2 }.

and if n is odd, then

(13) γ(ζ) = {x = x0e0+~x ∈ Rn+1 : 〈~x−ξ, η〉 = 0, x2
0+|~x−ξ|2 = |η|2 }.

In particular, if =(ζ) = 0, then γ(ζ) = {ζ} ⊂ Rn.

Remark 3.2. The distinction between n odd and even is reminiscent

of the support of the fundamental solution of the wave equation in even

and odd dimensions.

Off γ(ζ), the function x 7→ Gx(ζ) is clearly two-sided monogenic, so

the Cauchy integral formula gives

(14) f̃(ζ) =

∫
∂Ω

Gx(ζ)n(x)f(x) dµ(x)
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for a bounded open neighbourhood Ω of γ(ζ) with smooth oriented

boundary ∂Ω, outward unit normal n(x) at x ∈ ∂Ω and surface mea-

sure µ. The function f is assumed to be left monogenic in a neigh-

bourhood of Ω, but ζ 7→ f̃(ζ) is an analytic C(n)-valued function as the

closed set γ(ζ) varies inside Ω. Moreover, f̃ equals f on Ω∩Rn by the

usual Cauchy integral formula of Clifford analysis, so if f is, say, the

monogenic extension of a polynomial p : Cn → C restricted to Rn, then

f̃(ζ) = p(ζ), as expected. In this way, for each left monogenic function

f defined in a neighbourhood of γ(ζ), in a natural way we associate an

analytic function f̃ defined in a neighbourhood of ζ.

It is clear that if ζ = ξ+ iη lies in a sector in Cn, say, |η| ≤ |ξ| tan ν,
then the monogenic spectrum γ(ζ) lies in a corresponding sector in

Rn+1. More precisely, we have

Proposition 3.3. Let ζ ∈ Cn \ {0} and 0 < ω < π/2. Then γ(ζ) ⊂
Sω(Rn+1) if and only if

(15) |ζ|2C 6= (−∞, 0] and |=(ζ)| ≤ <(|ζ|C) tanω.

Proof. The statement is trivially valid if ζ ∈ Rn \ {0}, so suppose that

=(ζ) 6= 0. Then the monogenic spectrum γ(ζ) of ζ given by (12) is a

subset of Sω(Rn+1) if and only if there exists 0 < θ ≤ ω such that the

cone

H+
θ = {x0e0 + ~x ∈ Rn+1 : x0 > 0, x0 = |x| tan θ }

is tangential to the boundary of γ(ζ). A calculation shows that H+
θ is

tangential to the boundary of γ(ζ) for all ζ = ξ + iη with ξ, η ∈ Rn,

satisfying

(16) |η|2 = sin2 θ(|ξ|2 + tan2 θ|Pηξ|2).

Here Pη : u 7→ 〈u, η〉η/|η|2, u ∈ Rn, is the projection operator onto

span{η}.
To relate condition (16) to the inequality (15), suppose that m =

m0e0 + ~m is the unit vector normal to Hθ such that ~m lies in the

direction of η. Hence, m0 = cot θ|~m|, tan θ = |~m|/m0 and Pηξ =

〈ξ, ~m〉~m/|~m|2. Then equation (15) becomes

η = sin θ(m2
0|ξ|2 + 〈ξ, ~m〉2)1/2 ~m

|~m|m0

.

But |m0e0 + ~m| = 1, so (cot2 θ + 1)|~m|2 = 1. We have |~m| = sin θ and

(17) η = (m2
0|ξ|2 + 〈ξ, ~m〉2)1/2 ~m

m0

.
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As mentioned in [13, p67], the set of all ζ = ξ+ iη with η 6= 0 satisfying

(17) is equal to the set of all ζ = ξ + iη with η 6= 0 satisfying

|ζ|2C 6= (−∞, 0] and η = <(|ζ|C)
~m

m0

.

Because |~m|/m0 = tan θ ≤ tanω, we obtain the desired equivalence by

letting ~m vary over all directions in Rn. �

For each 0 < ω < π/2, let Sω(Cn) denote the set of all ζ ∈ Cn

satisfying condition (8) and let S◦ω(Cn) be its interior.

Corollary 3.4. Let f : S◦ω(Rn+1) → C(n) be a left monogenic function

such that the restriction f̃ of f to Rn \ {0} takes values in C. Then f̃

is the restriction to Rn \ {0} of an analytic function defined on S◦ω(Cn)

The sectors Sω(Cn) ⊂ Cn and Sω(Rn+1) ⊂ Rn+1 are dual to each

other in the sense that the mapping

(ω, ζ) 7→ Gω(ζ), ω ∈ Rn+1 \ Sω(Rn+1), ζ ∈ S◦ω(Cn)

is two-sided monogenic in ω and analytic in ζ.

The sector Sω(Cn) arose in [10] as the set of ζ ∈ Cn for which the

exponential functions

e+(x, ζ) = ei〈~x,ζ〉e−x0|ζ|Cχ+(ζ), x = x0e0 + ~x,

have decay at infinity for all x ∈ Rn+1 with 〈x,m〉 > 0 and all unit

vectors m = m0e0 + ~m ∈ Rn+1 satisfying m0 ≥ cotω|~m|.

4. Joint spectral theory of sectorial multiplication

operators

By means of the higher-dimensional analogue(4)of the Riesz-Dunford

functional calculus, we can form functions f(A) of a noncommuting

system A of operators uniformly of type ω for left monogenic functions

f defined on a sector Sν(Rn+1), ω < ν < π/2, provided that f has

decay at zero and infinity.

The observations of the preceding section mean that we can do some-

thing similar for the commutative system of multiplication operators

in the sector Sω(Cn), although these are not uniformly of type ω. The

problem mentioned in the Introduction of connecting monogenic func-

tions defined on a sector in Rn+1 with analytic functions defined on

a sector in Cn can be reformulated simply in terms of studying the

monogenic functional calculus for multiplication operators.

More precisely, let 0 < ω < π/2 and set X = L2(Sω(Cn),C(n)).

Integration is with respect to Lebesgue measure on Cn ≡ R2n. Let
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Mj be the operator of multiplication by the j’th coordinate function

defined on Sω(Cn), that is, the domain D(Mj) of Mj is the set of all

functions ψ ∈ X such that the function Mjψ defined by

(18) (Mjψ)(ζ) = ζjψ(ζ), ζ ∈ Sω(Cn),

belongs to X, and the unbounded operator Mj is given by formula (18)

for each ψ ∈ D(Mj). Set M = (M1, . . . ,Mn). Then M is a commuting

n-tuple of normal operators. Unlike the n-tuple DΣ of operators men-

tioned in the Introduction, the existence of a joint functional calculus

for M is not an issue.

Indeed, the joint spectral measure P : B(Sω(Cn)) → L(X) given by

P (B)ψ = χB.ψ, ψ ∈ X, B ∈ B(Sω(Cn)),

has support Sω(Cn). For any bounded Borel measurable function f :

Sω(Cn) → C, the bounded linear operator

f(M) =

∫
Sω(Cn)

f dP

is given by the functional calculus for commuting normal operators,

and explicitly, by

f(M) : ψ 7→ f.ψ, ψ ∈ X.

Thus we have a functional calculus for M for a class of functions far

richer than uniformly bounded analytic functions f defined in a sector

S◦ν(Cn) with ω < ν < π/2.

Nevertheless, it is not so obvious that bounded linear operators f(M)

can also be formed naturally for functions f that are monogenic in a

sector S◦ν(Rn+1) with ω < ν < π/2.

The Cauchy kernel Gx(M) is defined for all x ∈ Nν and all ν such

that ω < ν < π/2 simply by setting

(19) (Gx(M)ψ)(ζ) = ψ(ζ)Gx(ζ), ζ ∈ Sω(Cn),

for all ψ ∈ X and x ∈ Nν , so that Gx(M) is a left module homomor-

phism of X. The proof of the next lemma is straightforward and is

omitted.

Lemma 4.1. Let ω < ν < π/2. Then Gx(M) is a bounded linear opera-

tor on X for all x ∈ Nν\{0}. Furthermore, the operator valued function

x 7→ Gx(M), x ∈ Nν \ {0}, is continuous for the strong operator topol-

ogy, right monogenic in the interior of Nν and ‖Gx(M)‖ = O(|x|−n)

as |x| → ∞ and |x| → 0 in Nν
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Let ω < ν < π/2. Suppose that f is a left monogenic function

defined on S◦ν(Rn+1) such that for every 0 < θ < ν, the bound (7)

holds.

Now if ω < θ < ν a nd Hθ is the two-sheeted cone (8) in Rn+1, then

the bounded linear operator f(M) : X → X is defined by the formula

(20) f(M) =

∫
Hθ

Gx(M)n(x)f(x) dµ(x)

by the same argument by which (9) is defined. Then f(M) is a left

module homomorphism of X. The operator f(M) is identified in the

next statement.

Proposition 4.2. Suppose that f is a left monogenic function defined

on S◦ν(Rn+1) satisfying the bound (7) for every 0 < θ < ν and f(M)

is defined by formula (20). Let f̃ be the C(n)-valued analytic function

defined from f by formula (14). Then f̃ is uniformly bounded on the

sector Sω(Cn),

(21) (f(M)ψ)(ζ) = ψ(ζ)f̃(ζ), ζ ∈ Sω(Cn),

for all ψ ∈ X and ‖f(M)‖ = ‖f̃‖H∞(Sω(Cn)).

The problem remains of obtaining better bounds for the operator

norm of f(M) in terms of bounds of the left monogenic function de-

fined on S◦ν(Rn+1) and feeding these bounds back into formula (9) for

a system A uniformly of type ω.
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