DIVERGENT SUMS OF SPHERICAL HARMONICS

CHRISTOPHER MEANEY

Abstract. We combine the Cantor-Lebesgue Theorem and Uniform Boundedness Principle to prove a divergence result for Cesàro and Bochner-Riesz means of spherical harmonic expansions.

1. Background

Fix an integer \(d > 1 \) and consider the unit sphere \(S^d \) in \(\mathbb{R}^{d+1} \), equipped with normalized rotation-invariant measure. For each \(n \geq 0 \) let \(\mathcal{H}_n \) denote the space of spherical harmonics of degree \(n \) restricted to \(S^d \), so that \(L^2(S^d) = \oplus_{n=0}^{\infty} \mathcal{H}_n \). See [22, Section 4.2] for details. Every distribution \(\psi \) on \(S^d \) has a spherical harmonic expansion

\[
\sum_{n=0}^{\infty} Y_n(\psi)(x), \quad \forall x \in S^d, \text{ where } Y_n(\psi) \in \mathcal{H}_n, \quad \forall n \geq 0.
\]

This is the expansion of \(\psi \) in eigenfunctions of the Laplace-Beltrami operator on \(S^d \). It is known [14] that if \(1 \leq p < 2 \) then there is an \(\psi \in L^p(S^d) \) for which (1) diverges almost everywhere. That leaves open the general behaviour of spherical harmonic expansions for elements of \(L^2(S^d) \). A partial step in this direction follows from the localization principle [18].

Theorem 1.1 (Localization). Suppose \(\psi \) is a distribution on \(S^d \) and \(U \subset S^d \) is an open set disjoint from the support of \(\psi \). For each \(x \in U \), the expansion \(\sum_{n=0}^{\infty} Y_n(\psi)(x) \) converges if and only if \(Y_n(\psi)(x) \to 0 \) as \(n \to \infty \).

Corollary 1.2. If \(\psi \in L^2(S^d) \) and \(U \subset S^d \) is an open set on which \(\psi \) is zero almost everywhere, then the expansion \(\sum_{n=0}^{\infty} Y_n(\psi)(x) \) converges to zero almost everywhere on \(U \).

There are special cases where a function \(\psi \in L^2(S^d) \) can be guaranteed to have an almost everywhere convergent spherical harmonic expansion, if \(\psi \) is in an \(L^2 \)- Sobolev space \(W^{2,s} \) of positive index \(s \) [16] or if it is zonal [1]. (Recall that a function \(f \) on \(S^d \) is said to be zonal about a point \(y \in S^d \) when \(f(x) \) depends only on \(x \cdot y \) for all \(x \in S^d \).)

Date: 16 January 2002.

1991 Mathematics Subject Classification. 42C05,33C45,42C10.

Key words and phrases. Jacobi polynomial, zonal function, Cesàro mean, Riesz mean, Cantor-Lebesgue theorem, uniform boundedness.
Carleson’s theorem [3] has been extended to zonal functions [11]. Let p_c be the critical index

$$p_c = \frac{2d}{d+1}.$$

Theorem 1.3. If $p_c < p \leq 2$ and $f \in L^p(S^d)$ is zonal about a point $y \in S^d$, then its spherical harmonic expansion is convergent almost everywhere.

Corollary 1.4. Suppose $\psi \in L^2(S^d)$, $U \subset S^d$ is an open set, $f_1 \in \bigcup_{s>0} W^{2,s}(S^d)$, $f_2 \in L^2(S^d)$ is a finite sum of zonal functions, and $\psi = f_1 + f_2$ almost everywhere on U. Then $\sum_{n=0}^{\infty} Y_n(\psi)(x)$ converges almost everywhere on U.

The two corollaries 1.2 and 1.4 would be rendered trivial if there were a higher dimensional version of Carleson’s theorem. They do suggest that when considering convergence of expansions, we should examine the term-wise behaviour away from the support of a distribution.

In the early 1980’s we showed [17] that Theorem 1.3 is sharp and that localization fails at the critical index.

Theorem 1.5. For each $y \in S^d$ and $1 \leq p \leq p_c$ there is a $\psi \in L^p(S^d)$, supported in the hemisphere $\{x : x \cdot y \geq 0\}$ whose spherical harmonic expansion diverges almost everywhere.

This was proved by a combination of the Cantor-Lebesgue theorem, knowledge of the L^p-norms of the zonal spherical functions, and the uniform boundedness principle. Kanjin [13] showed that these methods could be combined with a result of Hardy and Riesz [12] to deal with Riesz means for radial functions on Euclidean space. This approach was also used in [20] for Riesz means of radial functions on non-compact rank one symmetric spaces.

Here we prove a similar result for Cesàro and Riesz means of spherical harmonic expansions of zonal functions. This shows the sharpness of the results in [4]. See [2, 7] for earlier work on Cesàro means of spherical harmonic expansions. See [21, 5] for results in a more general setting.

2. **Cesàro & Riesz means**

2.1. **Cesàro means.** The Cesàro means [24, pages 76–77] of order δ of the expansion (1) are defined by

$$\sigma_N^\delta \psi(x) = \sum_{n=0}^{N} \frac{A_{N-n}^\delta}{A_N^\delta} Y_n(\psi)(x), \quad \forall N \geq 0, x \in S^d,$$

where $A_n^\delta = \binom{n + \delta}{n}$. Theorem 3.1.22 in [24] says that if the Cesàro means converge, then the terms of the series have controlled growth.
Lemma 2.1. Suppose that \(\lim_{N \to \infty} \sigma_N^\delta \psi(x) \) exists for some \(x \in X \) and \(\delta > -1 \). Then

\[
|Y_N(\psi)(x)| \leq C_\delta N^\delta \max_{0 \leq n \leq N} |\sigma_n^\delta \psi(x)|, \quad \forall n \geq 0.
\]

2.2. Riesz means. Hardy and Riesz [12] had proved a similar result for Riesz means. Recall that the Riesz means of order \(\delta \geq 0 \) are defined for each \(r > 0 \) by

\[
S_r^\delta \psi(x) = \sum_{0 \leq n < r} \left(1 - \frac{k}{r}\right)^\delta Y_n(\psi)(x).
\]

Theorem 21 of [12] tells us how the convergence of \(S_r^\delta \psi(x) \) controls the size of the partial sums \(S_0^\delta \psi(x) \).

Lemma 2.2. Suppose that \(\psi \) is a distribution on the sphere for which there is some \(\delta > 0 \) and \(x \in X \) at which its Riesz means \(S_r^\delta \psi(x) \) converges to \(c \) as \(r \to \infty \) then

\[
|S_0^\delta \psi(x) - c| \leq A_\delta r^\delta \sup_{0 \leq t \leq r+1} |S_t^\delta \psi(x)|.
\]

Note that this implies

\[
Y_n(\psi)(x) = O(n^\delta)
\]

and we have the same growth estimates as in Lemma 2.1.

Gergen[9] wrote formulae relating the Riesz and Cesàro means of order \(\delta \geq 0 \), from which it follows that the two methods of summation are equivalent.

3. Zonal Functions and Jacobi Polynomials

3.1. Notation. Suppose that \(f \) is a function on \(S^d \) with \(f(x) \) depending only on \(x \cdot y \), for a fixed \(y \in S^d \), so that \(f(x) = f_0(x \cdot y) \). The spherical harmonic expansion of \(f \) is

\[
\sum_{n=0}^{\infty} c_n(f_0) h_n^{-1} P_n^{(\alpha,\alpha)}(x \cdot y)
\]

where \(\alpha = (d - 2)/2 \), \(P_n^{(\alpha,\alpha)} \) is the Jacobi polynomial of degree \(n \) and index \((\alpha, \alpha) \),

\[
h_n = \int_{-1}^{1} |P_n^{(\alpha,\alpha)}(t)|^2 (1 - t^2)^\alpha \, dt,
\]

and the coefficients are

\[
c_n(f_0) = \int_{-1}^{1} f_0(t) P_n^{(\alpha,\alpha)}(t) (1 - t^2)^\alpha \, dt, \quad \forall n \geq 0.
\]

See section 4.7 of Szegö’s book [23] for details about these special functions. Let \(m_\alpha \) be the measure on \([-1, 1]\) given by

\[
dm_\alpha(t) = (1 - t^2)^\alpha \, dt,
\]
so that \(\{ P_n^{(\alpha,\alpha)} : n \geq 0 \} \) is an orthogonal basis of \(L^2(m_\alpha) \). From (4.3.3) in [23] we know that the normalization constants \(h_n \) satisfy
\[
(5) \quad h_n \sim A n^{-1} \text{ as } n \to \infty
\]

3.4. Asymptotics.
This shows that \(|G| \leq n^{1/2} \) for an interval in the real line with the asymptotic property
\[
\int_{E} |F_n(\theta)|^2 d\theta = |c_n|^2 \left(\int_{E} |\nabla |^2 \right) = |c_n|^2 \left(\frac{|E|}{2} + \frac{e^{2n\gamma_n}}{4} \chi_E(2M_n) + \frac{e^{-2n\gamma_n}}{4} \chi_E(-2M_n) + o(1) \right).
\]
The Riemann-Lebesgue Theorem [24, Thm. II.4.4] says that the Fourier transforms \(\hat{G}(\pm 2M_n) \to 0 \) as \(M_n \to \infty \). If we know that there is some function \(G \) for which \(|F_n(\theta)| \leq G(n) \) uniformly on \(E \) for all \(n \) then there is an \(n_0 > 0 \) for which
\[
\int_E |F_n(\theta)|^2 d\theta \leq G(n)^2 |E|, \quad \forall n \geq n_0.
\]
This shows that \(|c_n| \leq 2G(n) \) for all \(n \geq n_0 \).

3.5. Uniform Boundedness.
Suppose there is a number \(1 < q \leq \infty \) and some positive number \(A \) with
\[
\| P_n^{(\alpha,\alpha)} \|_{L^q(m_\alpha)} \geq c n^A, \quad \forall n \geq 1.
\]

The formation of the coefficient
\[
F \mapsto c_n(F) = \int_{-1}^{1} F(t) P_n^{(\alpha,\alpha)}(t) dm_\alpha(t)
\]
is then a bounded linear functional on the dual of \(L^q(m_\alpha) \) with norm bounded below by a constant multiple of \(n^A \). The uniform boundedness principle implies that for \(p \) conjugate to \(q \) and each \(0 < \varepsilon < A \) there is an \(F \in L^p(m_\alpha) \) so that
\[
(6) \quad c_n(F)/n^\varepsilon \to \infty \text{ as } n \to \infty.
\]

3.3. Cantor-Lebesgue Theorem.
This idea is explained in [19] and is based on [24, Section IX.1]. Suppose we have a sequence of functions \(F_n \) on an interval in the real line with the asymptotic property
\[
F_n(\theta) = c_n (\cos(M_n \theta + \gamma_n) + o(1)), \quad \forall n \geq 0
\]
uniformly on a set \(E \) of finite positive measure, and with \(M_n \to \infty \) as \(n \to \infty \). Integrating \(|F_n|^2 \) over \(E \) gives
\[
\int_E |F_n(\theta)|^2 d\theta = |c_n|^2 \left(\int_E \cos^2(M_n \theta + \gamma_n) d\theta + o(1) \right)
\]
\[
= |c_n|^2 \left(\frac{|E|}{2} + \frac{e^{2n\gamma_n}}{4} \chi_E(2M_n) + \frac{e^{-2n\gamma_n}}{4} \chi_E(-2M_n) + o(1) \right).
\]

The Riemann-Lebesgue Theorem [24, Thm. II.4.4] says that the Fourier transforms \(\hat{G}(\pm 2M_n) \to 0 \) as \(M_n \to \infty \). If we know that there is some function \(G \) for which \(|F_n(\theta)| \leq G(n) \) uniformly on \(E \) for all \(n \) then there is an \(n_0 > 0 \) for which
\[
\int_E |F_n(\theta)|^2 d\theta \leq G(n)^2 |E|, \quad \forall n \geq n_0.
\]

This shows that \(|c_n| \leq 2G(n) \) for all \(n \geq n_0 \).

3.4. Asymptotics.
Theorem 8.21.8 in Szegö’s book[23] gives the following asymptotic behaviour for the Jacobi polynomials \(P_n^{(\alpha,\alpha)} \). For \(\alpha \geq -1/2 \) and \(\varepsilon > 0 \) the following estimate holds uniformly for all \(\varepsilon \leq \theta \leq \pi - \varepsilon \) and \(n \geq 1 \).
\[
(7) \quad P_n^{(\alpha,\alpha)}(\cos \theta) = n^{-1/2} k(\theta) \cos (M_n \theta + \gamma) + O \left(n^{-3/2} \right).
\]
Here \(k(\theta) = \pi^{-1/2} (\sin \theta/2)^{-\alpha-1/2} \), \(M_n = n + (2\alpha + 1)/2 \), and \(\gamma = -(\alpha + 1/2)\pi/2 \).
From Egoroff’s theorem and Lemma 2.1 we can say that if the series (4) is Cesàro summable of order \(\delta \) on a set of positive measure in \(S^d \) then there is a set of positive measure \(E \subset [0, \pi] \) on which
\[
\left| c_n(f_0) h_n^{-1} P_n^{(\alpha,\alpha)}(\cos \theta) \right| \leq A n^\delta
\]
and hence
\[
\left| c_n(f_0)n^{(1/2) - \delta}(\cos (M_n \theta + \gamma) + O(n^{-1})) \right| \leq A
\]
uniformly for \(\theta \in E \). The argument of subsection 3.3 shows that
\[
\left| c_n(f_0)n^{(1/2) - \delta} \right| \leq A, \quad \forall n \geq 1.
\]

Lemma 3.1. If \(f \) is a zonal function on the unit sphere whose spherical harmonic expansion is Cesàro summable of order \(\delta \) on a set of positive measure, then there is a constant \(A > 0 \) for which
\[
\left| c_n(f_0) \right| \leq A n^{\delta - (1/2)}, \quad \forall n \geq 1.
\]

\[
q_c = \frac{4(\alpha + 1)}{2\alpha + 1} = \frac{2d}{d - 1}.
\]
Equation (2.2) in [15] gives the following lower bounds on these norms.

Lemma 3.2. For real number \(\alpha > -1/2, 1 \leq q < \infty, \) and \(r > -1/q, \)
\[
\left(\int_0^1 \left| P_n^{(\alpha,\alpha)}(x) \right|^q (1 - x)^\alpha dx \right)^{1/q} \sim \begin{cases} n^{-1/2} & \text{if } q < q_c, \\ n^{-1/2} (\log n)^{1/q} & \text{if } q = q_c, \\ n^{\alpha - (2\alpha + 2)/q} & \text{if } q > q_c. \end{cases}
\]
Notice that these integrals are taken over \([0, 1]\) rather than all of \([-1, 1]\).

4. Main Result

Theorem 4.1. For each \(1 \leq p < p_c = 2d/(d + 1), \)
\[
0 \leq \delta < \frac{d}{p} - \frac{d + 1}{2},
\]
and \(y \in S^d \), there is a function in \(L^p(S^d) \) which is zonal about \(y \), supported in the hemisphere \(\{ x : x \cdot y \geq 0 \} \), and whose spherical harmonic expansion has Cesàro and Riesz means which diverge almost everywhere.

Proof. Suppose that a series (4) has Cesàro means of order \(\delta \) which converge on a set of positive measure. Then Lemma 3.1 implies that
\[
c_n(f_0) = O \left(n^{\delta - (1/2)} \right), \quad \text{as } n \to \infty.
\]
Compare this inequality with the last line of Lemma 3.2 and section 3.2. If \(q > q_c \), \((1/p) + (1/q) = 1\) and
\[
\alpha - \frac{(2\alpha + 2)}{q} > \delta - \frac{1}{2}
\]
then there must be a zonal function \(f \in L^p(S^d) \) with \(f_0 \) supported on \([0, 1]\) for which the estimate (10) fails. Remembering the definition of \(\alpha \) in terms of the dimension \(d \), we are considering
\[
\delta - \frac{1}{2} < \frac{d - 1}{2} - d \left(1 - \frac{1}{p}\right)
\]
which means
\[
\delta < \frac{d}{p} - \frac{(d + 1)}{2}.
\]

Remark 4.1. In [19] we applied this technique to produce an analogous theorem for Laguerre expansions.

5. Central Function on SU(2)

We conclude with a simple three dimensional example. Suppose that \(G = SU(2) \) is equipped with the normalized translation invariant measure \(\mu \) and that \(T \) is the maximal torus of diagonal elements of \(G \). For each \(\ell \in \hat{G} = \{k/2 : k \in \mathbb{Z}, k \geq 0\} \) there is an irreducible unitary representation of \(G \) with dimension \(2\ell + 1 \) and character
\[
\chi_\ell \left(\begin{pmatrix} e^{i\theta} & 0 \\ 0 & e^{-i\theta} \end{pmatrix} \right) = \frac{\sin \left((2\ell + 1)\theta \right)}{\sin (\theta)}.
\]
Every central function on \(G \) is determined by its restriction to \(T \). The Fourier series of central functions are expansions in the characters. If \(f \in L^1(G, \mu) \) is central then
\[
f \sim \sum_{\ell=0}^{\infty} c_\ell \chi_\ell
\]
with
\[
c_\ell = \int_G f(x) \overline{\chi_\ell(x)} \, d\mu(x), \quad \forall \ell \in \hat{G}.
\]
In [8] and [10], Dooley, Giulini, Soardi, and Travaglini estimated the Lebesgue norms of characters of compact Lie groups. The group \(SU(2) \) provides the simplest case of these estimates. For each \(q > 3 \)
\[
\|\chi_\ell\|_q \geq c (2\ell + 1)^{1-3/q}, \quad \forall \ell \in \hat{G}.
\]
If \(1/p + 1/q = 1 \) then
\[
1 - \frac{3}{q} = 1 - 3 \left(1 - \frac{1}{p}\right) = \frac{3}{p} - 2.
\]
Uniform boundedness then says that if $1 \leq p < 3/2$ and $a < (3/p) - 2$ then there is a central function $f \in L^p(G)$ for which the coefficients in (11) have

$$c_\ell/(2\ell + 1)^a \text{ unbounded as } \ell \to \infty.$$

Suppose that (11) is Cesàro summable of order δ on a set of positive measure. Then Lemma 2.1 says that

$$c_\ell \sin ((2\ell + 1)\theta) = O(\ell^\delta) \text{ as } \ell \to \infty,$$

on a set of positive measure. The Cantor-Lebesgue Theorem then says that

$$c_\ell = O(\ell^\delta) \text{ as } \ell \to \infty.$$

Theorem 5.1. For $1 \leq p < 3/2$ and $0 \leq \delta < (3/p) - 2$ there is a central function $f \in L^p(SU(2))$ for which the Cesàro and Riesz means of order δ are divergent almost everywhere.

This shows the sharpness of results in Clerc’s paper [6].

References

DEPT. MATHEMATICS, MACQUARIE UNIVERSITY, NORTH RYDE, NSW 2109 AUSTRALIA

E-mail address: chrism@maths.mq.edu.au