
Resonant rigidity for Schrödinger operators
(in even dimensions)

Tanya Christiansen

University of Missouri

March 20, 2018



Defining resonances:

Consider the Schroödinger operator −∆ + V on Rd , where
V ∈ L∞c (Rd ;R).

For Imλ > 0, let RV (λ) = (−∆ + V − λ2)−1. This is bounded on
L2(Rd ) for Imλ > 0, with the possible exception of a finite
number of points corresponding to eigenvalues.
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If d = 3 and V ≡ 0

(R0(λ)f )(x) =

∫
eiλ|x−y |

4π|x − y |
f (y)dy

a holomorphic function of λ ∈ C if f ∈ L2
c(Rd ).

This explicit representation shows us that for any function
χ ∈ L∞c (R3),

χR0(λ)χ : L2(R3)→ L2(R3)

has a holomorphic extension to the entire complex plane.

Similar (but more complicated looking) things happen in any
dimension; the space to which the Schwartz kernel continues is
dimension-dependent.
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Allowing for potentials and different dimensions:
If χ ∈ C∞c (Rd ), χRV (λ)χ has a meromorphic continuation.

I If the dimension d is odd: The continuation is to C
I If the dimension d is even: The continuation is to Λ, the

logarithmic cover of C \ {0}.

If χ is chosen so that χV = V , the locations of the poles of
χRV (λ)χ are independent of χ.

The poles of χRV (λ)χ are called resonances.
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An example on R.
Thanks to M. Zworski for the figures.
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http://www.cims.nyu.edu/∼dbindel/resonant1d/



Questions:

I Distribution? In particular, anything like Weyl law?

I Rigidity? What do resonances say about the potential?
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I Set

Res(V ) = {λj : λj is a pole of RV (λ), repeated with multiplicity}.

(0 is special)

I d odd: nodd ,V (r) = {λj ∈ Res(V ) : |λj | ≤ r}
I d even, m ∈ Z:

nm,V (r) = {λj ∈ Res(V ) : |λj | ≤ r , mπ < argλj < (m+1)π}
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I If d = 1, as r →∞,

#{λj ∈ Res(V ) : |λj | ≤ r} =
1
π

(length convex hull V )r+o(r)

(Zworski, Froese, Simon)

I If d ≥ 3, odd,

nV ,odd (R) ≤ Crd , as r →∞.

Zworski; refinements Stefanov, Dinh-Vu
I If d even,

nm,V (r) ≤ Crd , as r →∞.

Vodev
I optimal, in a sense
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Lower bounds?
I For d odd: V ∈ C∞c (Rd ;R), V 6≡ 0,

lim sup
r→∞

nodd ,V (r)

r
> 0

(Sá Barreto; earlier results Melrose, Sá Barreto-Zworski,
Bañuelos-Sá Barreto, C-)

I For d even: V ∈ C∞c (Rd ;R), V 6≡ 0, Res(V ) contains
infinitely many elements (Sá Barreto d ≥ 4, L-H Chen
d = 2); qualitative lower bound

I Better lower bounds for specific classes examples; fixed
sign, generically



Lower bounds?
I For d odd: V ∈ C∞c (Rd ;R), V 6≡ 0,

lim sup
r→∞

nodd ,V (r)

r
> 0

(Sá Barreto; earlier results Melrose, Sá Barreto-Zworski,
Bañuelos-Sá Barreto, C-)

I For d even: V ∈ C∞c (Rd ;R), V 6≡ 0, Res(V ) contains
infinitely many elements (Sá Barreto d ≥ 4, L-H Chen
d = 2); qualitative lower bound

I Better lower bounds for specific classes examples; fixed
sign, generically



Lower bounds?
I For d odd: V ∈ C∞c (Rd ;R), V 6≡ 0,

lim sup
r→∞

nodd ,V (r)

r
> 0

(Sá Barreto; earlier results Melrose, Sá Barreto-Zworski,
Bañuelos-Sá Barreto, C-)

I For d even: V ∈ C∞c (Rd ;R), V 6≡ 0, Res(V ) contains
infinitely many elements (Sá Barreto d ≥ 4, L-H Chen
d = 2); qualitative lower bound

I Better lower bounds for specific classes examples; fixed
sign, generically



Theorem
(d odd due to Smith-Zworski, d even C-) Let V ∈ L∞c (Rd ;R),
V 6≡ 0. Then

I If d = 3, Res(V ) has infinitely many elements.

I If d ≥ 5 is odd, Res(V ) is nonempty.
I If d is even, and d 6= 4, Res(V ) contains infinitely many

elements, with a quantitative lower bound. If d = 4 and 0 is
not a resonance, the same is true.
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Resonant rigidity:
I If Res(V1) = Res(V2), V1,V2 ∈ L∞c (Rd ;R), and k ∈ N,

then
V1 ∈ Hk (Rd )⇔ V2 ∈ Hk (Rd )

(d odd Smith-Zworski, d even C-)

I If d is even, V ∈ C∞c (Rd ;R), then Res(V ) determines all
the heat coefficients of V . (C-) (d odd: miss up to two?)
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Resonant rigidity:
Given V0 ∈ L∞c (Rd ;R) with support in B(R), set

Iso(V0,R) = {V ∈ L∞c (Rd ;R) : Res(V ) = Res(V0),

supp V ⊂ B(R)}

Theorem
(d = 1, 3: Hislop-Wolf; d even: C-) Let V0 ∈ C∞c (Rd ;R) have
support in B(R). Then Iso(V0,R) is compact in the C∞

topology if d ≤ 3. If d ≥ 4 is even, then a weaker statement
holds.
Comments: stronger results d = 1: Zworski, Korotyaev
cf. results of Brüning, Donnelly: Schrödinger operators on
compact manifolds
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Resonant rigidity:

Theorem
(C-) If d is even, and V1,V2 ∈ L∞c (Rd ;R), then Res(V1) and
Res(V2) cannot differ by a nonzero number of nonzero
elements
Contrast: d = 1, Korotyaev: within class of potentials L1

c(R;R),
can “move” resonances (with restrictions)



Important ingredients:
(1) Birman-Krein trace formula: for t > 0

tr(et(∆−V ) − et∆) =
1

2πi

∫ ∞
0

e−tλ2
d

dλ det S(λ)

det S(λ)
dλ

+
K∑

k=1

etµ2
k + β(V ,d)

Here S is the scattering matrix and −µ2
1 ≤ ... ≤ −µ2

K ≤ 0 are
the eigenvalues of −∆ + V .



Important ingredients:
(2)

Theorem
(weaker version; C-) Let V1, V2 ∈ L∞c (Rd ;R), with scattering
matrices S1, S2. If d = 4, assume either that 0 is not a
resonance or V1,V2 ∈ C∞c . Set

F (z) =
det S1(ez)

det S2(ez)
.

Suppose F has finitely many poles.

Then F (z) ≡ 1; that is,
det S1(λ) = det S2(λ) for all λ.
Earlier version: V2 ≡ 0,V1 ∈ C∞c : Sá Barreto (d ≥ 4), L-H Chen
(d = 2)
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Important ingredients:
(3)

Theorem
(Smith-Zworski) For V ∈ L∞(Rd ;R), k ∈ N, if V ∈ Hk , then
there are constants c1, ...., ck+1, a function rk+2 so that

tr(e−t(−∆+V ) − et∆) =

(4πt)−d/2(c1t + c2t2 + ...+ ck+1tk+1 + rk+2(t)tk+2) when t ↓ 0

with |rk+2(t)| ≤ C for 0 ≤ t ≤ 1. Conversely, if such an
expansion holds, V ∈ Hk .


