# Resonant rigidity for Schrödinger operators (in even dimensions)

Tanya Christiansen

University of Missouri

March 20, 2018

# Defining resonances:

Consider the Schroödinger operator  $-\Delta + V$  on  $\mathbb{R}^d$ , where  $V \in L_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ .

# Defining resonances:

Consider the Schroödinger operator  $-\Delta + V$  on  $\mathbb{R}^d$ , where  $V \in L_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ .

For Im 
$$\lambda > 0$$
, let  $R_V(\lambda) = (-\Delta + V - \lambda^2)^{-1}$ .

# Defining resonances:

Consider the Schrödinger operator  $-\Delta + V$  on  $\mathbb{R}^d$ , where  $V \in L_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ .

For  $\operatorname{Im} \lambda > 0$ , let  $R_V(\lambda) = (-\Delta + V - \lambda^2)^{-1}$ . This is bounded on  $L^2(\mathbb{R}^d)$  for  $\operatorname{Im} \lambda > 0$ , with the possible exception of a finite number of points corresponding to eigenvalues.

If d = 3 and  $V \equiv 0$ 

$$(R_0(\lambda)f)(x) = \int \frac{e^{i\lambda|x-y|}}{4\pi|x-y|} f(y) dy$$

If d = 3 and  $V \equiv 0$ 

$$(R_0(\lambda)f)(x) = \int \frac{e^{i\lambda|x-y|}}{4\pi|x-y|} f(y) dy$$

a holomorphic function of  $\lambda \in \mathbb{C}$  if  $f \in L^2_c(\mathbb{R}^d)$ .

If d = 3 and  $V \equiv 0$ 

$$(R_0(\lambda)f)(x) = \int \frac{e^{i\lambda|x-y|}}{4\pi|x-y|} f(y) dy$$

a holomorphic function of  $\lambda \in \mathbb{C}$  if  $f \in L^2_c(\mathbb{R}^d)$ . This explicit representation shows us that for any function  $\chi \in L^\infty_c(\mathbb{R}^3)$ ,

$$\chi R_0(\lambda)\chi: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$$

has a holomorphic extension to the entire complex plane.

If d=3 and  $V\equiv 0$ 

$$(R_0(\lambda)f)(x) = \int \frac{e^{i\lambda|x-y|}}{4\pi|x-y|} f(y) dy$$

a holomorphic function of  $\lambda \in \mathbb{C}$  if  $f \in L^2_c(\mathbb{R}^d)$ . This explicit representation shows us that for any function  $\chi \in L^\infty_c(\mathbb{R}^3)$ ,

$$\chi R_0(\lambda)\chi: L^2(\mathbb{R}^3) \to L^2(\mathbb{R}^3)$$

has a holomorphic extension to the entire complex plane.

Similar (but more complicated looking) things happen in any dimension; the space to which the Schwartz kernel continues is dimension-dependent.

▶ If the dimension d is odd: The continuation is to  $\mathbb{C}$ 

- ▶ If the dimension d is odd: The continuation is to  $\mathbb{C}$
- ▶ If the dimension d is even: The continuation is to Λ, the logarithmic cover of  $\mathbb{C} \setminus \{0\}$ .

- ▶ If the dimension d is odd: The continuation is to  $\mathbb{C}$
- ▶ If the dimension d is even: The continuation is to Λ, the logarithmic cover of  $\mathbb{C} \setminus \{0\}$ .

If  $\chi$  is chosen so that  $\chi V = V$ , the locations of the poles of  $\chi R_V(\lambda)\chi$  are independent of  $\chi$ .

- ▶ If the dimension d is odd: The continuation is to  $\mathbb{C}$
- ▶ If the dimension d is even: The continuation is to Λ, the logarithmic cover of  $\mathbb{C} \setminus \{0\}$ .

If  $\chi$  is chosen so that  $\chi V = V$ , the locations of the poles of  $\chi R_V(\lambda)\chi$  are independent of  $\chi$ .

The poles of  $\chi R_V(\lambda)\chi$  are called *resonances*.

# An example on $\mathbb{R}$ .

Thanks to M. Zworski for the figures.



Computed using squarepot.m

http://www.cims.nyu.edu/~dbindel/resonant1d/

## Questions:

▶ Distribution? In particular, anything like Weyl law?

#### Questions:

- Distribution? In particular, anything like Weyl law?
- Rigidity? What do resonances say about the potential?

# Set

 $\mathcal{R}es(V) = \{\lambda_j : \lambda_j \text{ is a pole of } R_V(\lambda), \text{ repeated with multiplicity} \}.$ (0 is special)

Set

 $\mathcal{R}es(V) = \{\lambda_j : \lambda_j \text{ is a pole of } R_V(\lambda), \text{ repeated with multiplicity} \}.$ (0 is special)

▶ d odd:  $n_{odd,V}(r) = \{\lambda_j \in \mathcal{R}es(V) : |\lambda_j| \le r\}$ 

Set

 $\mathcal{R}es(V) = \{\lambda_j : \lambda_j \text{ is a pole of } R_V(\lambda), \text{ repeated with multiplicity} \}.$ (0 is special)

- ▶ d odd:  $n_{odd,V}(r) = \{\lambda_i \in \mathcal{R}es(V) : |\lambda_i| \leq r\}$
- ▶ d even,  $m \in \mathbb{Z}$ :

$$n_{m,V}(r) = \{\lambda_j \in \mathcal{R}es(V) : |\lambda_j| \le r, \ m\pi < \arg \lambda_j < (m+1)\pi\}$$

▶ If d = 1, as  $r \to \infty$ ,

$$\#\{\lambda_j\in\mathcal{R}\textit{es}(\textit{V}):|\lambda_j|\leq r\}=rac{1}{\pi}(\text{length convex hull }\textit{V})r+o(r)$$
 (Zworski, Froese, Simon)

▶ If d = 1, as  $r \to \infty$ ,

$$\#\{\lambda_j \in \mathcal{R}es(V) : |\lambda_j| \le r\} = \frac{1}{\pi}(\text{length convex hull } V)r + o(r)$$

(Zworski, Froese, Simon)

If d ≥ 3, odd,

$$n_{V,odd}(R) \leq Cr^d$$
, as  $r \to \infty$ .

Zworski; refinements Stefanov, Dinh-Vu

▶ If d = 1, as  $r \to \infty$ ,

$$\#\{\lambda_j \in \mathcal{R}es(V) : |\lambda_j| \le r\} = \frac{1}{\pi}(\text{length convex hull } V)r + o(r)$$

(Zworski, Froese, Simon)

If d ≥ 3, odd,

$$n_{V,odd}(R) \leq Cr^d$$
, as  $r \to \infty$ .

Zworski; refinements Stefanov, Dinh-Vu

▶ If d even,

$$n_{m,V}(r) \leq Cr^d$$
, as  $r \to \infty$ .

Vodev

optimal, in a sense

#### Lower bounds?

▶ For *d* odd:  $V \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ ,  $V \not\equiv 0$ ,

$$\lim\sup_{r\to\infty}\frac{n_{odd,V}(r)}{r}>0$$

(Sá Barreto; earlier results Melrose, Sá Barreto-Zworski, Bañuelos-Sá Barreto, C-)

#### Lower bounds?

▶ For *d* odd:  $V \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ ,  $V \not\equiv 0$ ,

$$\lim\sup_{r\to\infty}\frac{n_{odd,V}(r)}{r}>0$$

(Sá Barreto; earlier results Melrose, Sá Barreto-Zworski, Bañuelos-Sá Barreto, C-)

▶ For d even:  $V \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ ,  $V \not\equiv 0$ ,  $\mathcal{R}es(V)$  contains infinitely many elements (Sá Barreto  $d \geq 4$ , L-H Chen d = 2); qualitative lower bound

#### Lower bounds?

▶ For *d* odd:  $V \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ ,  $V \not\equiv 0$ ,

$$\lim\sup_{r\to\infty}\frac{n_{odd,V}(r)}{r}>0$$

(Sá Barreto; earlier results Melrose, Sá Barreto-Zworski, Bañuelos-Sá Barreto, C-)

- ▶ For d even:  $V \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ ,  $V \not\equiv 0$ ,  $\mathcal{R}es(V)$  contains infinitely many elements (Sá Barreto  $d \geq 4$ , L-H Chen d = 2); qualitative lower bound
- Better lower bounds for specific classes examples; fixed sign, generically

## **Theorem**

(d odd due to Smith-Zworski, d even C-) Let  $V \in L^\infty_c(\mathbb{R}^d;\mathbb{R})$ ,  $V \not\equiv 0$ . Then

▶ If d = 3,  $\Re(V)$  has infinitely many elements.

# **Theorem**

(d odd due to Smith-Zworski, d even C-) Let  $V \in L_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ ,  $V \not\equiv 0$ . Then

- ▶ If d = 3,  $\Re es(V)$  has infinitely many elements.
- ▶ If  $d \ge 5$  is odd,  $\Re(V)$  is nonempty.

# **Theorem**

(d odd due to Smith-Zworski, d even C-) Let  $V \in L_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ ,  $V \not\equiv 0$ . Then

- ▶ If d = 3,  $\Re es(V)$  has infinitely many elements.
- ▶ If  $d \ge 5$  is odd,  $\Re(V)$  is nonempty.
- ▶ If d is even, and  $d \neq 4$ ,  $\Re(V)$  contains infinitely many elements, with a quantitative lower bound. If d = 4 and 0 is not a resonance, the same is true.

▶ If  $\mathcal{R}es(V_1) = \mathcal{R}es(V_2)$ ,  $V_1$ ,  $V_2 \in L_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ , and  $k \in \mathbb{N}$ , then

$$V_1 \in H^k(\mathbb{R}^d) \Leftrightarrow V_2 \in H^k(\mathbb{R}^d)$$

(d odd Smith-Zworski, d even C-)



▶ If  $\mathcal{R}es(V_1) = \mathcal{R}es(V_2)$ ,  $V_1$ ,  $V_2 \in L_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ , and  $k \in \mathbb{N}$ , then

$$V_1 \in H^k(\mathbb{R}^d) \Leftrightarrow V_2 \in H^k(\mathbb{R}^d)$$

(d odd Smith-Zworski, d even C-)

▶ If *d* is even,  $V \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ , then  $\mathcal{R}es(V)$  determines all the heat coefficients of V. (C-)



▶ If  $\mathcal{R}es(V_1) = \mathcal{R}es(V_2)$ ,  $V_1$ ,  $V_2 \in L_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ , and  $k \in \mathbb{N}$ , then

$$V_1 \in H^k(\mathbb{R}^d) \Leftrightarrow V_2 \in H^k(\mathbb{R}^d)$$

(d odd Smith-Zworski, d even C-)

▶ If *d* is even,  $V \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R})$ , then  $\mathcal{R}es(V)$  determines all the heat coefficients of *V*. (C-) (*d* odd: miss up to two?)



Given  $V_0 \in L^\infty_c(\mathbb{R}^d; \mathbb{R})$  with support in  $\overline{B}(R)$ , set

Given  $V_0 \in L^{\infty}_c(\mathbb{R}^d; \mathbb{R})$  with support in  $\overline{B}(R)$ , set

$$egin{aligned} \mathit{Iso}(V_0,R) = \{\mathit{V} \in \mathit{L}^\infty_c(\mathbb{R}^d;\mathbb{R}): \ \mathit{\mathcal{R}es}(\mathit{V}) = \mathit{\mathcal{R}es}(\mathit{V}_0), \ & \mathsf{supp} \ \mathit{V} \subset \overline{\mathit{B}}(\mathit{R}) \} \end{aligned}$$

## **Theorem**

Given  $V_0 \in L^{\infty}_c(\mathbb{R}^d; \mathbb{R})$  with support in  $\overline{B}(R)$ , set

#### **Theorem**

Comments: stronger results d = 1: Zworski, Korotyaev

Given  $V_0 \in L^{\infty}_c(\mathbb{R}^d; \mathbb{R})$  with support in  $\overline{B}(R)$ , set

$$egin{aligned} \mathit{Iso}(V_0,R) = \{\mathit{V} \in \mathit{L}^\infty_{c}(\mathbb{R}^d;\mathbb{R}): \ \mathit{\mathcal{R}es}(\mathit{V}) = \mathit{\mathcal{R}es}(\mathit{V}_0), \ & \mathsf{supp} \ \mathit{V} \subset \overline{\mathit{B}}(\mathit{R}) \} \end{aligned}$$

## **Theorem**

Comments: stronger results d=1: Zworski, Korotyaev cf. results of Brüning, Donnelly: Schrödinger operators on compact manifolds



## **Theorem**

(C-) If d is even, and  $V_1, V_2 \in L^\infty_c(\mathbb{R}^d; \mathbb{R})$ , then  $\mathcal{R}es(V_1)$  and  $\mathcal{R}es(V_2)$  cannot differ by a nonzero number of nonzero elements

Contrast: d = 1, Korotyaev: within class of potentials  $L_c^1(\mathbb{R}; \mathbb{R})$ , can "move" resonances (with restrictions)

(1) Birman-Krein trace formula: for t > 0

$$\operatorname{tr}(e^{t(\Delta-V)}-e^{t\Delta}) = rac{1}{2\pi i} \int_0^\infty e^{-t\lambda^2} rac{rac{d}{d\lambda} \det S(\lambda)}{\det S(\lambda)} d\lambda + \sum_{k=1}^K e^{t\mu_k^2} + eta(V,d)$$

Here *S* is the scattering matrix and  $-\mu_1^2 \le ... \le -\mu_K^2 \le 0$  are the eigenvalues of  $-\Delta + V$ .

(2)

#### **Theorem**

(weaker version; C-) Let  $V_1, \ V_2 \in L^\infty_c(\mathbb{R}^d; \mathbb{R})$ , with scattering matrices  $S_1, \ S_2$ . If d=4, assume either that 0 is not a resonance or  $V_1, V_2 \in C^\infty_c$ . Set

$$F(z) = \frac{\det S_1(e^z)}{\det S_2(e^z)}.$$

Suppose F has finitely many poles.

(2)

## **Theorem**

(weaker version; C-) Let  $V_1, \ V_2 \in L^\infty_c(\mathbb{R}^d; \mathbb{R})$ , with scattering matrices  $S_1, \ S_2$ . If d=4, assume either that 0 is not a resonance or  $V_1, V_2 \in C^\infty_c$ . Set

$$F(z) = \frac{\det S_1(e^z)}{\det S_2(e^z)}.$$

Suppose F has finitely many poles. Then  $F(z) \equiv 1$ ; that is, det  $S_1(\lambda) = \det S_2(\lambda)$  for all  $\lambda$ .

Earlier version:  $V_2 \equiv 0, V_1 \in C_c^{\infty}$ : Sá Barreto  $(d \ge 4)$ , L-H Chen (d = 2)

(3)

# **Theorem**

(Smith-Zworski) For  $V \in L^{\infty}(\mathbb{R}^d; \mathbb{R})$ ,  $k \in \mathbb{N}$ , if  $V \in H^k$ , then there are constants  $c_1, ...., c_{k+1}$ , a function  $r_{k+2}$  so that

$$\operatorname{tr}(e^{-t(-\Delta+V)}-e^{t\Delta})= (4\pi t)^{-d/2}(c_1t+c_2t^2+...+c_{k+1}t^{k+1}+r_{k+2}(t)t^{k+2})$$
 when  $t\downarrow 0$ 

with  $|r_{k+2}(t)| \le C$  for  $0 \le t \le 1$ . Conversely, if such an expansion holds,  $V \in H^k$ .