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Consider the Schroddinger operator —A + V on RY, where

V € LP(RY; R).

ForIm\ > 0, let Ry(\) = (—A + V — \2)~'. This is bounded on
L2(R9) for Im A > 0, with the possible exception of a finite
number of points corresponding to eigenvalues.
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a holomorphic function of A € C if f € L2(RY).
This explicit representation shows us that for any function
Y € LP(R3),

XRo(A\)x : LA(R®) — L*(R®)

has a holomorphic extension to the entire complex plane.

Similar (but more complicated looking) things happen in any
dimension; the space to which the Schwartz kernel continues is
dimension-dependent.
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Allowing for potentials and different dimensions:
If x € CZ(RY), xRy (\)x has a meromorphic continuation.

» |f the dimension d is odd: The continuation is to C

» |f the dimension d is even: The continuation is to A, the
logarithmic cover of C \ {0}.

If x is chosen so that xV = V, the locations of the poles of
xRv(\)x are independent of .

The poles of xRy()\)x are called resonances.



An example on R.
Thanks to M. Zworski for the figures.
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Computed using squarepot .m
http://www.cims.nyu.edu/~dbindel/resonantld/
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Questions:

» Distribution? In particular, anything like Weyl law?
» Rigidity? What do resonances say about the potential?
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» Set
Res(V) = {);: \jisapole of Ry()\), repeated with multiplicity}.

(0 is special)
» d odd: nodd’v(l‘) = {)\] € Res( V) : |>\/| < f'}
» deven, me Z:

Nmyv(r)={N € Res(V):|N| <r, mr <arg); < (m+1)r}
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» Ifd=1,asr — oo,

#{\j € Res(V) : |)\j| < r} = —(length convex hull V)r+-o(r)

1

™
(Zworski, Froese, Simon)

» If d > 3, odd,

nv7odd(Fl,) < Cl'd, as r — oo.

Zworski; refinements Stefanov, Dinh-Vu
» If d even,
Nmy(r) < Cr? asr — .
Vodev
» optimal, in a sense
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Lower bounds?
» For d odd: V € CP(RYR), V #0,

Nodd, v (r)

lim sup >0

r—oo

(Sa Barreto; earlier results Melrose, Sa Barreto-Zworski,
Baruelos-Sa Barreto, C-)

» For d even: V € CX(RY;R), V # 0, Res(V) contains
infinitely many elements (S& Barreto d > 4, L-H Chen
d = 2); qualitative lower bound

» Better lower bounds for specific classes examples; fixed
sign, generically
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Theorem
(d odd due to Smith-Zworski, d even C-) Let V € L¥(RY; R),

V #£0. Then
» Ifd =3, Res(V) has infinitely many elements.
» Ifd > 5 is odd, Res(V) is nonempty.
» Ifd is even, and d # 4, Res(V) contains infinitely many
elements, with a quantitative lower bound. If d =4 and 0 is
not a resonance, the same is true.
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Resonant rigidity:
» If Res(Vq) = Res(Va), Vs, Vo € LP(RY;R), and k € N,
then
Vi € HY(RY) & V, € HX(RY)
(d odd Smith-Zworski, d even C-)

» If dis even, V € CL(RY; R), then Res(V) determines all
the heat coefficients of V. (C-) (d odd: miss up to two?)
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Resonant rigidity: B
Given Vp € L¥(RY; R) with support in B(R), set

Iso(Vy, R) = {V € LX(RYR) : Res(V)=Res(V),
supp V c B(R)}

Theorem

(d =1, 3: Hislop-Wolf; d even: C-) Let Vy € C(RY; R) have
support in B(R). Then Iso(Vy, R) is compact in the C*
topology if d < 3. Ifd > 4 is even, then a weaker statement
holds.

Comments: stronger results d = 1: Zworski, Korotyaev

cf. results of Briining, Donnelly: Schrédinger operators on
compact manifolds



Resonant rigidity:

Theorem

(C-) If d is even, and Vy, Vo € LX(RY; R), then Res(V;) and
Res(Vs) cannot differ by a nonzero number of nonzero
elements

Contrast: d = 1, Korotyaev: within class of potentials L}(R; R),
can “move” resonances (with restrictions)



Important ingredients:
(1) Birman-Krein trace formula: for t > 0

_ 1/ 24 detS())
tr( et V)_etA)zzm_/o oA d?jetS()\) d\

K
+3 " e+ BV, d)
k=1

Here S is the scattering matrix and —/ﬁ <. < —u'f( < 0 are
the eigenvalues of —A + V.
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Suppose F has finitely many poles.



Important ingredients:

(2)

Theorem

(weaker version; C-) Let Vy, Vo € LP(RY;R), with scattering
matrices Sy, S». If d = 4, assume either that 0 is not a
resonance or Vi, Vo € CX. Set

_ det S;(€%)
(2) = det Sy(e?)
Suppose F has finitely many poles. Then F(z) = 1, that is,
det S1(\) = det So(\) for all M.

Earlier version: Vo, = 0,V; € Cg°: Sa Barreto (d > 4), L-H Chen
(d=2)



Important ingredients:

(3)

Theorem
(Smith-Zworski) For V € L*(R%;R), k € N, if V € H, then
there are constants ¢y, ...., Ck+1, @ function ri.» so that

tr(e—t(—A+V) _ efA) —

(4rt) "2 (cit+ ot + ... + Crp1 KT + ra(B)FT2) when t | O

with |re,2(t)| < C for0 < t < 1. Conversely, if such an
expansion holds, V € HX.



