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Metamorphosis of plasma turbulence–shear-flow dynamics through a transcritical bifurcation
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The structural properties of an economical model for a confined plasma turbulence governor are investigated
through bifurcation and stability analyses. A close relationship is demonstrated between the underlying bifur-
cation framework of the model and typical behavior associated with low- to high-confinement transitions such
as shear-flow stabilization of turbulence and oscillatory collective action. In particular, the analysis evinces two
types of discontinuous transition that are qualitatively distinct. One involves classical hysteresis, governed by
viscous dissipation. The other is intrinsically oscillatory and nonhysteretic, and thus provides a model for the
so-called dithering transitions that are frequently observed. This metamorphosis, or transformation, of the
system dynamics is an important late side-effect of symmetry breaking, which manifests as an unusual non-
symmetric transcritical bifurcation induced by a significant shear-flow drive.
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I. INTRODUCTION

Fusion plasmas, and possibly other quasi-tw
dimensional fluid systems, may undergo a more-or-less
matic transition from a low- to a high-confinement state~the
L-H transition! as the power input is increased, with th
desirable outcome that particle and energy confinemen
greatly improved due to localized transport reduction@1#. In
this work we report on a bifurcation and stability probe of
economical model forL-H transition dynamics that uncover
a mechanism by which a radical change, or metamorpho
may occur in the qualitative nature of the dynamics. We
ply the results of this analysis to clarify the relationship b
tween the structure of the model and the physics of the p
cess that it describes, and draw comparisons w
characteristics ofL-H transitions observed in various expe
ments.

Since 1988 there has been much progress in develo
low-dimensional~low-order or reduced! descriptions ofL-H
transition dynamics and associated oscillatory phenom
~see, for example, Refs.@2–15#!, the driving force being the
potential power of a unified, low-dimensional model as
predictive tool for the design and control of confineme
states. For example, a model that speaks of the shape
extent of hysteresis in theL-H transition would help engi-
neers who are interested in controlling access to H mo
Given the many variables and parameters thatcould be var-
ied around a hysteretic regime, it would be cheaper—
save hundreds of CPU hours and~or! many expensive
diagnostics—to know in advance which ones actuallydo af-
fect the hysteresis, and which do not.

To help construe the context in which low-dimension
descriptions of plasma dynamics are sought, it is appropr
at this stage to make some general remarks. It makes sen
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try to find the simplest description of an evolving system th
is consistent with the time and space scales on which on
interested in making experimental observations of that s
tem. One would like the description to incorporate the qua
tative nature of the system structure and dynamics, so th
can be used for design and control purposes and make u
predictions. A truly useful description usually turns out to
a low-dimensional system of coupled ordinary different
equations. Such descriptions are powerful because they
supported by well-developed theories that give qualitat
and global insight, such as bifurcation, stability, and symm
try theory @16,17#. In principle, we can map analytically th
bifurcation structure of the entire state and parameter sp
of a low-dimensional dynamical system, but this is not po
sible for an infinite-dimensional system and not practica
for systems of high order.

However, the quest for a low-dimensional state space
captures the qualitative dynamics ofL-H transitions has been
problematic. It has been shown@18,15# that some of the
models cited above do not reflect salient features ofL-H
transitions such as shear-flow suppression of turbulence
are incomplete, or show profound structural discrepanc
although it is intuitively reasonable to expect that manifes
different models should be equivalent at some deeper lev
they describe the same phenomena.

By economical, or minimal, model we mean the smalle
functionally simplest, and mathematically consistent mo
that captures qualitatively the dynamical traits that are ty
cally observed over many experiments in different machin
The strength and potency of a minimal model is just t
universality; its apparent disregard for details, numbers
unit dimensions is sometimes perceived—wrongly—as
weakness. In keeping with this ideology we introduce her
consensus dynamical model that is economical in terms
variables and parameters, and incorporates the smallest n
ber of rate processes of simplest functional form needed
reflect the universally observed dynamics. If the model
©2002 The American Physical Society08-1
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successful we expect additional terms to have only quan
tive, not qualitative or structural, effects. We should also
able to identify easily its limits of validity, or where it break
down and why.

In Sec. II we introduce the plasma turbulence governo
a useful schema to conceptualize and represent the m
contributing rate and feedback processes, relating thes
the corresponding dynamical system. Bifurcation and sta
ity analyses and interpretive discussions, with reference
reported experiments, are given in the remaining sections
Sec. III we begin by determining the two highest-order~most
degenerate! singularities in the system, ororganizing centers.
Section IV describes the generic bifurcation diagram and
cusses the hysteresis and limit cycles in the system. In Se
we illustrate and discuss the useful properties of the tw
parameter bifurcation diagram. This discussion leads in
Sec. VI, in which we determine explicitly the transcritic
metamorphosis to an oscillatory, nonhysteretic regime
short summary is given in Sec. VII. The Appendix contain
derivation of the dynamical equations.

II. COMPETITIVE AND FEEDBACK PROCESSES
GOVERN PLASMA TURBULENCE

The schematic in Fig. 1 is a primitive of a plasma turb
lence governor.~The name is intended to refer to archetyp
cal mechanical exemplars of feedback controllers such
James Watt’s 1788 steam-engine governor. In Ref.@19# a
comparable scheme was called the ‘‘barotropic governor,
the context of quasi-two-dimensional atmospheric flows.! A
power inputq creates a pressure gradientP from which the
turbulent density fluctuation intensityN grows at a rate with
coefficientg. The turbulence feeds energy into the poloid
shear flowv via the Reynolds stressa. The shear flow is
generated externally at ratew and damped by the ion viscos
ity m. The turbulence is damped quadratically with coe
cientb. Also indicated is acompetitivedistribution of energy
from the pressure gradient, whereby different fractions m
partition into turbulence generation and shear-flow damp
It is not difficult to appreciate how the various rate and co
petitive processes in Fig. 1 could balance out—or rath
unbalance out—so as to give rise to the oscillatory and h

FIG. 1. A plasma turbulence governor, showing the coup
rates and feedback processes that contribute to the dynamics oL-H
transitions. Solid arrows indicate generation rates, wavy arrows
sipation, dashed arrows feedback on rate coefficients; the black
mond indicates negative feedback.
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teretic dynamics that are characteristic ofL-H transitions.
The reduced dynamical system that models this schem

based on the Sugama-Horton model@7#, which itself was
derived from approximate resistive magnetohydrodynam
~MHD! vorticity and pressure convection equations@20,21#,

«
dP

dt
5q2gPN, ~1!

dN

dt
5gPN2av2N2bN2, ~2!

2
dv
dt

5avN2m~P,N!v1w, ~3!

m~P,N!5bPm1aPrN. ~4!

In terms of the shear-flow kinetic energyF5v2, Eqs.~2! and
~3! may be written as

dN

dt
5gPN2aFN2bN2, ~28!

dF

dt
5aFN2m~P,N!F1wF1/2. ~38!

The derivation of this system is given in the Appendix. T
most important modification to the original Sugama-Hort
model is the symmetry-breaking termw in Eq. ~3!. It will be
seen that this term, which may be interpreted as an exte
shear-flow driving rate, has dramatic effects on the bifur
tion structure of the system.

The first and second terms in the bipartite viscosity fun
tion, Eq.~4!, model the neoclassical and anomalous viscos
damping, respectively. In a plasma of low collisionality th
exponentm is negative so a high pressure gradient has
effect of blocking the neoclassical contribution.~Refer to
Fig. 1.! Under these circumstances energy can accumula
the shear flow then feed back into turbulence decorrelat
On the other hand, a high pressure gradient and high tu
lence levels bothenhancethe anomalous viscosity damping
because the exponentr is positive. The net effect will depend
on the relativity of the three competitive rates involved in t
distribution of energy from the pressure gradient.

III. PITCHFORK P* AND DULL BIFUCATION D* ARE
LOCAL HIGHEST-ORDER SINGULARITIES

Generally in bifurcation analysis we are interested in
multiplicity, stability, singularity, and parameter dependen
of zero solutions of a bifurcation equationg
5G(x,l1 ,l2 , . . . ,ln), wherex is a state variable and th
l i are parameters, that is derivable~in principle if not always
in practice! from the equilibria of a dynamical system.

In Eqs. ~1!–~4! we may selectx[P and the principal
bifurcation parameterl1[q and set the right hand sides t
zero to obtain the bifurcation equation,

d

s-
ia-
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g5
1

2P2ag2
~aPrq2qa1bP11mg!~qb2P2g2!

1
w~P2g22qb!1/2

2~Pag!1/2
~5!

@where Eq.~38! has been used#. Singular points occur where
g5gP50. ~Subscripts ong denote partial derivatives with
respect to the subscripted variable.! On thev50 curve they
are given by

~P,q,w!5~Pi ,Pi
2g2/b,0!,

with the Pi given by the real, positive roots ofbb
1P12m(aPr2a)g50. At these pointsgq50 and gPP

528@aPi
r(212m1r )1(11m)a#g2/(ab). Thus for

some values of the exponentsm and r one or more of the
singularities may comply with the pitchfork conditions

g5gP5gq505gPP50, gPPP5” 0, gPq5” 0. ~6!

Obviously ~sincegPP must equal 0!, compliance with these
conditions also implies the existence of hysteresis.

To specify the dependence of the viscosity damping
the pressure gradient in Eq.~4! we setm523/2 andr 51,
as in Ref.@7#. This value ofm applies for the temperatur
dependence of the ion viscosity in a low collisional regim
@22#. The value ofr 51 is the simplest that is consistent wi
the suggested dependence of the anomalous viscosity o
ion temperature in Ref.@23#.

With this specification the conditions in Eq.~8! applied to
Eq. ~7! find the unique pitchfork P* as

~v,q,b,w!5S 0,
a2g2

9a2b
,
2a3gAa/a

27A3a2b
,0D . ~P*!

At P* the two nondegeneracy conditions in Eq.~8! evaluate
as gPq58a/a, gPPP5218ag2/(ab). A pitchfork is de-
scribed as a codimension-2 singularity, because its unive
unfolding requires two parameters additional to the princi
bifurcation parameter. Note that the second unfolding par
eter, chosen here asb, can be any of the dissipative param
etersa, b, or b. For reference the bifurcation diagram in Fi
2 has been computed and plotted for the critical set (P

FIG. 2. Bifurcation diagram for the critical set (P*),w50, b
518.58, a52.4, b51, g51, a50.3, «51.5.
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The singular point on thev50 curve at highq complies with
the conditions

g5gP5gq50, gPP5” 0, detd2g,0, ~7!

whered2g is the Hessian matrix of second partial derivativ
(gPPgqP

gqPgqq
). A singular point that satisfies these cond

tions is usually termed as a transcritical bifurcation, or som
times a ‘‘simple bifurcation.’’

For noncritical values of b ~i.e., b5” b(P* )
518.58 . . . ), P* collapses to a second transcritical bifurc
tion on thev50 curve. These two transcriticals coalesce a
annihilate each other at a second codimension 2 singula
D* on the v50 curve, defined by the conditions

g5gP5gq5detd2g50, gPP5” 0, gPq5” 0, ~8!

and found using Eq.~7! as

~v,q,b,w!5S 0,
~5ag!2

~7a!2b
,
50A5a/~7a! a3g

73a2b
,0D , ~D* !

with gPP5232g2/(7b), gPq516a/(5a). The bifurca-
tion diagram showing this point ~at (v,q,b,w)
5(0,0.61 . . . ,53.52 . . . ,0) for values of the other param
eters as in Fig. 2! would be extremely dull and flat—it con
sists only of the linev50. Such a highly dissipative system
has no interesting behavior at all.

IV. WALK THE SOLUTION CURVES, TALK THE
PHYSICS

A bifurcation diagram for noncritical values of the unfold
ing parametersb andw is shown in Fig. 3.~In the bifurcation
diagrams stable solution branches are indicated by s
lines, unstable branches by dashed lines, and the dotted
trace out the maximum and minimum amplitude of lim
cycle branches.! This figure is richly informative but not im-
mediately transparent or intuitive, so we shall walk throu
it with the reader, pausing to discuss significant features

A. Jumps can occur to positive or negativeH-mode branches

Standing back from Fig. 3 first, overall we can see that
symmetry evident in Fig. 2 is now broken, by the selection
a small positive value ofw. This symmetry-breaking param
eter determines a preferred direction of the poloidal sh

FIG. 3. Bifurcation diagram withb51, w50.02, other param-
eters as for Fig. 2.
8-3
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BALL, DEWAR, AND SUGAMA PHYSICAL REVIEW E 66, 066408 ~2002!
flow. There are now two unconnected curves of solutions
positivev curve and a negativev curve.

The 1v curve is plotted beginning atq50.1 and v
'0.004. The stable solutions along the curve to the li
point sL at (v,q)'~0.2,0.495! comprise theL-mode branch,
where the pressure gradient feeds the turbulence~refer to
Fig. 5! and the anomalous viscosity damping, but does
inhibit the neoclassical viscosity damping enough to all
the shear flow to increase very much. AtsL the solutions
become unstable and the system must jump to another s
attractor, which would normally be the stable solution
(v,q)'(1.5,0.495). This section of the curve with high po
tive shear flow represents the1v H-mode branch.

If the system is given a sufficiently strong, transient, o
posing kick nearsL , it may also be forced onto the stab
part of the2v curve. This is the2v H-mode branch, but
because symmetry has been broken in favor of1v solutions
the shear flow is not as high.~For example,2v'1.3 at q
50.495.! Shear-flow reversal may also be forced from t
2v curve. On the other hand, reports ofspontaneousrever-
sals in the direction of main or impurity ion poloidal she
flow @32,33# can be rationalized from Fig. 3. In a syste
sitting on the2v curve, the poloidal shear flowmustreverse
if a perturbation decreases the power input below that at
(2v,q) limit point, sH2. Here the1v curve provides the
only stable attractors. Normally one would expect the sys
to move onto theL-mode branch, but an additional transie
could take it to theH-mode branch of the1v curve.

B. Passage through an oscillatory region

Continuing from left to right along the1v and
2v H-mode branches~we are allowed to walk on two path
at once across this diagram! we arrive at at a point on eac
curve where the solutions again become unstable. Th
points are Hopf bifurcations, which occur when the Jacob
matrix of a linearised system of ODE has a pair of pu
imaginary eigenvalues and no other eigenvalues with z
real part. As the bifurcation parameter passes through su
point a periodic orbit appears, encircling the equilibriu
~The finer details and technicalities of the Hopf bifurcati

FIG. 4. A time series forq54 on the1v curve. Other param-
eters are the same as in Fig. 3.
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are given in@16#. In this work the eigenvalues of Eqs.~1!–
~3! were computed numerically.!

In Fig. 3 the first Hopf bifurcationshA
1 and hA

2 occur at
(1v,q)'(1.74,2.06) and (2v,q)'(1.72,3.06). Here the
system must develop stable periodic behavior, because
branches of limit cycles that emanate from the Hopf bifurc
tions are stable while the equilibrium solutions are unstab

Looking back along the1v path traversed so far, th
jump to the stableH-mode branch and subsequent appe
ance of limit cycles athA

1 reflect reports from experiment
that a transition to a quiescentH mode can be achieved fol
lowed by the onset of oscillatory behavior, or edge-localiz
modes~ELM!, as the power input continues to be increas
@24–27#.

Moving forward again we see the limit cycles growing
amplitude, as shown by the amplitude envelopes~dotted
lines!. The relative phases ofv, N, andP are shown in the
time series of Fig. 4. The original Sugama-Horton model w
found to exhibit a chaotic time series for a particular set
parameter values in this regime@28#. In our model we have
found that, under conditions of poor dissipation, the1v
branch of limit cycles can undergo several successive pe
doubling bifurcations followed by period halvings back to
period-one limit cycle.

At moderately high power input the pressure gradient a
turbulence are high, neoclassical viscous damping is inh
ited, and large amplitude oscillations would be expected
energy alternately accumulates in the shear flow and is
changed with the turbulence. However, this is countered
the enhancementof anomalousviscosity damping by the
larger amounts of turbulence and pressure gradient energ
higher power inputs.~Refer to the governor schematized
Fig. 1.! As this anomalous viscosity effect begins to ta
over after the amplitude maximum, the limit cycles shri
quite rapidly until at the second Hopf bifurcationshB

1 and
hB

2 , at (1v,q)'(1.66,9.83) and (2v,q)'(1.67,8.69),
they areextinguished.

Although definitive experiments have not yet been p
formed that measure the growth and extent of theH-mode
oscillations over the power input, it is physically reasona
that they would be limited by some damping factor. T
passage through an oscillatory regime with increasing po
is a characteristic of type-III ELMs@29,30#. However, the
quantitative features of type-III ELMs, such as the frequen
spectrum, are not reproduced by this simple model.

On the2v curve the limit cycles are smaller in amplitud
and occur over a smaller range of the power input.

FIG. 5. Bifurcation diagram withN as a chosen state variable
showing the curve that corresponds to the1v curve in Fig. 3.
8-4
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q'2.5, for example, the1v H mode is oscillatory but the
2vH mode is quiescent. Again, to our knowledge the app
priate experiments have not yet been carried out, but th
reminiscent of the prescription given in Ref.@31#: ‘‘The key
factors in creating the quiescentH-mode operation are neu
tral beam injection in the direction opposite to the plas
current ~counterinjection! plus cryopumping to reduce th
density.’’

C. Further on and higher up

The shear flow reaches a broad maximum with increas
power input, then gradually decreases~note that the horizon-
tal scale is logarithmic! to the theL-mode level. This would
be reasonable behavior on physical grounds—one would
expect the shear flow to increase indefinitely with power
put, because the turbulent viscosity damping~the second
term in Eq.~4! with r 51) begins to take over as the pow
input pushes up the pressure gradient.

Clearly there is a scope for tuning other parameters in
model so as to obtain a complete picture of the steady st
and limit cycles over parameter space, and more quantita
agreements with experiments. One may wish, for example
maximize the range ofq over which turbulence stabilizatio
occurs, or minimize the range ofq over which limit cycles
occur, or both.

D. The way back

Figure 3 also shows the hysteresis predicted by com
ance with the conditions in Eq.~8!. Retracing our steps alon
the 1v curve we find that the back transition at the lim
pointsH1 occurs atq'0.35. Transitions with hysteresis hav
been observed in several machines: DIII-D@25#, Asdex up-
grade @34,35#, JET, and in simulations of ITER@26#, and
Alcator C-mod@36#. Hysteresis is typically modified by dis
sipation, characterized in this model by the parametersb, b,
anda. However, hysteresis does not seem to be a neces
or universal feature of discontinuous transitions.

One of the typical features ofL-H transitions that a mini-
mal model should reflect is suppression of the turbulence
the shear flow. Figure 5 shows the bifurcation diagram w
the mean square turbulence levelN as the state variable
where for clarity only the curve that matches the1v curve is
given. The turbulence is clearly suppressed over the hys
etic region, then begins to grow again as the higher pres
gradient from higher power input creates more turbulenc

V. CURVES OF SINGULAR POINTS HAVE MUNDANE
MAXIMA AND INTERESTING MINIMA

The width and extent of hysteresis for selected valuesb
can be judged from thetwo-parameter bifurcation diagram
for the1v curve in Fig. 6, in which computed curves of th
singular points in Fig. 3 are shown. The solid lines mark
loci of limit points ~which are also sometimes called fold
saddle-node bifurcations! asb is varied. The dot-dash line i
the locus of Hopf bifurcations asb is varied. If one can
imagine taking slices across this diagram at various imp
tant values ofb, the bifurcation story of the system can b
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told compactly, by inferring a reconstruction of the singl
parameter (q,v) bifurcation diagram corresponding to eac
selected value ofb.

A slice taken above the critical value ofb at the cusp
would yield a (q,v) bifurcation diagram that shows no mu
tiplicity of states. Thus, in a highly dissipative system a
transition is expected to be smooth and gradual rather t
discontinuous, and a number of experiments suggest
conjecture. In ASDEX Upgrade the power hysteresis dis
pears at higher density~which implies more collisional
damping! where gradual rather than discontinuous confin
ment improvement occurs@35#. A regime in which density
fluctuation amplitudes are reduced continuously was also
served in Ref.@37#. In Ref. @38# a discontinuous bifurcation
of the electric field in a stellarator was reported for con
tions of low neutral density, where the charge-exchan
damping rate is low. The change in the electric field beca
gradual for conditions of high neutral density, because
charge-exchange damping rate increases.~The electric field
is related to the poloidal shear flow and the pressure grad
through the radial force balance@39#.!

Oscillatory behavior is also expected to be damped ou
high dissipation rates. The maximum in the locus of Ho
bifurcations in Fig. 6 occurs at the value ofb, where the two
Hopf bifurcations on the1v curve in Fig. 3 annihilate each
other ~or conversely, are created!. Above this value ofb the
1v curve is stable with no associated limit cycles.

As slices are taken at lowerb the hysteresis and the rang
of oscillatory behavior evidently become broader. At low d
sipation rates the feedback is strong and nonlinear beha
is expected to be more pronounced.

The crossing of the Hopf and limit point loci in Fig. 6 i
nonlocal, i.e., the value ofP ~and ofv andN) at the crossing
on the Hopf curve is different from that on the limit poin
curve. Within the overlapping region a direct transition to
oscillatoryH mode may occur.

VI. THE METAMORPHOSIS

The minimum in the limit point curve of Fig. 6 implies
the existence of another transcritical bifurcation@defined by
Eq. ~A2!# in the system, that occurs at nonzerov. This non-
symmetric transcritical bifurcation may have important

FIG. 6. Two-parameter curves of the singular points in Fig.
Solid lines are the loci of the limit points, dot-dash lines are t
Hopf bifurcation loci.
8-5
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sues concerning access to and control of confinement st
Consider the series of stills in Fig. 7, which snapshot1v
bifurcation diagram sections for increasing values ofw.

In the first frame, forw50.05, we see that a separa
branch of solutions to Eq.~7!, which is trapped at (q,v)
5(0,̀ ) for w50, has appeared. Although it is unstable
first, and therefore physically irrelevant for very small valu
of w, it does not remain so. At a singular point 0.05,w
,0.08 the occurrence of a zero real eigenvalue and a pa
complex conjugate eigenvalues with zero real part sign
the appearance of a degenerate Hopf bifurcation.~Eigenval-
ues were computed numerically.!

In the frame forw50.08 the new limit pointsC and Hopf
bifurcationhC have become separated. Along the branch
tween them, the solutions are stable. The branch of li
cycles that emanates fromhC undergoes one or more perio
doubling bifurcations before ending, presumably at a
moclinic ~infinite period! terminus. This branch of limit
cycles is quite short, and thus not very well resolved in F
7 for the lower values ofw. Note also thathA andhB , and
the branch of limit cycles linking them, have appeared on
hysteretic curve byw50.08.

At a metamorphic value ofw that we designatewTm the
arms of the two separate steady-state branches are excha
at a transcritical bifurcation. We know this point is pre
ent because the defining conditions Eq.~A2! are satisfied
with w5” 0. @In numbers (v,q,w)Tm5(1.8247 . . . ,
0.1468 . . . ,0.08059 . . . ), with detd2g520.004687 . . . ,
detd2g520.004687 . . . ,gPP520.001250 . . . , for values
of the other parameters as given in Fig. 3. Note that the va
of « is irrelevant for calculating steady-state bifurcatio
such as the pitchfork and transcritical butnot for Hopf bifur-
cations@15#.#

After the exchange, in the frames forw50.085 andw
50.1, we see the unusual occurrence ofthreeHopf bifurca-
tions on the same branch, although this situation could

FIG. 7. A series of bifurcation diagram snapshots taken at
creasing values ofw illustrates the exchange atwTm

and its after-
math. Here«51.0 and other parameters are the same as in Fig
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inferred from the shallow but distinct minimum and th
maximum in the locus of Hopf bifurcations in Fig. 6.

The last frame of Fig. 7, forw50.11, is taken afterhC
andhA have collided and annihilated each other at a singu
point associated with two zero eigenvalues. This is what
minimum in the curve of Hopf bifurcations means. Th
branch of limit cycles emanating fromhB now continues to
the ~presumed! homoclinic terminus. There are a couple
period doublings on it~not shown!. We also see that the limi
cycles are extinguished and a quiescentH mode is achieved
at hB .

Turning our attention to the L-mode branch in the la
frame of Fig. 7, we see that asq is tuned pastsL the system
must jump to another stable attractor. This transition isvery
different from the intrinsically hysteretic transition depicte
in Fig. 3. Here the stable attractor on theH-mode branch is a
limit cycle rather than a fixed point. Furthermore, this tra
sition is not hysteretic. In fact, hysteresis is~locally! forbid-
den by the conditiongPP5” 0 of Eq. ~A2!. Therefore it is not
modulated by dissipation in the same way as the transitio
Fig. 3, although the feedback itself is still due to nonline
dissipation rates.

As the value ofw is increased even further, bifurcatio
diagrams that one could plot gradually become less mean
ful. This is becausew5 constant is a first approximation
valid for smallw, to a nonlinear functionw(z), wherez may
include dynamical variables and parameters.

The type of transition shown in the last frame of Fig.
could serve as a model for the dithering orL-H-L transitions,
followed by a quiescentH mode, that have been reported
many machines. Although there may be other mechani
for dithering transitions—another possible scenario is giv
at the end of Sec. V and indicated in Fig. 6, where an os
latory transition may occur in a very poorly dissipativ
system—we have at least a preliminary semiological a
classification guide: if your transition is oscillatory and no
hysteretic then perhaps you should look for a strong sh
flow source, if it is strongly hysteretic perhaps you shou
look at dissipation mechanisms. Some experimental evide
supports the idea that dithering transitions result from
strong shear-flow source. In Ref.@40#, an analysis of time
series data around theL-H transition in COMPASS-D sug-
gested that a homoclinic orbit is involved in the change
stability at the transition. In stellarator W7-AS typically th
quiescent ELM-freeH mode is obtained after a phase cha
acterized by quasiperiodic ELMs@41,42#. In H1 stellarator a
transition to fluctuatingH mode occurs at lower gas filling
pressures and lower magnetic fields than the transition
quiescentH mode@43#.

In terms of the governor in Fig. 1 a shear flow that
generated internally and driven externally at compara
rates is likely to give rise to interesting nonlinear dynami
because more kinetic energy in the shear flow leads to m
turbulence suppression through decorrelation, but als
larger damping effect, which then alters the competitive d
tribution of energy from the pressure gradient.

VII. SUMMARY AND CONCLUSION

In summary, this reduced dynamical model, compris
simply of energy input, exchange, and loss rates, refle

-

3.
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generic characteristics of confined plasma bulk dynam
that have not been reflected in previous models. The bi
cation and stability analysis also reveals two qualitativ
different transitions. The hysteretic transition is controlled
the damping rate coefficients. The nonhysteretic transi
occurs when there is a relatively strong shear-flow drive.

Symmetry breaking in this system has two major effec
Firstly, a nonzero shear-flow drive is physically inevitab
even in the best-controlled experiments, and it determine
preferred direction for the shear flow. Secondly, it intera
with the internal generation and loss dynamics to cause
metamorphosis shown in Fig. 7.

More generally, the information obtained from this ana
sis strengthens the thesis developed in@17#: that remarkably
low-dimensional models can capture and help explain es
tial aspects of turbulent flows that elude understanding fr
numerical simulations that include resolved spatial sca
and that physical deductions can be made from observat
of bifurcations.
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APPENDIX

Reduced MHD fluid equations in tokamak and stellara
geometries were originally derived by Strauss@20,21#. In the
electrostatic approximation, a damped MHD fluid may
described by the following momentum and pressure conv
tion equations:

r
dv

dt
52“p1J3B1m“'

2 v1V8p̃x̂2rn@v2V~x!ŷ#,

~A1!

dp

dt
5x“'

2 p, ~A2!

whered/dt5]/]t1v•“, together with the incompressibility
condition “•v50 and the resistive Ohm’s lawE1v3B
5hJ. The symbols and notation are explained in Table
The curl of Eq.~A1! yields a vorticity equation, which is
sometimes preferred in two-dimensional fluid dynamics,
we have used the momentum form because it is more tr
parent physically and has a simpler correspondence to
kinetic energy. An infinite slab configuration is used for sim
plicity and generality, as was also assumed in Ref.@44# for a
drift-kinetic treatment of plasma relaxation. It is sketched
Fig. 8, where the region2d,x,d can be taken to represen
a region at the edge or within a confined plasma wher
transport barrier evolves.

The last term on the right hand side of Eq.~A1! removes
the nonlinear shear-flow reversal symmetry of the sys
under vx(x,y,t)→vx(x,2y,t), vy(x,y,t)→2vy(x,2y,t),
p̃(x,y,t)→ p̃(x,2y,t), V(x)→V(x). Similar equations,
without the symmetry-breaking term in the momentum b
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ance, have been used by several authors@45,46,23,47,7# as a
basis for studying resistive turbulence–flow interactions. T
symmetry-breaking term was introduced in Ref.@23#, but
only a posteriorias an adjunct in an equation for the bac
ground poloidal flow. Here we introduce it at the outset.
models the friction force acting between the single-flu
plasma velocityv and an assumed external poloidal flowVŷ.
Although Vŷ may be described for convenience as an ex
nal velocity, the term represents any asymmetric she
inducing mechanism, such as friction with neutrals, nona
bipolar ion orbit losses, or neoclassical effects not includ
in the slab model.

The symmetry operation onv0(x)[^vy&(x) andV(x) is
sketched in Fig. 9. We are working in the frame in whi
there is no electrostatic potential difference across the s
That is, it is assumed that we have made a Galilean trans

FIG. 8. Simple slab geometry is assumed. The plasma e
region is2d,x,d, with x5d at the plasma surface.“p0,0 is
the y,z-averaged pressure gradient.

TABLE I. Glossary of symbols, terms, and notation.

v5
1
B0

ẑ3“f5v01 ṽ
E3B flow velocity

v05^v& Average background component

ṽ Fluctuating or turbulent component

p5p01 p̃ Plasma pressure

p05^p& Average background component

p̃ Fluctuating or turbulent component

r Average mass density of ions,
assumed constant

m Ion viscosity coefficient
B0 Magnetic field along thez axis
h Resistivity
n Frictional damping coefficient
V8[dV/dx.0 Average field line curvature,

assumed constant
“'

2 ]x
21]y

2

“ i
]z1

x

Ls
]y

x Cross-field thermal transport coefficien
V External flow
^•••& Average on (y,z) plane
8-7
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mation to the frame in which the spatial average ofv0 across
the slab is zero. For simplicity we also assume that the s
tial average ofV is zero.

Equations~A1! and ~A2! are not intended to express
detailed fluid description of a plasma, but are intended
stead to represent a qualitatively authentic, semiempir
model for the essential generation and loss processes
give rise to the turbulence–shear-flow interactions that
have schematized in Fig. 1 as the plasma turbulence go
nor. The dynamical system Eqs.~1!–~3! can be derived from
Eqs. ~A1! and ~A2!, following the spatial averaging proce
dure implicit in Ref.@7#.

First of all, the dynamics of the mean flowv05^vy& are
extracted from the first moment (vyŷ) of ^ Eq. ~A1! & as

] tv02m]x
2v01]x^ṽxṽy&52n~v02V!, ~A3!

the energy moment of which gives the spatially averag
evolution of shear flow kinetic energyF,

d

dt F1

dE2d

d dx

2
v0

2G52
1

dE2d

d
dxFmS dv0

dx D 2

1nv0
2G

1
1

dE2d

d
dx^ṽxṽy&

dv0

dx
1

1

dE2d

d
dxnVv0 .

~A4!

This may be written as

dF

dt
52eF1EF1Ew , ~A5!

where the definitions ofeF , EF , andEw correspond, respec
tively, to each term on the right hand side of Eq.~A4! and
F[(1/d)*2d

d (dx/2)v0
2 .

FIG. 9. Without the friction force the system is invariant und
the transformationv0(x,t)→2v0(x,t) ~solid line!, V(x)→V(x)
~dashed line!. When the friction coefficient isn5” 0 the symmetry is
broken.
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Next, the second moment of Eq.~A1! gives the total rate
of evolution ofF and turbulent kinetic energyN,

d

dt F1

dE2d

d dx

2
~v0

21 ṽ2!G5
1

dE2d

d
dxV8

^ p̃ṽx&
r

2
1

dE2d

d
dxF h

rm
^J̃i

2&

1mK S ] ṽ i

]xj
D 2L G

2
1

dE2d

d
dxFmS dv0

dx D 2

1nv0
2G

1
1

dE2d

d
dxnVv0 , ~A6!

which may be expressed succinctly as

d

dt
@F1N#5EN2eN2eF1Ew , ~A7!

whereEN and eN are defined by the first two terms on th
right hand side of Eq.~A6! andN[(1/d)*2d

d (dx/2)ṽ2.
Finally, the evolution of potential energy in the pressu

gradient is defined from thex moment of Eq.~A2!, assuming
the cross-field thermal transportx“'

2 can be neglected,

d

dt F1

dE2d

d
dx~2x!V8

p0

r G5
^ p̃ṽx&u2d

d

r
V8

2
1

dE2d

d
dx

^ p̃ṽx&
r

V8, ~A8!

or

dP

dt
5EP2EN , ~A9!

with the input rateEP defined as the first term on the righ
hand side andP[(1/d)*2d

d dx(2x)V8p0 /r.
The spatially averaged dynamical system thus consist

Eqs.~A7!, ~A5!, and~A9!. For closure we follow@7#, using
the approximationsp0(x).p0(x5d)1xdp0 /dx and v0(x)
.v0(x5d)1xdv0 /dx for the background pressure and flo
profiles and redefiningP andF as the gradient terms alone
Approximations or expressions based on empirical ar
ments were given in Ref.@7# for the rates in Eqs.~A5!, ~A7!,
and ~A9!. The rates given in Eqs.~1!–~3! are economized
versions of those expressions, in the sense that sim
power laws were chosen if this did not result in any quali
tive changes to the singularity and stability structure of
system. The rationale is that for most of the rates we s
only learn from experiments whether different powers app
meanwhile simple power laws give more transparent alge
8-8
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We approximate the energy transfer rate from the pres
gradient simply asEN.(g/«)PN, and the energy transfe
rate between the turbulence and the shear flow, due to
Reynolds stress, asEF.aFN. The power input through the
boundary is defined asEp[q/«. The two-timing coefficient
« is related to the thermal capacitance, and regulates
contribution of the pressure gradient to the dynamics. For
dissipative terms we take the turbulent energy dissipa
rate aseN.bN2 and the shear-flow energy damping rate
eF.m(P,N)F, assuming the viscous damping to be dom
nant in eF . The external shear-flow driving rate is thenEw

.wF1/2, with w.dnV. To obtain the evolution of the shea
ry,

M
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,
tt
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flow in terms of a velocity variable we redefinev[6F1/2.
Equations~1!–~3! ensue.

A note on units:Since the emphasis in bifurcation analys
is on qualitative structure rather than numbers and unit
mensions, we have chosen to present all diagrams with
the units associated with the quantities plotted. Within
lights of bifurcation theory the numbers on the axes ha
more value as relative measures than as absolute mea
ments. However, the units are easily deduced if requir
from the momentum and pressure convection equations
and A2. Thus, for example,t is in s, P, andN are in massless
energy units, (m/s)2, v is in m/s, andq is in m2/s3.
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