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Metamorphosis of plasma turbulence-shear-flow dynamics through a transcritical bifurcation
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The structural properties of an economical model for a confined plasma turbulence governor are investigated
through bifurcation and stability analyses. A close relationship is demonstrated between the underlying bifur-
cation framework of the model and typical behavior associated with low- to high-confinement transitions such
as shear-flow stabilization of turbulence and oscillatory collective action. In particular, the analysis evinces two
types of discontinuous transition that are qualitatively distinct. One involves classical hysteresis, governed by
viscous dissipation. The other is intrinsically oscillatory and nonhysteretic, and thus provides a model for the
so-called dithering transitions that are frequently observed. This metamorphosis, or transformation, of the
system dynamics is an important late side-effect of symmetry breaking, which manifests as an unusual non-
symmetric transcritical bifurcation induced by a significant shear-flow drive.
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I. INTRODUCTION try to find the simplest description of an evolving system that
is consistent with the time and space scales on which one is
Fusion plasmas, and possibly other quasi-two-interested in making experimental observations of that sys-
dimensional fluid systems, may undergo a more-or-less draem. One would like the description to incorporate the quali-
matic transition from a low- to a high-confinement stétee  tative nature of the system structure and dynamics, so that it
L-H transition as the power input is increased, with the can be used for design and control purposes and make useful
desirable outcome that particle and energy confinement igpredictions. A truly useful description usually turns out to be
greatly improved due to localized transport reducfith In  a low-dimensional system of coupled ordinary differential
this work we report on a bifurcation and stability probe of anequations. Such descriptions are powerful because they are
economical model fok-H transition dynamics that uncovers supported by well-developed theories that give qualitative
a mechanism by which a radical change, or metamorphosiand global insight, such as bifurcation, stability, and symme-
may occur in the qualitative nature of the dynamics. We apiry theory[16,17]. In principle, we can map analytically the
ply the results of this analysis to clarify the relationship be-bifurcation structure of the entire state and parameter space
tween the structure of the model and the physics of the proef a low-dimensional dynamical system, but this is not pos-
cess that it describes, and draw comparisons witlsible for an infinite-dimensional system and not practicable
characteristics of -H transitions observed in various experi- for systems of high order.
ments. However, the quest for a low-dimensional state space that
Since 1988 there has been much progress in developingaptures the qualitative dynamicslofH transitions has been
low-dimensionallow-order or reduceddescriptions ot.-H problematic. It has been showri8,15 that some of the
transition dynamics and associated oscillatory phenomenmodels cited above do not reflect salient featured df
(see, for example, Refg2—15]), the driving force being the transitions such as shear-flow suppression of turbulence, or
potential power of a unified, low-dimensional model as aare incomplete, or show profound structural discrepancies,
predictive tool for the design and control of confinementalthough it is intuitively reasonable to expect that manifestly
states. For example, a model that speaks of the shape adifferent models should be equivalent at some deeper level if
extent of hysteresis in the-H transition would help engi- they describe the same phenomena.
neers who are interested in controlling access to H mode. By economical, or minimal, model we mean the smallest,
Given the many variables and parameters tiwatld be var-  functionally simplest, and mathematically consistent model
ied around a hysteretic regime, it would be cheaper—i.e.that captures qualitatively the dynamical traits that are typi-
save hundreds of CPU hours aridr) many expensive cally observed over many experiments in different machines.
diagnostics—to know in advance which ones actudthaf-  The strength and potency of a minimal model is just this
fect the hysteresis, and which do not. universality; its apparent disregard for details, numbers and
To help construe the context in which low-dimensionalunit dimensions is sometimes perceived—wrongly—as a
descriptions of plasma dynamics are sought, it is appropriateieakness. In keeping with this ideology we introduce here a
at this stage to make some general remarks. It makes sensedonsensus dynamical model that is economical in terms of
variables and parameters, and incorporates the smallest num-
ber of rate processes of simplest functional form needed to
*Electronic address: Rowena.Ball@anu.edu.au reflect the universally observed dynamics. If the model is
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damping teretic dynamics that are characteristicLeH transitions.
The reduced dynamical system that models this scheme is
Lo B TN based on the Sugama-Horton modi@], which itself was
. TS tuoulent X Y derived from approximate resistive magnetohydrodynamics
V fluctuations \_o: ': (MHD) vorticity and pressure convection equatid@$,21],
N |
power 4 _ pressure ~, s'f}?,a,“ 9 flow dpP
source gradient . v source e——=0— vPN, 2
P \\\ ‘\N* dt
N - éu(P,N)
\\\___ ____,_r dN
* damping EI’yPN—ava—,BNZ, (2)

FIG. 1. A plasma turbulence governor, showing the coupled
rates and feedback processes that contribute to the dynaniiebl of
transitions. Solid arrows indicate generation rates, wavy arrows dis- 2a =avN—u(P,N)v+o, 3
sipation, dashed arrows feedback on rate coefficients; the black dia-
mond indicates negative feedback.

w(P,N)=bP™+aP'N. 4

successful we expect additional terms to have only quantita-
tive, not qualitative or structural, effects. We should also ben terms of the shear-flow kinetic energy=v?, Egs.(2) and
able to identify easily its limits of validity, or where it breaks (3) may be written as
down and why.

In Sec. Il we introduce the plasma turbulence governor as dN 5 )
a useful schema to conceptualize and represent the major EZYPN_“FN_'BN ' )
contributing rate and feedback processes, relating these to
the corresponding dynamical system. Bifurcation and stabil- dE
ity analyses and interpretive discussions, with reference to —=aFN— u(P,N)F+ oF*2 (3"
reported experiments, are given in the remaining sections. In dt
Sec. Il we begin by determining the two highest-orfeost o ) o ) .
degeneratesingularities in the system, organizing centers | N€ derivation of this system is given in the Appendix. The
Section IV describes the generic bifurcation diagram and dis™0St important modification to the original Sugama-Horton

cusses the hysteresis and limit cycles in the system. In Sec. #odel is the symmetry-breaking tergnin Eq. (3). It will be
we illustrate and discuss the useful properties of the twoS€en that this term, which may be interpreted as an external

parameter bifurcation diagram. This discussion leads in tghear-flow driving rate, has dramatic effects on the bifurca-
Sec. VI, in which we determine explicitly the transcritical tion Structure of the system.

metamorphosis to an oscillatory, nonhysteretic regime. A 1Nhe firstand second terms in the bipartite viscosity func-
short summary is given in Sec. VII. The Appendix contains gtion, Eq.(4), model the neoclassical and anomalous viscosity

derivation of the dynamical equations. damping, respectively. In a plasma of low collisionality the
exponentm is negative so a high pressure gradient has the

effect of blocking the neoclassical contributiofRefer to

Fig. 1) Under these circumstances energy can accumulate in

the shear flow then feed back into turbulence decorrelation.
The schematic in Fig. 1 is a primitive of a plasma turbu-On the other hand, a high pressure gradient and high turbu-

lence governor(The name is intended to refer to archetypi- lence levels botlenhancehe anomalous viscosity damping,

cal mechanical exemplars of feedback controllers such agecause the exponents positive. The net effect will depend

James Watt's 1788 steam-engine governor. In RE8] a  on the relativity of the three competitive rates involved in the

comparable scheme was called the “barotropic governor,” indistribution of energy from the pressure gradient.

the context of quasi-two-dimensional atmospheric flows.

IIl. COMPETITIVE AND FEEDBACK PROCESSES
GOVERN PLASMA TURBULENCE

power inputq creates a pressure gradighfrom which the IIl. PITCHFORK P* AND DULL BIFUCATION D* ARE
turbulent density fluctuation intensity grows at a rate with LOCAL HIGHEST-ORDER SINGULARITIES
coefficienty. The turbulence feeds energy into the poloidal

shear flowv via the Reynolds stress. The shear flow is Generally in bifurcation analysis we are interested in the

generated externally at rageand damped by the ion viscos- multiplicity, stability, singularity, and parameter dependence
ity w. The turbulence is damped quadratically with coeffi-of zero solutions of a bifurcation equationg
cientB. Also indicated is aompetitivedistribution of energy  =G(X,A1,A5, ... ,\), Wherex is a state variable and the
from the pressure gradient, whereby different fractions may\; are parameters, that is derivalgie principle if not always
partition into turbulence generation and shear-flow dampingin practicg from the equilibria of a dynamical system.

It is not difficult to appreciate how the various rate and com- In Egs. (1)—(4) we may selecx=P and the principal
petitive processes in Fig. 1 could balance out—or ratherbifurcation parametek;=q and set the right hand sides to
unbalance out—so as to give rise to the oscillatory and hyszero to obtain the bifurcation equation,
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FIG. 2. Bifurcation diagram for the critical set (P*)3=0, b FIG. 3. Bifurcation diagram witlb=1, ¢=0.02, other param-
=18.58, «=2.4, =1, y=1, a=0.3, ¢=1.5. eters as for Fig. 2.

1 The singular point on the=0 curve at highg complies with
9= 02 5(@P'g—qa+bP'" My)(qB—P?y?) the conditions
ay
— — — 2
o(P2y2—qpB)12 g=0p=0q=0, gpp#0, detdg<O, (7)
t—— ©) whered?g is the Hessian matrix of second partial derivatives

1/2
2(Pay) (gppg qupg ). A singular point that satisfies these condi-
[where Eq.(3') has been usgdSingular points occur where tions ?s usqullly termed as a transcritical bifurcation, or some-
g=0gp=0. (Subscripts org denote partial derivatives with times a “simple bifurcation.”
respect to the subscripted variabl®n thev =0 curve they For noncritical values of b (e, b#bgps
are given by =18.8...), P*collapses to a second transcritical bifurca-
tion on thev =0 curve. These two transcriticals coalesce and
annihilate each other at a second codimension 2 singularity
D* on thev =0 curve, defined by the conditions

(P.q,¢)=(P; ,P?¥%B,0),

with the P; given by the real, positive roots ofsb
+P"M(@P'—a)y=0. At these pointsg;=0 and gep
=—8laP/(—1—-m+r)+(1+m)a]y*/(aB). Thus for
some values of the exponentsandr one or more of the
singularities may comply with the pitchfork conditions

g=0p=0q=detd’g=0, gpp#0, Jpe#0, (8
and found using Eq(7) as

(5ay)? 50y5al/(7a) a®y

(v,q,b,¢)= 0,7 5 32

9=0p=0q=0=0pp=0, gppp#0, gpq#0.  (6) (7a)°p ap
with gpp=—32y/(7B), Opq=16a/(5a). The bifurca-

Obviously (sincegpp must equal § compliance with these ton diagram showing this point (at (v,q.b,e)

conditions also implies the existence of hysteresis. —(0,0.6L...,53.8 . ..,0) forvalues of the other param-

To specify the dependence of the viscosity damping on I " ]
the pressure gradient in EGf) we setm=—3/2 andr=1, eters as in Fig. Pwould be extremely dull and flat—it con

as in Ref.[7]. This value ofm applies for the temperature sists only of the linw=0. Such a highly dissipative system

. . P o .~ _has no interesting behavior at all.
dependence of the ion viscosity in a low collisional regime
[22]. The value ofr =1 is the simplest that is consistent with
the suggested dependence of the anomalous viscosity on the
ion temperature in Ref23].

With this specification the conditions in EE) applied to A bifurcation diagram for noncritical values of the unfold-

0], (D¥)

IV. WALK THE SOLUTION CURVES, TALK THE
PHYSICS

Eq. (7) find the unique pitchfork P* as

ing parameterd and ¢ is shown in Fig. 3(In the bifurcation
diagrams stable solution branches are indicated by solid
lines, unstable branches by dashed lines, and the dotted lines

a?y? 2ayala
; , 0
9a23’ 27\/3a2B

(v,9,b,0)=| 0 (P*) " trace out the maximum and minimum amplitude of limit

cycle branche$.This figure is richly informative but not im-
mediately transparent or intuitive, so we shall walk through

. " .
AtP* the two nondegeneracy conditions in E) evaluate it with the reader, pausing to discuss significant features.

as gpq=8a/a, gppp=—18ay?/(apB). A pitchfork is de-
scribed as a codimension-2 singularity, because its universal . )

unfolding requires two parameters additional to the principal A~ JUMPS can occur to positive or negative-mode branches
bifurcation parameter. Note that the second unfolding param- Standing back from Fig. 3 first, overall we can see that the
eter, chosen here ds can be any of the dissipative param- symmetry evident in Fig. 2 is now broken, by the selection of
etersa, b, or 8. For reference the bifurcation diagram in Fig. a small positive value op. This symmetry-breaking param-

2 has been computed and plotted for the critical set (P*)eter determines a preferred direction of the poloidal shear
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FIG. 5. Bifurcation diagram witiN as a chosen state variable,
showing the curve that corresponds to the curve in Fig. 3.
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are given in[16]. In this work the eigenvalues of Eq&l)—
(3) were computed numerically.
In Fig. 3 the first Hopf bifurcations, andh, occur at
FIG. 4. Atime series fog=4 on the+uv curve. Other param- (T v,0)~(1.74,2.06) and {v,q)~(1.72,3.06). Here the
eters are the same as in Fig. 3. system must develop stable periodic behavior, because the
branches of limit cycles that emanate from the Hopf bifurca-
. tions are stable while the equilibrium solutions are unstable.
flow. There are now two unconnected curves of solutions: a Looking back al h h d f h
ositivev curve and a negative curve _Looking back along therv path traversed so far, the
P ' jump to the stableH-mode branch and subsequent appear-

The +v curve is plotted beginning agj=0.1 andv £ limi I el p .
~0.004. The stable solutions along the curve to the limit2c€ © imit cycles ah, reflect reports from experiments

points, at (v,q)~(0.2,0.495 comprise the.-mode branch, that a transition to a quiescert mode can be achieved fol-

where the pressure gradient feeds the turbuleneter to lowed by the onset of oscnla_tory behaylor, or edge_—locallzed
\?/Fnodes(ELM), as the power input continues to be increased

Fig. 5 and the anomalous viscosity damping, but does n

L9 . , : . 24-21.

inhibit the neoclassical viscosity damping enough to allo . . - o
Moving forward again we see the limit cycles growing in

the shear flow to increase very much. gt the solutions ; :
become unstable and the system must jump to another stal:ﬁemp“tUde’ as shown by the amplitude envelog@stied

attractor, which would normally be the stable solution attirrfs)ée-rr?eesﬁ‘l?:'tilvefqizesnoﬁn;’Salﬁda;?ar-isngnv%g] dtekl]?/vas
(v,9)=~(1.5,0.495). This section of the curve with high posi- 9.4 9 9

tive shear flow represents thev H-mode branch, found to exhibit a chaotic time series for a particular set of

S - : parameter values in this regini28]. In our model we have
If the system is given a sufficiently strong, transient, OPtound that. under conditions of poor dissipation, the

osing kick nears, , it may also be forced onto the stable - . _
part of the— v curve. This is the—o H-mode branch. but branch of limit cycles can undergo several successive period
P v ' v N doubling bifurcations followed by period halvings back to a
because symmetry has been broken in favot of solutions period-one limit cycle
tfg s4h9eéar gﬁw |sﬂnot as h|g|(1|For exalmpls,—fuwla?,fatq th At moderately high power input the pressure gradient and
e ) Oe?rr]- ozvhrevsrsz may ?SO et orced trom ey, pylence are high, neoclassical viscous damping is inhib-

v curve. ©n the othér hand, repor s_s;jqn aneousever-  jiaq, and large amplitude oscillations would be expected as
sals in the direction of main or impurity ion poloidal shear

f 323 b tionalized f Fig 3 | i energy alternately accumulates in the shear flow and is ex-
ow [32,33 can be ra lonalized from ig. S. In a system changed with the turbulence. However, this is countered by
sitting on the—v curve, the poloidal shear flomustreverse

i twurbation d th out below that tththe enhancemenbdbf anomalousviscosity damping by the
't a perturbation decreases the power input below that & rger amounts of turbulence and pressure gradient energy at
(=v,q) limit point, s4-. Here the+uv curve provides the hi

gher power inputs(Refer to the governor schematized in
only stable attractors. Normally one would expect the systenfsig. 1) As this anomalous viscosity effect begins to take

to move onto the.-mode branch, but an additional transient e, after the amplitude maximum, the limit cycles shrink
could take it to theH-mode branch of the-v curve. quite rapidly until at the second Hopf bifurcatioh§ and
hg, at (+v,0)~(1.66,9.83) and {v,q)~(1.67,8.69),
they areextinguished

Continuing from left to right along the+v and Although definitive experiments have not yet been per-
—v H-mode brancheéve are allowed to walk on two paths formed that measure the growth and extent of khenode
at once across this diagramwe arrive at at a point on each oscillations over the power input, it is physically reasonable
curve where the solutions again become unstable. Thedbat they would be limited by some damping factor. The
points are Hopf bifurcations, which occur when the Jacobiarpassage through an oscillatory regime with increasing power
matrix of a linearised system of ODE has a pair of pureis a characteristic of type-1ll ELM$29,30. However, the
imaginary eigenvalues and no other eigenvalues with zerquantitative features of type-1ll ELMs, such as the frequency
real part. As the bifurcation parameter passes through suchspectrum, are not reproduced by this simple model.
point a periodic orbit appears, encircling the equilibrium. On the—uv curve the limit cycles are smaller in amplitude
(The finer details and technicalities of the Hopf bifurcationand occur over a smaller range of the power input. At

B. Passage through an oscillatory region
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g~2.5, for example, thetv H mode is oscillatory but the
—vH mode is quiescent. Again, to our knowledge the appro- "
priate experiments have not yet been carried out, but this is
reminiscent of the prescription given in RE81]: “The key
factors in creating the quiesceHtmode operation are neu- b 1
tral beam injection in the direction opposite to the plasma
current (counterinjection plus cryopumping to reduce the 01
density.”
C. Further on and higher up 0.01 '
0.01 0.1 1 10 100

The shear flow reaches a broad maximum with increasing
power input, then gradually decreadeste that the horizon-
tal scale is logarithmicto the theL-mode level. This would
be reasonable behavior on physical grounds—one would n?j
expect the shear flow to increase indefinitely with power in-
put, because the turbulent viscosity dampiige second

FIG. 6. Two-parameter curves of the singular points in Fig. 3.
olid lines are the loci of the limit points, dot-dash lines are the
opf bifurcation loci.

told compactly, by inferring a reconstruction of the single-

term in Eq.(4) with r=1) begins to take over as the power ; . . .
input pushes up the pressure gradient. parameter @,v) bifurcation diagram corresponding to each
selected value ob.

Clearly there is a scope for tuning other parameters in the A slice taken above the critical value f at the cusp

model so as to obtain a complete picture of the steady Statev?ould ield a ,v) bifurcation diagram that shows no mul-
and limit cycles over parameter space, and more quantitative y v 9

sgrecments wihexperments. One may i for example, {170 O S8, Thus, b nohly despathe syeen ay
maximize the range aff over which turbulence stabilization P 9

occurs, or minimize the range of over which limit cycles d|sc_ont|nuous, and a number of experiments suggest this
oceur. or both conjecture. In ASDEX Upgrade the power hysteresis disap-

pears at higher densitywhich implies more collisional
damping where gradual rather than discontinuous confine-
ment improvement occurs35]. A regime in which density
Figure 3 also shows the hysteresis predicted by complifluctuation amplitudes are reduced continuously was also ob-
ance with the conditions in E8). Retracing our steps along served in Ref[37]. In Ref.[38] a discontinuous bifurcation
the +v curve we find that the back transition at the limit of the electric field in a stellarator was reported for condi-
points,+ occurs afj~0.35. Transitions with hysteresis have tions of low neutral density, where the charge-exchange
been observed in several machines: DII[-Z5], Asdex up- damping rate is low. The change in the electric field became
grade[34,35, JET, and in simulations of ITER26], and gradual for conditions of high neutral density, because the
Alcator C-mod[36]. Hysteresis is typically modified by dis- charge-exchange damping rate increas€be electric field
sipation, characterized in this model by the paramegers,  is related to the poloidal shear flow and the pressure gradient
anda. However, hysteresis does not seem to be a necessaifyrough the radial force balan¢g9].)
or universal feature of discontinuous transitions. Oscillatory behavior is also expected to be damped out at
One of the typical features &f-H transitions that a mini- high dissipation rates. The maximum in the locus of Hopf
mal model should reflect is suppression of the turbulence byifurcations in Fig. 6 occurs at the value lmfwhere the two
the shear flow. Figure 5 shows the bifurcation diagram withHopf bifurcations on thetv curve in Fig. 3 annihilate each
the mean square turbulence lewlas the state variable, other(or conversely, are createdibove this value ob the
where for clarity only the curve that matches the curveis  +v curve is stable with no associated limit cycles.
given. The turbulence is clearly suppressed over the hyster- As slices are taken at lowérthe hysteresis and the range
etic region, then begins to grow again as the higher pressui@f oscillatory behavior evidently become broader. At low dis-
gradient from higher power input creates more turbulence. sipation rates the feedback is strong and nonlinear behavior
is expected to be more pronounced.
V. CURVES OF SINGULAR POINTS HAVE MUNDANE The crossing of the Hopf and limit point loci in Fig. 6 is
MAXIMA AND INTERESTING MINIMA nonlocal, i.e., the value d? (and ofv andN) at the crossing
on the Hopf curve is different from that on the limit point
The width and extent of hysteresis for selected valués of cyrve. Within the overlapping region a direct transition to an
can be judged from thewvo-parameter bifurcation diagram oscillatoryH mode may occur.
for the +v curve in Fig. 6, in which computed curves of the
singular p.oints' in Fig..3 are shown. The _solid lines mark the VI. THE METAMORPHOSIS
loci of limit points (which are also sometimes called fold or
saddle-node bifurcatiohgsh is varied. The dot-dash line is The minimum in the limit point curve of Fig. 6 implies
the locus of Hopf bifurcations ab is varied. If one can the existence of another transcritical bifurcat{alefined by
imagine taking slices across this diagram at various imporEg. (A2)] in the system, that occurs at nonzeroThis non-
tant values o, the bifurcation story of the system can be symmetric transcritical bifurcation may have important is-

D. The way back
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inferred from the shallow but distinct minimum and the
maximum in the locus of Hopf bifurcations in Fig. 6.

The last frame of Fig. 7, fop=0.11, is taken afteh¢
andh, have collided and annihilated each other at a singular
point associated with two zero eigenvalues. This is what the
minimum in the curve of Hopf bifurcations means. The
branch of limit cycles emanating froimg now continues to
the (presumed homoclinic terminus. There are a couple of
period doublings on ifnot shown. We also see that the limit
cycles are extinguished and a quiesddniode is achieved
athg.

Turning our attention to the L-mode branch in the last
frame of Fig. 7, we see that asis tuned pass, the system
must jump to another stable attractor. This transitionesy
different from the intrinsically hysteretic transition depicted
in Fig. 3. Here the stable attractor on tHemode branch is a
limit cycle rather than a fixed point. Furthermore, this tran-

sition is not hysteretic. In fact, hysteresis (cally) forbid-
den by the conditiompp# 0 of Eq.(A2). Therefore it is not
FIG. 7. A series of bifurcation diagram snapshots taken at in_modulated by dissipation in the.samg way as the transmon In
creasing values ob illustrates the exchange at, and its after- F_|g._3, :_jllthough the feedback itself is still due to nonlinear
math. Heres =1.0 and other parameters are the same as in Fig. 3d|SS|pat'0n rates. L . .
As the value ofe is increased even further, bifurcation

diagrams that one could plot gradually become less meaning-
sues concerning access to and control of confinement statdsl. This is becausep= constant is a first approximation,
Consider the series of stills in Fig. 7, which snapskat  valid for smallg, to a nonlinear functiop(¢), wherel may
bifurcation diagram sections for increasing valuespof include dynamical variables and parameters. _

In the first frame, foro=0.05, we see that a separate  The type of transition shown in the last frame of Fig. 7
branch of solutions to Eq(7), which is trapped atd,v) could serve as a model for the ditheringloH-L transitions,
=(0/%) for ¢=0, has appeared. Although it is unstable atfollowed by a quiescentl mode, that have been reported_m
first, and therefore physically irrelevant for very small valuesmany machines. Although there may be other mechanisms
of ¢, it does not remain so. At a singular point 005  for dithering transitions—another possible scenario is given
<0.08 the occurrence of a zero real eigenvalue and a pair ¢it the end of Sec. V and indicated in Fig. 6, where an oscil-
complex conjugate eigenvalues with zero real part signaltory transition may occur in a very poorly dissipative
the appearance of a degenerate Hopf bifurcatiBigenval- ~ System—we have at least a preliminary semiological and
ues were computed numerically. classification guide: if your transition is oscillatory and non-

In the frame forg=0.08 the new limit poins and Hopf hysteretic then_pt_arhaps you should .Iook for a strong shear
bifurcationhc have become separated. Along the branch beflow source, if it is strongly hysteretic perhaps you should
tween them, the solutions are stable. The branch of limi{00k at dissipation mechanisms. Some experimental evidence
cycles that emanates frol undergoes one or more period SUPPOrts the idea that dithering transitions result from a
doubling bifurcations before ending, presumably at a hoStrong shear-flow source. In Rg#0], an analysis of time
moclinic (infinite period terminus. This branch of limit Series data around the-H transition in COMPASS-D sug-
cycles is quite short, and thus not very well resolved in Fig9ested that a homoclinic orbit is involved in the change of
7 for the lower values of. Note also thah, andhg, and  Stability at the transition. In stellarator W7-AS typically the
the branch of limit cycles linking them, have appeared on théluiéscent ELM-freed mode is obtained after a phase char-
hysteretic curve bys=0.08. acterized by quasiperiodic ELM41,42. In H1 stellarator a

At a metamorphic value of that we designate the  transition to fluctuatindd mode occurs at lower gas filling
arms of the two separate steady-state branches are exchand¥gSsures and lower magnetic fields than the transition to
at a transcritical bifurcation. We know this point is pres- duiéscent mode[43].

ent because the defining conditions E42) are satisfied In terms of the governor in Fig. 1 a shear flow that is
with  @#0. [In  numbers (,9,¢)rm=(1.8247 ... generated internally and driven externally at comparable

0.148...,0.080%...), with detd’g=—0.00469 ..., rates is likely to _givc_a rise to in_teresting nonlinear dynamics,
detd?g=—0.00469 . . . gpp=—0.0012% . . ., for values because more klneth energy in the shear flo'w leads to more
of the other parameters as given in Fig. 3. Note that the valufdroulence suppression through decorrelation, but also a
of ¢ is irrelevant for calculating steady-state bifurcations/@9er damping effect, which then alters the competitive dis-
such as the pitchfork and transcritical gt for Hopf bifur-  trioution of energy from the pressure gradient.
cations[15].]

After the exchange, in the frames fgr=0.085 and¢
=0.1, we see the unusual occurrencaloée Hopf bifurca- In summary, this reduced dynamical model, comprised
tions on the same branch, although this situation could bgimply of energy input, exchange, and loss rates, reflects

VIl. SUMMARY AND CONCLUSION

066408-6
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generic characteristics of confined plasma bulk dynamics TABLE I. Glossary of symbols, terms, and notation.
that have not been reflected in previous models. The bifur :
cation and stability analysis also reveals two quahtatlvely va b=V +V EXB flow velocity

0

different transitions. The hysteretic transition is controlled by Lz»

the damping rate coefficients. The nonhysteretic transition® Average background component

v Fluctuating or turbulent component

occurs when there is a relatively strong shear-flow drive.

Symmetry breaking in this system has two major effectsp=po+p Plasma pressure
Firstly, a nonzero shear-flow drive is physically inevitable, po=(p) Average background component
even in the best-controlled experiments, and it determines p Fluctuating or turbulent component
preferred direction for the shear flow. Secondly, it interacts, Average mass density of ions,
with the internal generation and loss dynamics to cause the assumed constant
metamorphosis shown in Fig. 7. lon viscosity coefficient

More generally, the information obtained from this analy- B Magnetic field along the axis
sis strengthens the thesis developedllifil: that remarkably Resistivity
low-dimensional models can capture and help explain essen- Frictional damping coefficient
tial aspects of turbulent flows that elude understanding frongy — 4 /dx>0 Average field line curvature,
numerical simulations that include resolved spatial scales, assumed constant
and that physical deductions can be made from observauor\;z G2t g2
of bifurcations. v -

[
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APPENDIX ance, have been used by several autfds46,23,47,Yas a
basis for studying resistive turbulence—flow interactions. The
Reduced MHD fluid equations in tokamak and stellaratorsymmetry-breaking term was introduced in REZ3], but
geometries were originally derived by Stra(i28,21]. Inthe  only a posteriorias an adjunct in an equation for the back-
electrostatic approximation, a damped MHD fluid may beground poloidal flow. Here we introduce it at the outset. It
described by the following momentum and pressure conveanodels the friction force acting between the single-fluid

tion equations: plasma velocity and an assumed external poloidal flsty.
v Although Vy may be described for convenience as an exter-
e —Vp+JIX B+vav+gfﬁ§(_py[v_v(x)9], nal velocity, the term represents any asymmetric shear-
t (AD) inducing mechanism, such as friction with neutrals, nonam-

bipolar ion orbit losses, or neoclassical effects not included
in the slab model.
v2p, (A2) The symmetry operation Oamo(x_)z<_uy>(x) andV(x) is
sketched in Fig. 9. We are working in the frame in which
there is no electrostatic potential difference across the slab.
whered/dt=d/dt+v-V, together with the incompressibility That is, it is assumed that we have made a Galilean transfor-
condition V-v=0 and the resistive Ohm’s lae+vXxB
= nJ. The symbols and notation are explained in Table I.
The curl of Eq.(Al) yields a vorticity equation, which is
sometimes preferred in two-dimensional fluid dynamics, but
we have used the momentum form because it is more trans-
parent physically and has a simpler correspondence to the
kinetic energy. An infinite slab configuration is used for sim-
plicity and generality, as was also assumed in R&f] for a
drift-kinetic treatment of plasma relaxation. It is sketched in
Fig. 8, where the regior- §<x< é can be taken to represent
a region at the edge or within a confined plasma where a
transport barrier evolves.

dp_
F

The last term on the right hand side of E4.1) removes ///
the nonlinear shear-flow reversal symmetry of the system
under v,(X,y,t) = v (X, —y,1), vy(Xy,1)=—vy(x,—y.1), FIG. 8. Simple slab geometry is assumed. The plasma edge

POy, D) —=p(X,—y,t), V(X)—=V(x). Similar equations, region is — §<x< g, with x= ¢ at the plasma surfac& p,<O0 is
without the symmetry-breaking term in the momentum bal-they,z-averaged pressure gradient.

066408-7



BALL, DEWAR, AND SUGAMA

UO’V
1 a’ T
I 5"
'\/
reflectin v
Up,V l
/\\
1 a -
- 5"

PHYSICAL REVIEW E 66, 066408 (2002

Next, the second moment of EGA1) gives the total rate

d

dt

1f6dx )
5)_,2 wot

of evolution of F and turbulent kinetic energy,

(pvy)

22)
p

1 (9o
= SJL ﬁdXQ

1

1)

S5 N ~
dx| — (3?2
J;é‘ Pm< H>

e
[l

5
f dXVVUO,
-5

v,

IXj

+
T

=

dUO

dx

+vvg

6

)2

1
+ —

5 (AB)

FIG. 9. Without the friction force the system is invariant under Which may be expressed succinctly as

the transformatiorv o(x,t)— —vo(X,t) (solid ling), V(x)—V(x)
(dashed ling When the friction coefficient i## 0 the symmetry is
broken.

mation to the frame in which the spatial average gaicross
the slab is zero. For simplicity we also assume that the spa-
tial average ol is zero. f

Equations(Al) and (A2) are not intended to express a
detailed fluid description of a plasma, but are intended in
stead to represent a qualitatively authentic, semiempiric
model for the essential generation and loss processes that
give rise to the turbulence—shear-flow interactions that we
have schematized in Fig. 1 as the plasma turbulence gover-
nor. The dynamical system Eq4)—(3) can be derived from
Egs. (A1) and (A2), following the spatial averaging proce-
dure implicit in Ref.[7].

First of all, the dynamics of the mean flowy=(v,) are

extracted from the first momenb)(gl) of ( Eq. (A1) ) as or

(9tl)0—,u,(9>2<vo+(9x<;)<;y>:—V(UO—V), (A3)

the energy moment of which gives the spatially averaged
evolution of shear flow kinetic enerdy,

d
a[F+N]:EN_6N_EF+E(p1

(AT)

whereEy and ey are defined by the first two terms on the
ght hand side of Eq(A6) andN=(1/8) ° s(dx/2)v2.

Finally, the evolution of potential energy in the pressure

d 1J6d
at|s) M

gradient is defined from themoment of Eq(A2), assuming
&Pe cross-field thermal transpQ(lVf can be neglected,

- 5
X)Q,@}:mvxﬂ_aﬂ,
p P
174 (pv
YR TN
ol-s p
dP
gi " Ep~Ens (A9)

with the input rateEp defined as the first term on the right
hand side an(PE(llé)f‘fﬁdx(—x)Q’polp.

The spatially averaged dynamical system thus consists of

Egs. (A7), (A5), and(A9). For closure we follow 7], using

the approximation®g(Xx)=pge(x=8) +xdpy/dx and vy(x)
=po(X=8)+xdvy/dx for the background pressure and flow
profiles and redefining® andF as the gradient terms alone.
Approximations or expressions based on empirical argu-
ments were given in Ref7] for the rates in EqgA5), (A7),

and (A9). The rates given in Eqg1)—(3) are economized

dlfﬁdxz_ 1f5d d002+ )
dt|s)_52 0| = &), M ax ) "o
1Fd ~ ~ dog 1f5d v
+3 S X<vxvy>a+5 L XvVug.
(A4)

This may be written as

dF

a:_ﬁp"f‘EF'f'E‘p, (AS)

versions of those expressions, in the sense that simpler
power laws were chosen if this did not result in any qualita-

tive changes to the singularity and stability structure of the

where the definitions oég, Er, andE,, correspond, respec-
tively, to each term on the right hand side of E§4) and
F=(1/6)[° s(dx/2)v3.

066408-8

system. The rationale is that for most of the rates we shall
only learn from experiments whether different powers apply,
meanwhile simple power laws give more transparent algebra.



METAMORPHOSIS OF PLASMA TURBULENCE-SHEAR .. PHYSICAL REVIEW E 66, 066408 (2002

We approximate the energy transfer rate from the pressuriow in terms of a velocity variable we redefine= = F/2,
gradient simply aEy=(y/e)PN, and the energy transfer Equations(1)—(3) ensue.

rate between the turbulence and the shear flow, due to the A note on unitsSince the emphasis in bifurcation analysis
Reynolds stress, d&:=aFN. The power input through the is on qualitative structure rather than numbers and unit di-
boundary is defined a8,=q/e. The two-timing coefficient mensions, we have chosen to present all diagrams without
¢ is related to the thermal capacitance, and regulates thibe units associated with the quantities plotted. Within the
contribution of the pressure gradient to the dynamics. For théghts of bifurcation theory the numbers on the axes have
dissipative terms we take the turbulent energy dissipatiomore value as relative measures than as absolute measure-
rate asey=BN? and the shear-flow energy damping rate asments. However, the units are easily deduced if required,
er=u(P,N)F, assuming the viscous damping to be domi-from the momentum and pressure convection equations Al
nant inex. The external shear-flow driving rate is the ~ and A2. Thus, for examplé,is in s, P, andN are in massless
~¢FY2 with o= vV. To obtain the evolution of the shear energy units, (m/$) v is in m/s, andg is in M?/s°.
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