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A Suydam-unstable circular cylinder of plasma with periodic boundary conditions in the axial direction is
studied within the approximation of linearized ideal magnetohydrodyna¢ietD). The normal mode equa-
tions are completely separable, so both the toroidal Fourier harmonic méex the poloidal indexn are
good quantum numbers. The full spectrum of eigenvalues in the rasge<t m,,,,is analyzed quantitatively,
using asymptotics for largm, numerics for allm, and graphics for qualitative understanding. The density of
eigenvalues scales Iikmﬁm as my.— . Because finiten corrections scale as ﬁnﬁm their inclusion is
essential in order to obtain the correct statistics for the distribution of eigenvalues. Near the largest growth rate,
only a single radial eigenmode contributes to the spectrum, so the eigenvalues there depenchoatydon
as in a two-dimensional system. However, unlike the generic separable two-dimensional system, the statistics
of the ideal-MHD spectrum departs somewhat from the Poisson distribution, even for arbitrarilyrigzge
This departure from Poissonian statistics may be understood qualitatively from the nature of the distribution of
rational numbers in the rotational transform profile.
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I. INTRODUCTION complicated geometries in the predesign phase.

The general aim of this paper is to compare and contras['%e':or this purpose, a substantial investment in effort has

. L o been expended on developing numerical matrix eigenvalue
Eg;:?:Ctruﬁafése'ige;\ggzﬁ '8I;):pég?llm'g)tﬁ:ﬁbtlﬁe\’\;a\i_Sysprograms, such as the three-dimensionakPSICHORE [8]
9., waves in ingu e Pe andcAs3D [9] codes. These solve the MHD wave equations
trum of instabilities in a cylindrical plasma within the ideal

magnetohydrodynamicsMHD) approximation. This is a for perturbations about static equilibria, so that the eigen-

2 - ) _ . -
first step in understanding the spectral problem in the com\-/aluew Is real due to the Hermiticityself-adjointnes10])

plex three-dimensional geometry of the class of magneti of the linearized force and kinetic energy operators. They use

confinement fusion experiments known as stellara2fs ?in!tg—ele_ment or finite-diffgrence methods to convert th(_a
In ideal MHD the spectrum of the frequencies, of nor- mﬁmte—@men;mnal I_DDE e|ger_1value problem to an approxi-

mal modes of displacements about a toroidal eduilibrium ismatmg f|n|te-d|men3|onal matrix problem. An alternatlve ap-

difficult to characterize mathematically because the ”near_prqach s to use local analy3|s using the balloqnlng represen-

) : o . tation and to attempt semiclassical quantization to estimate

ized force operator is not compdd]. In addition to a point the global spectrunil1—13

(discretg spectrum of unstable modés?<0), there are the g P .

Alfvé d sl : . i ¢ th In order properly to verify the convergence of these codes

en an sow-mz_ag_nezosonlc continuous spectra on g, ., ee6_dimensional geometry, it is essential to understand
stable side of the origifw*>0) and the possibility of dense the nature of the spectrum—if it is quantum-chaotic, then
sets of accumulation points on the unstable side. ’

. > In mathéonvergence of individual eigenvalues cannot be expected
ematical spectral theory, the stable continua and unstable ag

o L . X nd a statistical description must be uggéd—17.
cumulation “continua’{4] are characterizefb] as belonging

h ol F If-adioi h This is perhaps of most importance in understanding the
to theessential spectrumFor a self-adjoint operatdr, the spectrum in three-dimensional magnetic confinement geom-
essential spectrum is the set)ofvalues for which the range

FLo)i losed d/or the di ionalitv of th etries, in particular the various stellarator experiments cur-
of L=A Is not a closed set and/or the dimensionality of theyey rynning or under construction. These devices are
null space ofL—N\ is infinite.)

i ) . . . called three-dimensional because they possess no continuous
There is experimental evidence that ideal MHD is rel-

L . - : b h geometrical symmetries, and thus there is no separation of
evant in interpreting experimental resuf&7], but perhaps . variables to reduce the dimensionality of the eigenvalue

the greatest virtue of ideal MHD in fusion plasma physics is roblem. It has been showa§] that the semiclassical limit

its mathematical tractability as a first-cut model for assess_'nga Hamiltonian ray tracing problenfor ballooning instabili-
the stability of proposed fusion-relevant experiments with

ties in such geometries may be strongly chaotic because

there are no ignorable coordinates in the ray Hamiltonian.
However, the present paper discusses the opposite limit, a

*Electronic address: robert.dewar@anu.edu.au system with a sufficient number of symmetries to make the
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ray Hamiltonian integrable and the eigenvalue problem sepae «. This generalizes the approach of Cheremhykh and
rable. The geometry is the circular cylinder, periodic in the Revenchuk[21], which was limited to them=c Suydam
direction to make it topologically toroidal—we shall refer to eigenvalue problem. We compare some of the asymptotic
the z direction as the toroidal direction and the azimuttal, results in[21] with our numerical solutions. Our perturbation
direction as the poloidal direction. The study of this sepa-expansion shows that the correction to the Suydam limit goes
rable system will provide a baseline for comparison with theas 1 2. Contrary to usual experiend@2], our numerical

goal of the paper is to determine if the ideal-MHD spectrumyy,o Suydam values from below as— .

falls within the same universality class as that of typical |, Sec. |V we examine the part of the spectrum invol-
waves in separable geometries or, if not, what might cause Uing the most unstable modes, which is essentially two-

to differ. . . :
e . dimensional because only the lowest-order radial mode,
p(s?e{g ?I’?g Zgg(é:[nlgg] ;h(;vé/jézzazhgnﬂfégbrgb?szﬁg%ﬁ;m =0, contribute_s. We relate the considerable amount of struc-
scaled in a generic separable quantum system with mor tgre observed in the sp(_actrum to the F.are_y sequences of ra-
than one degree of freedom is €xp), as for a Poisson fional velll'ue.s of the rotgtlonal transfor(rwmdmg humbey of
’ e equilibrium magnetic field. Low-order rationals have as-

process with levels distributed at random. They also sho . . i, R
that the spectrum of uncoupled quantum oscillators is nongomated eigenvalue sequences giving a regular distribution

generic even when the frequency ratios are not commens® €igenvalues locally more like the spectrum of a one-
rate, in which cas®(s) peaks about a nonzero valuesofas ~ dimensional system than a two-dimensional one.
also occurs in nonintegrable, chaotic systems—the “level re- N Sec. V, we derive the analog of the Weyl formula for

pulsion” effecy. A more surprising departure from the Pois- the average density of states, including an asymptotic analy-
son distribution was found by Casatial.[1] for waves ina Sis Of the largd-limit. In Sec. VI, we show level spacing
rectangular box with irrational aspect ratio, but the departurdlistributionsP(s). Since we are interested in large we first
was very small. Level spacing statistics are discussed also fiy approximating the eigenvalues by their corresponding
the standard monographs on quantum cHads-17. asymptotic Suydam limit. This gives a very singular distri-
In contrast with quantum mechanics, where the continubution with a&-function-like spike at the origifi23] due to
ous spectrum arises from the unboundedness of configuratidh® extremely degenerate nature of the spectrum in this ap-
space, the ideal-MHD essential spectrum arises from the urroximation. By contrast, the distribution for the exact spec-
boundedness of Fourier space—there is no minimum wavelfum has no spike at the origin, showing that the smaifrl/
length. This is an unphysical artifact of the ideal MHD corrections break the degeneracy sufficiently to completely
model because, in reality, low-frequency instabilities withchange the statistics. =~
|k ,| much greater than the ion Larmor radias,cannot exist We examine the statistics for tHe-O andl=1 spectra,
(wherek , is the projection of the local wave vector into the both individually and combinedn the low-growth-rate re-
plane perpendicular to the magnetic fidd. Indeed, ideal 9ion where they overlgp We have examined sufficiently
MHD breaks down in various ways at larje, |, with dissi-  large data sets to show convincingly that the statistical dis-
pative and drift effects coming into play. tributions are not P0|§son|an, though that qf the combined
In this paper, we do not attempt to model finite-Larmor-!=0 andi =1 spectrum is closest. We also split itv0 spec-
radius stabilization, but instead simply restrict the poloidaltrum into two halves to remove overlap of spectra arising
mode spectrum tan<m,,, and study the scaling of the from different parts of the plasma. These spllt_spectra exh!blt
spectrum at largen,, The nature of the dispersion relation & much more dramatic departure from Poisson statistics,
is such that the toroidal mode numbarsrelevant to the Showing that the ideal-MHD interchange spectrum is indeed
spectrum are also restricted. In a matrix eigenvalue codBongeneric in the sense of Berry and Tapbs).
such asCAS3D or TERPSICHORE our procedure corresponds to
using an arbitrarily fine radial mesh but truncating the toroi-  1l. CHOICE OF MODEL EIGENVALUE EQUATION
dal and poloidal basis set.
The eigenvalue equation for a reduced MHD model o
a stellarator is presented in Sec. Il. We study a plasma i
which the Suydam criterioi20] for the stability of inter-
ic;h%r;i%:iatemodes is violated, so the number of unstable modes pRE=F - £ (1)
Section Ill is devoted to developing an understanding offor small displacements(r,t) of the MHD fluid about a
the dependencéhe dispersion relation of the eigenvalues static equilibrium state, wherg(r) is the equilibrium mass
on the radial, poloidal, and toroidal mode numbérsy, and  density,r is position,t is time, andF is a Hermitian linear-
n, respectively. Asm and n approach infinity, keeping.  ized force operatdil0] under the inner produgtd®x&* - F- &
=n/m fixed, the growth-rate eigenvalues asymptote to aand suitable boundary conditiongSuperscript” denotes
constant, the Suydam growth rate, depending onlywaand  complex conjugation—we can taléeto be complex because
the radial mode numbdr We use a combination of pertur- all the coefficients inF are real, so the real and imaginary
bation expansion in I and numerical solution of the eigen- parts of§ obey the same equation.
value equation using a new transformation to Schrodinger Most modern magnetic confinement fusion experiments,
form that is applicable over the whole rangenaffrom O(1) in particular tokamaks and stellarators, are toroidal. Though

f The grand context of this paper is the three-dimensional
Hnearized ideal MHD problem—to solve, under appropriate
boundary conditions, the equation of motion
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not guaranteed for arbitrary three-dimensional systems, the 1
equilibrium magnetic fieldB(r) is normally assumed to be (f,9) Ef f* (r)g(rrdr. (4)
integrablein the sense that all field lines lie on invariant tori 0
(magnetic surfacgsnested about a single closed field line
(the magnetic axis Within each toroidal magnetic surface, a
natural angular coordinate system is set up, with the poloida(f
angle ¢ increasing by z for each circuit around the short
way and the toroidal anglé increasing by zr for each cir- 5 “
cuit the long way. Each surface is characterized by a magr = — l_(n mt)zri + ﬂ[(n me)2 - Dg + —(n m)]
netic winding number, theotational transforms, being the
average poloidal rotation of a field line per toroidal circuit, (5)
(de/d¢), over an infinite number of circuitgin tokamak
physics the inverseg=1/+, is normally used as the rotation where the Suydam stability paramef®g is
number)
In this paper, we study an effectively circular-cylindrical __ B, ,
quilibrium, using cylindrical coordinates such that 26
the magnetic axis coincides with tlzeaxis, made topologi-
cally toroidal by periodic boundary conditions. Thesand  with e=a/Ry<1 the inverse aspect ratip(r) the plasma
the toroidal angle are related throughi=z/R,, whereR,is  pressure normalized to unity et 0, BOEZ,quO/BS the ratio
the major radius of the toroidal plasma being modeled byof plasma pressure to magnetic pressure at the magnetic axis,
this cylinder. The poloidal angl®@ is the usual geometric and()’ the average field line curvature. Here
cylindrical angle and the distaneefrom the magnetic axis
labels the magnetic surfacgthe equilibrium field being
Q eZN(r2++ Zf rfdr)

The weight factor in the inner product is a Jacobian factor
oming fromd3x=rdrd fdz
The operatoL is given by

trivially integrable in this case The plasma edge is ata. (7)
In the cylinder there are two ignorable coordinatésnd
¢, so the components &f are completely factorizable into where the rotational transform is produced by helical current

products of functions of the independent variables separatelywindings makingN>1 turns as’ goes from 0 to 2, Q'(r)

In particular, we write the component as giving the averaged field-line curvatui@lote thate cancels
out in Dg.) We use the notatiori=rf’(r) for an arbitrary
= explimo)exp(=ind)¢(r), (2)  function f, so+=rd+/dr is a measure of the magnetic shear

and+ measures the variation of the shear with radius. The
where the periodic boundary conditions quantizendnto  term Q) is a measure of the “magnetic hil[2] that allows
integers and we choose to work with the stream functiorpressure energy to be released by interchanging field lines,
o(r)=r&(r). thus driving the interchange instability.

Since the primary motivation of this paper is stellarator The operator arising from the inertial term in Ea),
physics, we use the reduced MHD ordering for large-aspect
stellaratorg2,24], averaging over helical ripple to reduce to R 1d d n?
an equivalent cylindrical problerf25,26. The universality M=-Vi= Trdrdr 2 (8)
class should be insensitive to the precise choice of model as
long as it exhibits the behavior typical of MHD instabilities is easily seen to be positive definite under the inner product
in a cylindrical plasma, specifically the existence of inter-Eq. (4).
change instabilities and the occurrence of accumulation We observe some differences between Rj). and the
points at finite growth rates. standard quantum-mechanical eigenvalue prolteprE.

We nondimensionalize by measuring the radius units  One is of course the physical interpretation of the
of the minor radius of the plasma columm,and the tim¢ in  eigenvalue—in quantum mechanics the eigenvaleeio is
units of the poloidal Alfvén timer, = Ro\,uop/BO, whereB, linear in the frequency because the Schrddinger equation is
is the toroidal magnetic field an;dO is the permeablllty of first order in time, whereas our eigenvalngs quadratic in
free space. Thus is in units of 7,". Defining \=w? we the frequency because it derives from a classical equation of
seek the spectrum of values satisfying the scalar equation motion.

Another difference is that Eq3) is a generalizedeigen-
Lo= Mo ) value equation be_cguske is not the identity operator. This is

one reason why it is necessary to treat the MHD spectrum

explicitly rather than simply assume it is in the same univer-
under the boundary conditions(0)=0 at the magnetic axis sality class as standard quantum-mechanical systems.
and¢(1)=0, appropriate to a perfectly conducting wall at the  Just as in ordinary eigenvalue problems, the eigenvalue
plasma edge. The operatdrtsand M given below are Her- spectrum for the generalized eigenvalue problem is real,
mitian under the inner product defined, for arbitrary func-and the eigenfunctiong; have a generalized orthogonality
tions f andg satisfying the boundary conditions, by property
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FIG. 2. (a) The nondimensional pressure profi&), Eq. (13),
used in this paper an¢b) the Suydam criterion paramet&(r),
defined in Eq.(10) (solid line), and the instability threshold 1/4

of the magnetic shear paramete#r+(r). In (a), all distinct ratio-  (gashed ling showing nearly all the plasma is interchange unstable.
nal magnetic surfaces=u=n/m are shown form up to 10.

FIG. 1. (a) The rotational transforma=1/q, defined by Eq(11),
as a function of in units of the minor radius(b) the radial profile

+=0.45,4=0.2.
(¢, Me@)) =3, 9 Given a rational fractionu=n,/m, in the interval
where the normalization has been chosen to make the codt9) #@] (wheren, andm, are mutually primg, there is a
ficient of the Kronecke unity. Herei andj denote mem- Unique radiusr, such thate(r,)=u. Any pair of integers
bers of the sefl,m,n}, wherel is the radial node number and (m’n)_HuVE(Vmﬂ’VnM)’ v=1,2,3,...satisfies the resonance
the poloidal and toroidal mode numbems and n, respec- ~ condition

tively, are defined in Eq(2). The negative part of the spec- n,, —m, #r,)=0 (12)
trum, A\=-+2<0, corresponds to instabilities growing expo- O '
nentially with growth ratey. For example, the set of rationals with<im=<10 in

Equation(3) is very similar to the normal mode equation the interval of + shown in Fig. 1a is {u}
analyzed in the early work on the interchange growth rate irr{1/2,5/9,4/7,3/5,5/8 as shown in the figure.
stellarators by Kulsrud25]. However, unlike this and most To understand the global spectrum, we also need to know
other MHD studies, we are concerned not with finding thesomething about the pressure profile. In this paper, we use a
highest growth rate, but in characterizing the complete set dfiroad pressure profile that is sufficiently flat near the mag-
unstable eigenvalues. netic axis that the Suydam instability parame®edefined in
Eqg. (10) goes to zero at the magnetic axis, and for whi¢h
vanishes at the plasma edge

—1 _ @546
In this section, we discuss the standard unregularized p(r)=1-67+5r (13

ideal MHD spectrum. It is well known that fox >0, the (Recall from Sec. Il thap is in units of the pressure at the

spectrum consists of the Alfvén continuugthe slow- magnetic axi9. This profile is shown in Fig. @) and the

magnetosonic continuum being removed in reduced MHDesultingG profile in Fig. 2b).

[27]). On the unstable side of the spectrux: 0, it is also

known that there is an infinity of eigenvalues provided the

IIl. INTERCHANGE SPECTRUM

Suydam interchange instability criteri¢@0] B. High m and n
Ds 1 In this subs_ection, we choose a particular rational surface
G=—>- (10 r, and restrict attention to pairgm,n) from the set
+ 4 {(m,n),,|»=1,2,3,..} satisfying the condition Eq12).
is satisfied over some rangeoin the interval(0, 1), but the Defining a scaled radial variable=m(r-r,)/r,, we ex-

details of the spectrum do not appear to have been publishgeind all quantities in inverse powers rof
before.

L= m_22(|_(0) +m L@ +m2AL@+ -,
r

A. Profiles g
Interchange instabilities occur only for valuesmfandn - m? ©) 4 eI A (D) 4 e2nn(2)
such thath-me vanishegor at least can be made very small M= r_z(M MM MM ) (14)
[26]) and therefore it is important to know something about m

the function«(r). The typical profile of«(r) in a stellarator is ~ Also, A\=A@+m ™AV +m2\?), and similarly fore. The de-
monotonically increasing in the intervid,a] and we shall tailed expressions are given in Appendix A.

assume this to be the case héteugh it is not always true ~ We then solve Eq(3) by equating the LHS to zero order
in modern stellaratoysFor the numerical work in this paper, by order. AtO(m°), as found by Kulsrud25], we have the
we use a parabolic profile generalized eigenvalue equation

+= 4+l (11 £9¢%=0, (15)

as illustrated in Fig. @). In this and all subsequent plots, where

066409-4



STATISTICAL CHARACTERIZATION OF THE... PHYSICAL REVIEW E 70, 066409(2004)

(@ 7 (b)

0. : e
AN 0.3 | /:r\
\ O
(16) N p” /’ P
Iy 4 0.1 i

. 42 VI 7 , /zm
with + and Dg evaluated at ,. For \© <0, Eq.(15) can be \.\I“\/ fio1 :{/z:’m
solved to give a square-integrable eigenfunction under the 05 055 06 H
boundary conditiong'® —0 asr — % when\? is one of
the eigenvalues.,, 1=0,1,2,...,denoting the number of FIG. 3. (8) m== eigenfunctions for thé=0 (solid line), I=1
radial nodes of the eigenfunctiof®=¢,,. Note that\,,  (short dashesand|=2 (short and long dashgsnodes aju=1/2,
depends only om=n/m and is otherwise independent of the arblt_rary norrpah;atlon(b) Growth ratesy (in units _of the inverse
magnitude ofm and n. We assume that th%u(r), when polo[dal _Alfven time vs resonant.=u. Dashed lines show ap-
combined with the continuum generalized eigenfunctions foP"oxImations Eq(21) (for 1=0) and Eq.(20) (for =1 and 3.
A9 >0, form a complete set.

£O =0 _\OpO = _ d N )\(0))1 +2x2 -\ - Dg
dx dx

As is seen from Fig. 3, Eq21) gives a remarkably good
approximation to the growth rate of the most unstable radial
The leading term in the expansion of the eigenvalue ineigenmode)=0, and Eq.(20) gives a good approximation
1/m gives the growth rate in the limin— c«, known as the for the highert modes(the semiclassical quantization being
Suydam approximationRestricting attention to unstable strictly justifiable only for largd). The growth-rate maxima

modes, so thay=(-\)"? is real, we transform Eq15) to  for eachl occur close to the maximum @& (and hencd)),

1. Suydam approximation

the Schrodinger forni21] but not exactly owing to the factor in the definitionl"
d?y =ylr,).
d_772 +Q(n)y=0, (17 From Eq.(21) we see that, provided the Suydam criterion
G>1/4 is satisfied, there is an infinity of growth rate eigen-
where values accumulating exponentially toward the origin from
above(so the\ values accumulate from belgvin the limit
Q=Qu(rly.m) = G-1-Lsech n-T2cosft n, (18 o0 o
with G=G(r,) defined as in Eq10), T'= y/%(rﬂ), 7 defined Perhaps less widely appreciatédecausem and n are

o B 1 normally taken to be fixedis the fact that there is also a
throughx=y sinh 7/+(r ), and¢/=(coshz)"“¢(x). [In Ref.  yqint of accumulation of the eigenvalues of E8) at each
[21], Eq. (18) is derived from the Fourier transform of Eq. ) | as Mmax— ® With | fixed. To break the degeneracy of

. !
(15), but we can also use the real-space version as the equR, e must proceed further with the expansion imi/
tion shares with the quantum oscillator the remarkable prop-

erty of having the same general form in both Fourier space

2. 1/m? corrections
and real spacg.

Cheremhykh and Revench(R1] (CR) have made an ex- Proceeding with the expansion Ed4), the calculation
tensive study of the eigenvalues of E7) using the semi- goes through much as in standard time-independent quantum
classical quantization condition perturbation theory28], e.g..

The lowest-order eigenvalues and eigenfunctions are, as
3€ Qo) 2%y = (21 + 1), (19)  found in Sec. 1BA@=),, and ¢©=¢,(x), respectively.
The O(1/m) correction AV, vanishes identically from parity

which follows  from the WKB ansatz ¢ considerations-e,,(x) is either an even or odd function so
=A(7)expti [QY%dy. CR derive several approximations its contribution to the matrix elements &f? and M® be-

. . . . . (0) (0) j (1) (1)
useful in appropriate limits, improving on the earlier result of Ween® an%" is even. On the other hant,” andM
Kulsrud [25]. In this paper, we use two of their results to &€ odd, son'Y’=0. (This contrasts with the finite-aspect-

compare with numerical solutions of Ed.7). The first is Eq. ratio toroidal case where toroidal coupling of Fourier har-

(4.5) of [21], monics of differentm to form ballooning modes leads to a
nonvanishing 1 correction[29,3Q.)
(I + 1)77 The first nonvanishing correction term is thus
I'= i ex 2 1 (20) ) (1)
e 20 472 )\(2)=<M’||£(2)|M.|>— 2 (,u,l|£ |;L\L:| >i/:\a| |£ |Mv|>’
which [combining the criteria given in CR’s Eq&4.4) and Il wl” Rl
(4.12] is applicable whenr=(G-1/4)?>1/2. The sec- (22)
ond CR result we use is their EGL.7),
, G-(2a+1G¥ where the sum over is taken to include an integration over
=T 1l+@et (2)  the continuum. The operator§"=L"-x, M© are the
higher-order generalizations 6f?, defined by Eq(16). The
applicable wherG=T?>1. m=cc matrix elements of any operatdt are defined by
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4 a 4 b ! Yoo
o =0 @ 03P 120 ® Tl ¥ @) 14 (b)
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FIG. 4. Nondimensional growth rateg, ,= (-\| nn)*? vs m2
for 1=0 and 1, found by numerical solution of E@) (Sec. Ill O FIG. 5. Nondimensional growth rates vs radial node nuniber
@ n/m=1/2 (m=2,4,6,..) and (b) n/m=11/19 (m  (a) found by numerical solution of Eq3) (Sec. Ill O for (m,n)
=19,38,57,..). At high m, the dependence becomes linear, in=(2,1) (diamond$ and (8, 4) (triangley, normalized to theuw
qualitative agreement with Sec. Il B 2. =1/2,infinite-m results(filled boxes; (b) u=1/2,infinite-m results

(pointg and asymptotic result E¢20) (dashed ling

*

<M,|,|ﬂ’u,|”> = f (PM,I’(X)‘?(PM"(X)dX’ (23) . . .
o0 change of variable from to a new independent variabbe

with the eigenfunctionsp, (x) being normalized so that such that

(u,IIMO@| 4, 1y=1. Note that, with the operatots and M I

defined as in Eqs(5) and (8), £ is Hermitian under the me(r) =n = ysinh7, (24)

inner product used in E@23) only for i=0. However, it can :

be made Hermitian at arbitrary order by the redefiniions2nd @ new dependent variahjer) such that

L—rL andM~rM, which puts the eigenvalue equation into .

Sturm-Liouville form. ¢ = (zcoshy) ™ y(), (25)
As in quantum mechanid®8] e.g., if £ is Hermitian

the contribution of the second term on the right-hand side 080 that Eq.(3) becomes the Schrédinger equatidr), but

Eq. (22) is always negative for the lowest eigenvalag’, ~ With Qo replaced by

because)\l(?>—)\|(°)>0. However, in ideal MHD a positive

contribution from the first term usually dominates and the Q=0G(y - 1 w - 12 cost 7
infinite-m mode is most unstabl®2]. As seen in Fig. 4, this 4 4 2
is not always the case;l(i)o is negative foru=1/2 butposi- ) ) \2
tive for ©=11/19=0.578 947... . tanhpde 1d% 1 [ de
The latter value ofu is very close to the value giving the + 57 - _-E + R d_77 ’ (26)
global maximum Suydam growth rageee Fig. 3. Thus, in 2t 2+ 4

the special case studied here and in accordance with conven- _
tional wisdom, theglobal maximum interchange growth where+=rd+/dr is as defined in previous sections, but ex-
rate occurs atm=c. Both these results are intuitively pressed in terms of.
reasonable—the eigenfunctions become increasingly local- Differentiating Eq.(24), we find
ized asm—x, so the highest growth rate is obtained by
localizing in the “most unstable” region of the plasma, where dr _ycoshypr
+~11/19. On the other hand, modes which localize in “less dn  m
unstable” regions as— o« can achieve a higher growth rate
at finite va_llues oim because their more exte_nded ﬂmte-_ Thus, in the largem limit, equilibrium parameters such &
eigenfunctions overlap the more unstable region and tap into . . ) :
the free energy from the pressure gradient in this region. and + are slowly varying functions ofz, e.g., de/dy
Since the eigenvalues approaxf) as 1h?, there is an  =0O(1/m) and d%/d#?=0(1/m?). Comparing Eq(26) with
infinity of modes in the neighborhood of eaah, in the  Egq. (18), we see that, to leading order inrh/ Q=Q, but
limit Mpa— . That is, they are finite-growth-rate accumu- yith ; now a slow variable rather than a strict constant.
lation points of the complete spectrum. Because the rationals \yith the simple form fors, Eq. (1), assumed in this
w are dense on the intervedry) #(ry), where(ry,ry) isthe  paner Eq.(24) is easily inverted to give(z), and also a

region in which the Suydam instability criterion is satisfied, . :
and becaus@,, in general depends continuously pn the cancellation occurs between the tersi¢z)tanhs/2+ and

accumulation points. ,; fill the interval (—¥4,.,, 0) densely.  +'(7)/2+ so that the exad® is not much more complicated
This is the part of the unstable spectrum called the “accumuthanQ,. The eigenvalues in Figs. 4 and 5 were computed by
lation continuum” by Spies and Tatarorji#], though “accu- integrating Eq.(17) with Q, replaced by the exad® and
mulation essential spectrum” might be better terminologywith the appropriate finite boundary conditions. Lowre-
mathematically. sults were checked against those from an untransformed
shooting code. The dashed lines represent the results of scans
C. Finite m and n through unquantized, noninteger valuesmfto show the

In order to calculate arbitrarily high- or lomeigenfunc-  smooth, but not necessarily monotone, functional depen-

tions, we generalize the transformation in Sec. 11l B 1 by thedence ofy onm

(27)

dn L, M
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n (a) 50’“ =) These spectral sequences all accumulate toward the same
: ERARATNY Suydam eigenvalug,; o as Myax— o independently of the

choice ofM andN. However, the rapidity of this approach is

sensitive to the choice d¥1/N. For instance, we see in Fig.

7 the most rapidly converging sequen&g(4/7|4/7), as a

set of points accumulating vertically from below toward the

Suydam eigenvalue. Other sequences on either side of

S)(417)417) approach the accumulation point obliquely and

much more slowly—fom,,,,=100 they visibly have some

distance to go. The sequence immediately to the left of

FIG. 6. (a) Lattice of quantum numbers on which the part of the SO(4/7|4/7) IS 80(1/2|4/7)’ while that to the right is

spectrum between the “ground state” and the threshold for the ent@(3(5|4/7)’ 1/2 and 3/5 being the immediate neighbprs of
of thel =1 mode is defined, and the unbounded contours of constarft/ 7 N the Farey sequencg81], p. 300 of order 7(the first

14
12 40 .:
10
30

20

N o @

10

m
5 10 15 20

eigenvalue(b) The same, inu=n/m, m space. order at which 4/7 appegtswith the u values correspond-
ing to $(1/2|4/7) and S(3/5|4/7) providing the immedi-
IV. =0 SPECTRUM ate neighbors of 4/7 in each higher-order Farey sequence.

In discussing the structure of the spectrum, it is useful to

The most unstable modes are those with radial node NUMsartiti ; :
= ; : o artition § into two subsetsS, and S;, as the points are to
ber 1=0. Thus we first consider the S&={\omn|l<M  {he |eft or right, respectively, of the dashed vertical line
= Mmax, Mitmin <N < Mimag, Wherem andn are integers and - gnown in Fig. 7 passing through the point of maximum
Mmin @Nd umax @re chosen to give the desired rangeyofs rowth rate.
we shall be rescaling the eigenvalues prior to statistical' e sequenceSy(1/2|4/7) and S,(3/5|4/7) accumulate
analysis, it makes no difference whether we work with thetoward)\4,7,0 but sloweO(1/m,,,)] than doess,(4/7|4/7)

S e thet o et of r[ L/, o Sec. Il B, Thus there is 2 gap contain-
quantum-mechanical ground state is the most rapidly grows Agj7,0 Within which §,(4/7|4/7) contributes O(Ma

ing mode—denoting the maximum growth rate of 10 g(zllr;ts ;[)?rﬁs while other sequences contribute at most a set of
mode byy,, the minimum\ is N\g=—72,.,=—74. POINtS.

The spectrum is defined on the fanlike subset of the two—d. Withi_n tTeb gap, t(;]e SdpECt:EnSa. isl essenttially Ork?g_
dimensional quantum-number lattice depicted in Fi¢p).6 Imensional, being indexed by e Singie quantum nurkber

Also shown are contours of constapior \), regarded as a In the full spectrum,&;%u%, O(mmax? unrelated eigen-
continuous function ofn andn, which are seen more clearly Values fromS; appear in the gap, making the spectrum lo-
in Fig. 6b). Here we see a striking contrast with more ge-C2lly more random and two-dimensional.

neric systemg19], where the constant-eigenvalue contours

are segments of topological circles enclosing the origin. In V. WEYL FORMULA

the ideal-MHD case, the contours are topologically hyper-
bolic, with asymptotes radiating from the origin toward in-
finity.

An interesting representation of thle=0 spectrum is
shown in Fig. 7. A great deal of structure can be discerne
determined by the number-theoretic properties of the interv.
of u depicted. For instance, focusing on the low-order ratio-
nal number 4/7, we define spectral subs&N/M |4/7)
={Nomn/M=M+7k,n=N+4k,k=0,1,2, ... [(Mna—N)/7]},
where[x] denotes the largest integeix.

As discussed in Sec. Il B 2, the overall maximum growth
rate for thel=0 and 1 modegand, we assume, for all
occurs aim=o, Thus the threshold value when a given mode
first starts contributing to the spectrum is)at—y,z, where
ar is the maximum oveu of y(u,l). We denote the corre-
ponding value ofx by w.

For fixed | and largem,,,, the number of eigenvalues
N;(u) in an interval ofn/m betweenw, and u is asymptoti-
cally equal to the area in the, n plane[see Fig. 6a)] of the
triangle bounded by the linas=um, n=m, andm=m,,,.
¥ That is, Ni(s) ~ 3l = | e ,

0.333 Since contours of constait(or y) asymptote to lines of

3"3':".', constantu asm— <, we can estimate the number of eigen-

0.332 P values between two values Bf(or y) by inverting the func-
0.331 . l . tion A, for u and substituting this into the above expression

0 33 . E . for N,(u). The inverse is double-va_lueqic:,u,*()\)>,u| and
’ ! 4 ! m (\) <. Then the number of eigenvalues between the

0.329 ;M= - L. T, ground staten, | and\ is approximately
., | o,
0.57 0.58 0.5 9’1

— 1
NﬂMEjfﬁ%ﬂ&@m (28

FIG. 7. Nondimensional growth-rate eigenvalued 0 modes
near the maximum growth rate ys=n/m. The ensemble shown is The asymptotic dependence of the total spectr8m

for mya,=100. =5USUS US/U... is thus
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N (2) N (b) = o\
0
1200 ol G o) =0omad 1=| ——— | [+O[(u~-mo)’], (30
1000 2251 s > < A,U«
800 R S~
s00f ™ o e el where(Aw)?=—20mad 0" (1o). To leading order all other pa-
o 210 ° 5 S rameters are evaluated at the maximum p@irtu,. The
Y £l ¥ quadratic correction ter need only be retained in the term
0.15 0.2 0.25 0.3 0.312 0.314 . . . .
involving the expansion parameterso, to leading order,
FIG. 8. (a) Eigenvalue sequence numbk¥fy) for the combined |
g)ectral_sesou S, in the casemn,,=100. The Weyl formula fo&,, N= Y exp{— il ] , (31
No(%)+Ng(7), is shown as a dashed linda) Closeup of the region 20(n)

. ; | . ik -5/9. )
containing eigenvalues associated with3/5 andu=5/9 where 7054t(ruo)(0max/e)eXF(‘7T/4Umax_1/40'ﬁ1ax)-

Solving for u, we find

%

N\ = NEN). 29
) %2 ) (29) Mli(y):#oiA,u{l— (32)

| ] 1/2
Imax¥) ’

This is the analog of the Wey! formuld4, p. 258 for the ~ WNe€r€lma(y)=(2/m)amaxIn(yo/ 7). Substituting Eq(32) in
integral of the smoothed spectral densifdensity of Ed:(29) and approximating the sum oveeby an integral, we

states). find the leading-order asymptotic behavior of the number of
Approximating ;=N +3(\,, 1/ dud)(u=m)?, we get eigenvalues to be
HEON) = V2NN Y21 (PN, 1 oud)Y2. Thus there is a — 4AA
| inqularity at each m N(Y) ~ = oI 22 33
square-root singularity at each mode threshold. () 30 OmaxThax N y' (33

A comparison between the Weyl formula f8§ and the
set of points{(yy,N)}, whereN is the sequence number ob- Which diverges logarithmically ag— 0.
tained by sorting the set 0 andl=1 growth-rate eigen-
values from largest to smallest, is shown in Fi¢ga)8show-
ing excellent agreement above the threshold $pr The V1. NEAREST-NEIGHBOR STATISTICS

plotted points may also be regarded as the locations of the preparatory to the statistical analysis of eigenvalue spac-

steps in the_“stawcase plot” o_f the piecewise-constant _mterng, it is standard practice to rescale,unfold, the eigenval-

grated density-of-states functidi(y), but the scale in this es 5o as to make their average separation unity, thus making

plot is too coarse to resolve the staircase structure. possible the comparison of different systems on the same
A finer-scale plot is shown in Fig.(B), in which signifi- footing.

cant deviations from the Weyl curve are seen in the micro- e can unfold the spectra by using the Weyl formulas

structure. The range shown in Figb8is unusual in that it apove, e.g., fok; € S we can define rescaled eigenvali&s
containstwo well-defined accumulation sequences in closepy

proximity. These are associated with low-order valueg.of -

occurring on either side of the growth-rate maximum near E = Nj(\). (39
u=11/19=0.579—the sequence associated wjhr5/9 ) )
~0.556 is inS; and the one associated with=3/5=0.6 is  FOr the set%=$US,, we can unfold with the combined
in S. There are very few eigenvalues associated with highWeyl function, >.N3. However, for practical purposes we
order rational values of. in the range shown and the two have in this section used empirical least-square fitsl(@f)
low-order sequences present are practically unmixed, eithéo a linear superposition of the basis functidng,..— )2,
with each other or with eigenvalues associated with unrefy,,.— %), (Ymax— %% which captures the square-root sin-
lated higher-order rational values pf [In fact there is only  gularity but avoids having to invery,.

one such high-order mode in the region of the accumulation When my,,, is large, the great majority of eigenvalues
sequencesy=51/92, the closest approximant to 5/9 in the ), .., are very close to the corresponding=c eigenvalue
set corresponding t&(1/2|5/9), which causes the slight with the sameu=n/m, A, Thus one might suppose
jump seen in the.=3/5 sequencg.Also, the wide gap con- that the statistics of the spectrum are asymptotically the same
taining no eigenvalues is because the intersection of the gaps those of an ensembl&S™W@™={\ ol 1< M<My a0
associated with the two low-order rationals is nonempty.  mgpin<N<Mitmay-

The spectrum near the marginal stability poipt;0, will In Fig. 9a), we show the distribution of nearest-neighbor
involve the superposition of many branches of radial eigenunfolded eigenvalue spacings f@?”ydanj and in Fig. 9b)
valuel. To estimate the asymptotic behavior Wfy) asy  that for the set, with the correct finitem eigenvalues. It is
—0, we use the approximate dispersion relation &f).  seen that the two distributions are radically different—even
Taking| to be large, we see from E¢O) that the Suydam though low-order rational values @f are rare and the distri-
growth ratesy(u) are sharply peaked about the location of bution is coarse-grained, the high-approximation induces
the maximum,uo, of G(r,), where o(u)=(G-1/4Y?is  sufficient extra degeneracy that the Suydam spectrum is
also a maximum. Thus we can expan@) aboutu, dominated by a large, but spuriou$function-like spike at
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IZ(S) (a) P(s) (®) Ii(S) (a) fi(s) (b)

o o o O
N s> oY ©

§

1 2 3 4

FIG. 9. (a) Nearest-neighbor eigenvalue spacing distribution for ~ FIG. 11. () Nearest-neighbor eigenvalue spacing distribution
the approximate spectral &Y™ using umin=0.5044, pna  TOF the spectral se; for mma,=1000 (37 932 eigenvalugs (b)
=0.6288,my,,,= 100 (625 eigenvalues (b) The same, for the cor- Nearest-neighbor eigenvalue spacing distribution for the spectral set
responding set of accurate eigenval@gs S (24 412 eigenvalugs

s=0. (The range ofx used in Fig. 9 corresponds to the range  In Fig. 1Qb), we show the Dyson-Mehta rigidity param-
of =0 growth rates above the maximum1 rate, in which ~ eter Ag(L) [17, pp. 321-32B defined as the least-squares
S, is the only contributor to the spectrum. deviation of the unfolded eigenvalue stairch&) from the
The reason why finiten effects are so important, despite best-fitting straight line in an interval of length Again, the
the smallness of the@(1/n?) corrections found in Sec. behavior is similar to that for the completely random spec-
1B 2, is seen from the Weyl formula, Eq28), which  trum (Poisson procegsn that A; increases linearly with.,
shows that theverageeigenvalue spacing in a set contain- but the slope is slightly less than the 1/15 expected for the
ing all values ofn/m within the range of interest scales as Poisson processs.
m;2,, which is the same order as tsenallest @1/m?) cor- In order to understand the departure from Poisson statis-
rection within a set containing only/m=const. Thus in the tics better, we show in Fig. 11 the spacing distribution for the
set of accurate eigenvaluSgthere is a strong intermingling corresponding set§; and ;. The departure from Poisson
of eigenvalues with differemt/m that does not occur in the statistics is now quite striking.
approximate seﬁ?llyda"] In Fig. 12a), we show the spacing distribution for the
This explains why the nearest-neighbor eigenvalue spac=1 spectrum, which is seen to be very much like thé®
ing distribution in Fig. @) is much closer to the Poisson Spectrum of Fig. 1@ in its departure from the Poisson dis-
distribution exgg—s) obtained for a random distribution of tribution. However, we might expect that mixing the0
numbers on the real line, and also predicted for generic sepdith the 1=1 spectrum will make the levels appear more
rable system$19], than that in Fig. @). Nevertheless, the ‘random” and Fig. 12b) confirms that the level spacing dis-
set of 625 eigenvalues used in FigbPis too small to say tribution does in_deed become more like the exponential ex-
convincingly that the distribution is or is not Poissonian, soPected for a Poisson process.
we need to analyze larger data sets to determine how close to
generic the ideal-MHD spectrum is.
A cutoff at m,,,,=1000 gives a se§, containing about
62 254 eigenvalues in the range between the maxirwitn We have demonstrated that the statistical nature of the
growth rate and the maximu=1 growth rate.[Note the ideal-MHD interchange spectrum deviates significantly from
approximatelym,znax scaling in the size 0%, as predicted by the random Poisson process of generic separable systems due
the Weyl formula, Eq.(28).] In Fig. 1Qa), we show the to the number-theoretic structure of the eigenvalue distribu-
nearest-neighbor distribution for this set. Close examinationion. The similarity between the two level-spacing distribu-
of the region near the origin reveals no trace of the spikdions in Fig. 11, which correspond to two different parts of
seen in Fig. €a), not even the tiny spike found by Casati  the rotational transform profile, suggests the possibility that
al. [1] for the spectrum of waves in an incommensurate rectthere may nevertheless be some universality in the statistics.
angular box. However, it is clear that the statistics are notf so, we have found a new universality class.
exactly Poissonian.

VIl. CONCLUSION

P(s (a) P(s) (b)
P(s) (a) (b) 1

=

/

\
2 9 QO £

8
6
.4
2

o o @ ©

10 20 30
length of interval L

N

1 2 3 4

FIG. 10. (@) Nearest-neighbor eigenvalue spacing distribution  FIG. 12. (@) Nearest-neighbor eigenvalue spacing distribution
for the spectral se, using wmin=0.5044, nax=0.6288, M.y for the first 72 500 eigenvalues of thel spectral se;, my,.y
=1000(62,254 eigenvalugs(b) The Dyson-Mehta spectral rigidity =1000.(b) Nearest-neighbor eigenvalue spacing distribution for the
for this set(solid line) compared with that for the Poisson process mixed spectral sef,U S; over the same range of eigenvalues as in
(dashed ling () (total of 95 000 eigenvalugs
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The crude regularization used in this paper, simply re- APPENDIX A: 1/ m? CORRECTIONS
stricting the poloidal mode numbers o< My, is not very The coefficients of the expansion E@4) are found by
physical but corresponds closely to what is done in the largeraylor expansion of the geometric and equilibrium quantities
three-dimensional eigenvalue codesssp [9] and TERPSI-  in Eq. (5),
CHORE [8]. Thus, apart from fundamental mathematical in- d-. . d -
terest, the primary motivation of this paper has been the nu- LO = - —22— +4° - Dg,
merical analysis of the three-dimensional ideal-MHD dx
spectrum as produced by these codes. Preliminary results ded deod .- .
[23] on an interchange-unstable stellarator test case show LW = x—%— = —— +H+— 3)X°
spectra with eigenvalue separation statistics similar to those dx dx dx = dx

of strongly quantum chaotic systems. However, the results of
the present paper indicate that some caution should be taken
in interpreting ideal-MHD spectra in terms of conventional ) d
quantum chaos theory because of the radically different na-
ture of the dispersion relation.

In subsequent work it will be important to examine the (1',_2 2 e ﬂ> d 2
effect of the finite Larmor radius on the spectrum. However, o
this typically makes the problem non-Hermitian and less

easy to compare with standard quantum chaos theory. X (5ot — 266 -2 — BDg + 5Dg — Do) + x*

A preliminary attempt[23] to regularize MHD via a .
Hermiticity-preserving inverse-Larmor-radius cutoff |i | X<E+f _ﬁng) (A1)
found a much more Poissonian eigenvalue-spacing histo- 12 4 2 3
gram for thel=0 spectrum than that found in the presentand Eq.(8)
paper. This suggests that finite-Larmor radius regularization e
is not only more physical than simple truncationnmandn, M© = _ d_2 i1
but also makes the spectrum more geng@uiovided the ei- dé 7’
genvalues remain real

M(l):xd_z_ixi_zx
d@ dxdx
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