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In this paper, current profiles for plasma discharges on the mega-ampere spherical tokamak are directly

calculated from pickup coil, flux loop, and motional-Stark effect observations via methods based in the

statistical theory of Bayesian analysis. By representing toroidal plasma current as a series of axisymmet-

ric current beams with rectangular cross-section and inferring the current for each one of these beams,

flux-surface geometry and q-profiles are subsequently calculated by elementary application of Biot-

Savart’s law. The use of this plasma model in the context of Bayesian analysis was pioneered by Svens-

son and Werner on the joint-European tokamak [Svensson and Werner,Plasma Phys. Controlled Fusion

50(8), 085002 (2008)]. In this framework, linear forward models are used to generate diagnostic predic-

tions, and the probability distribution for the currents in the collection of plasma beams was subse-

quently calculated directly via application of Bayes’ formula. In this work, we introduce a new

diagnostic technique to identify and remove outlier observations associated with diagnostics falling out

of calibration or suffering from an unidentified malfunction. These modifications enable a good agree-

ment between Bayesian inference of the last-closed flux-surface with other corroborating data, such as

that from force balance considerations using EFITþþ [Appel et al., "A unified approach to equilibrium

reconstruction" Proceedings of the 33rd EPS Conference on Plasma Physics (Rome, Italy, 2006)]. In

addition, this analysis also yields errors on the plasma current profile and flux-surface geometry as well

as directly predicting the Shafranov shift of the plasma core. VC 2012 American Institute of Physics.

[doi:10.1063/1.3677362]

I. INTRODUCTION

Bayesian analysis has been used in data analysis in a

wide range of contexts, spanning from astronomy to artificial

intelligence.1–4 Over the last decade, the techniques of Bayes-

ian inference in fusion plasmas have been developed.5–13 The

motivation of these developments has largely been to incorpo-

rate uncertainty in parameters, model, and data, which is not

easily captured in many traditional methods such as least

squares fitting. Specifically, least squares fitting is not an

intrinsically statistical procedure, in that it will only yield

most-probable parameter configurations but not any moments

of a probability distribution (e.g., the expectation or covari-

ance matrix). Thus, least squares fits usually have to be aug-

mented with a linearisation of propagated errors through the

associated forward model, to obtain uncertainties. In the case

of non-linear models, linear error-propagation may yield mis-

leading results; and as the topic of non-linear models is

extremely broad, there is no general way to explicitly propa-

gate errors in such systems without employing some level of

approximation or Taylor expansion of uncertainties. In the

Bayesian probabilistic framework, however, the uncertainty

of the plasma parameters, model and data are made explicit:

their statistics are related by Bayes’ theorem, which relates

the probability of inferred parameters given the data (the pos-

terior) to the probability of the data given the parameter (the

likelihood) and the probability of the parameter (the prior).

For each initial hypothesis of the plasma parameter, a forward

model describes the predicted data signal. Inversion of plasma

parameters becomes a probabilistic inference technique,

where one must in general compute the posterior probability

distribution function (PDF), and marginalising over subspaces

by using sampling techniques (e.g., Markov Chain Monte

Carlo).

In fusion, Bayesian inversion is more complicated as

many plasma diagnostic signals are often functions of multi-

ple plasma parameters, including the magnetic field equilib-

rium geometry. Moreover, the equilibrium geometry itself

has a non-linear dependence on many plasma quantities that

are difficult to measure directly (e.g., plasma pressure, flow,

and internal poloidal currents). To help address the complex-

ity of this situation, Svensson et al.9 introduced the use of

graphical models to fusion, which provide visualisation of

the PDF inter-dependance between parameter, data and

model. Such graphical models provide an efficient means by

which more complex physics and diagnostic forward models

can be coded and visualised.

A good example of the latter is Bayesian toroidal current

profile tomography, as developed by Svensson and Werner

on the joint-European tokamak (JET).10 In this plasma

model, forward models are constructed for magnetic pickup

coils, flux loops, and motional Stark effect (MSE) observa-

tions, the toroidal plasma current is modelled as a series of

axisymmetric current beams, and the current in each beam

inferred using Bayesian inversion. Svensson and Werner

were able to develop a fast Bayesian inversion by the use ofa)Electronic mail: greg.vonnessi@anu.edu.au.
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a conditional auto-regressive (CAR) prior, which makes the

posterior a Gaussian PDF. This made exploration of the pos-

terior computationally feasible, as the posterior then had an

analytic representation.

In this work, we build on the success of Bayesian infer-

ence for current tomography on JET, and implement toroidal

current profile tomography on MAST. To this end, we have

developed new techniques that identify and remove extreme

outlier measurements coming from diagnostics that are not

modelled correctly in our analysis (i.e., have undergone

some level of failure or have fallen out of calibration); with-

out this, it is not possible to infer a mean configuration of

plasma beams that yields any physical flux-surface geome-

try. Indeed, these techniques are not meant to refine the reso-

lution of existing inferences but are designed to minimise the

manipulation of raw data, while still preserving the existence

of a physical solution, i.e., where there are no currents out-

side the plasma volume. Using these techniques, which (in

this case) remove both pickup coils and flux loop observa-

tions, we show that flux-surfaces calculated from Bayesian

current profile tomography show strong agreement with last-

closed flux-surfaces (LCFS) generated by EFITþþ, a Grad-

Shafranov solver.14–16

The paper is structured as follows: in Sec. II, a general

overview of Bayes’ formula is given in the context of diagnos-

tic data analysis. Following this, physical models used for the

diagnostic predictions and plasma current reconstruction are

presented. New techniques used to identify and remove outlier

measurements coming from the magnetic diagnostics are

introduced in Sec. IV, and the results are presented in Sec. V

for a high-performance MAST discharge. Finally, Sec. VI

contains concluding remarks and discusses future directions.

II. OVERVIEW OF BAYESIAN DIAGNOSTIC ANALYSIS

The basis of our work is a probabilistic method that uses

diagnostic forward models in the context of Bayes’ Formula.

First, we introduce the notation P AjBð Þ, which denotes a

probability associated with a set of events A occurring given

preconditioned set of events or parameters B. Next, taking H
to represent the hypothesis—a collection of parameters to be

inferred in the context of a physical model reflecting the

quantities that are under observation—and D the diagnostic

data, Bayes’ formula can be cast as1,4

PðHjDÞ ¼ PðDjHÞ � PðHÞPðDÞ : (1)

Implicit in this notation are background assumptions made in

the particular context of the inference; the specific assump-

tions used in the forthcoming analysis will be pointed out

explicitly when appropriate. In Eq. (1), PðHjDÞ is called the

posterior, PðDjHÞ the likelihood, PðHÞ the prior, and PðDÞ
the evidence. The posterior represents an updated state of

knowledge, when a prior state of knowledge is updated with

an observation manifested via the likelihood. By subse-

quently using a posterior as a new prior, one is able to

construct an iterative process by which a given prior state of

knowledge is updated with any number of observations.

Finally, the evidence is the renormalisation constant that

ensures that the right-hand side of Eq. (1) is indeed a proba-

bility distribution. In this research, likelihood distributions

are fixed, modulo translations determined by diagnostic

observations. This is quite general, as diagnostic observa-

tions are often associated with Gaussian distributions, whose

standard deviation corresponds to the given error of the diag-

nostic. Assuming likelihoods to be Gaussian serves to mini-

mise the information contained in these distributions, when

only diagnostic observations and uncertainties are known.4

In this scenario, one may think of the evidence as a measure

of the consistency all observations with each other and the

prior knowledge. This can be understood by thinking of two

arbitrary, freely translating, Gaussian probability distribu-

tions with fixed variances multiplied together. The integral

of the result will decrease as the expectation of these distri-

butions move away from each other and is maximised when

the expectations are identical.

In order to clarify the relationship of Eq. (1) in the con-

text of diagnostic observations, we associate a vector of

model parameters, �k, with H and a vector of given observa-

tions �l with a corresponding error vector �r with the data D.

With this, one can rewrite Eq. (1) as

PðHjDÞ / Pðlij�k; riÞ � Pð�kÞ; (2)

for the specific observation corresponding to li and ri. As �l
and �r are given and thus assumed to be constant,

PðDÞ ¼ Pð�lj�rÞ is also just a constant, which justifies the

proportionality in Eq. (2). Implicit to Pðlij�k; riÞ, is the for-
ward model, Fð�kÞ, that relates an arbitrary configuration of

model parameters to a given set of observations, in a sense

that Fð�kÞ is constructed to take in a set of model parameters

and generate a vector of predictions meant to directly corre-

spond to the given set of observations.

Using Eq. (2) in Eq. (1) and iterating over all diagnostic

observations, one finds that

PðHjDÞ /
Y

i

Pðlij�k; riÞ
 !

� Pð�kÞ; (3)

and thus, the posterior reflects a probability distribution over

the space of model parameter configurations. Equation (3) is

the general representation of the posterior by which sampling

statistics can be used to construct moments of the posterior

distribution, which directly correspond to expectation values

and associated errors for the model parameters.

The software used to apply the above techniques to

MAST diagnostic data was written in the MINERVA frame-

work. MINERVA is a JAVA-based framework, developed by

Svensson and Werner, used to develop and analyse Bayesian

graphical models in the context of diagnostic data analysis.17

III. PLASMA CURRENT AND DIAGNOSTIC MODELS
FOR THE MAST EXPERIMENT

MAST is equipped with an array of precision diagnos-

tics, including a MSE system18 and over 100 routine equilib-

rium magnetic diagnostics. We solve for the toroidal current

012506-2 von Nessi et al. Phys. Plasmas 19, 012506 (2012)
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profile utilising equilibrium magnetics (pickup coils and flux

loops) and MSE diagnostics.

A. Plasma beam current model

Our development of plasma current profile tomography

via Bayesian inference closely follows the work of Svensson

and Werner on JET. In that work, the plasma is represented

as a finite grid of toroidally extended, axisymmetric current

beams, each with rectangular cross-section and carrying a

uniform current density. Each plasma beam current in this

model corresponds to a model parameter of the hypothesis in

Bayes’ Formula depicted in Eq. (1). In particular, this means

that the posterior will reflect a PDF, whose domain dimen-

sion is equal to the dimension of current beam elements in

our plasma model, and that it is a distribution of possible

current values that will be inferred for each plasma current

beam.

In MAST current tomography these beams are placed to

fill-out a large region inside the first-wall, as depicted in

Fig. 1. The ratio of first-wall to plasma volume is much

larger on MAST than most other tokamaks. Indeed, MAST

was not designed to have it is first wall tightly enclose the

plasma volume, which makes the first-wall boundary a poor

choice in selecting the extent of the plasma beam model. In

particular, filling out the first-wall with beams would yield

inference with greater uncertainties and requires stronger

priors to exclude unphysical solutions corresponding to

artificial current screening. This contrasts the situation in

Ref. 10, where JET—having a first-wall that tightly fits the

plasma volume—had its first wall as a canonical choice for

the cross-section beam extent. Thus, the beam extent for our

MAST inferences was determined by randomly selecting

shots and times between discharge #21000 and #24500 and

picking a beam configuration that encompassed the LCFSs

of all the tested shots. This initial survey was carried out by

having the beams fill out the entire first-wall region and sub-

sequently determining the corresponding LCFSs. It was then

verified that the LCFSs calculated using the reduced set of

beam currents were in a very good agreement with those

coming from the initial survey (i.e., no visually discernible

differences in the contours).

The key advantage to using a series of current beams

with finite cross-section to model the toroidal plasma current

is that the semi-analytic expressions for the corresponding

magnetic field and vector potential have no singularities,

even at points within the current beam itself.19 Indeed, if one

were to use filaments to model the toroidal plasma current,

there would be many singular points in the calculated mag-

netic field within the plasma that would make subsequent

flux-surface calculations difficult and prone to (possibly

large) numerical errors.10 A limitation of this current model

is that poloidal currents are not described.

B. Gaussian process (GP) prior

To make the inference on plasma beam currents, a prior

is used that effectively imposes a smoothness criterion across

the 2D cross-section of plasma beams. The degree of

smoothening is associated with a length-scale hyper-parame-

ter, s, whose selection is detailed in Sec. IV B. We use the

theory of Gaussian processes to construct such a prior. The

departure from Svensson and Werner’s selection of the CAR

prior for their JET analysis10 is due to the fact that the results

from using a GP prior have a much clearer interpretation as a

smoothing assumption than that of a CAR prior. Indeed, the

CAR prior enforces smoothening only locally20 and is thus

prone to noisy sample data. On the other hand, the GP priors

enforce smoothening globally and generate samples that are

not nearly as noisy as those coming from the CAR prior. The

application of Gaussian processes to Bayesian analysis has

been explored in several different contexts, including

machine learning.21 Indeed, in more recent works, Svensson

has also made use of GP priors22 in the context of current to-

mography. In this analysis, the theory is used to construct a

covariance matrix for the prior distribution via a covariance

function, kðRp; Zp;Rq; ZqÞ, where ðRp; ZpÞ and ðRq; ZqÞ are

the positions of two, arbitrary plasma currents Ip and Iq

(respectively), taken from the collection of beams in our

plasma model. The explicit relation between the covariance

and k in our analysis is given by

CovðIp; IqÞ ¼ kðRp; Zp;Rq; ZqÞ :

¼ exp � 1

2s2
ðRp � RqÞ2 þ ðZp � ZqÞ2
h i� �

; (4)

where the units on the covariance function values are A2. As

the positions of plasma beams are fixed, the beams in our

model can be linearly indexed. Subsequently, Eq. (4) can be

FIG. 1. (Color online) Plasma beam cross-sections fill out a large region

inside the limiter that encompasses the plasma volume for MAST

discharges.
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used to construct a covariance matrix, ��K, associated with the

vector of indexed plasma beams, �I. The specific prior distri-

bution used in our analysis is taken to be a zero-mean

Gaussian with ��K as its covariance matrix, i.e.

Pð�IÞ / exp � 1

2
�I T ��K

�1�I

� �
; (5)

where the superscript T denotes the transpose. A Gaussian is

a canonical choice for our prior, as normal distributions min-

imise the Shannon information over all probability distribu-

tions, when only the mean and covariance matrix is given

(This is an elementary result, whose derivation can be seen

in any number of textbooks including.4) From Eqs. (4) and

(5), one can see that as s!1, the smoothening constraint

increases in strength, in a sense that beams have to have a

great spatial separation to have a relatively low correlation.

Specifically, as s!1, the beam model reduces to a single

current beam and PðIÞ becomes a d-distribution centred at 0

current. In contrast, if s! 0, the current beams become

independent, with the variance of each current element

becoming infinite. The choice of s will have an affect on the

errors propagated through calculations based on the inferred

current tomography, with larger values of s generally corre-

sponding to larger error bars on results. This point will be

discussed further in Sec. IV B.

One will notice that Eq. (4) indicates that our covariance

matrix will have ones on its diagonal. While one can general-

ise Eq. (4) to have more hyper-parameters that control the

diagonal values of the covariance matrix, this makes

hyper-parameter selection a much more difficult problem, as

the techniques in Sec. IV B would have to incorporate multi-

dimensional scans that subsequently would require orders of

magnitude more inversions being made to carry out the

hyper-parameter determination. Thus, we use a simpler prior

in this research and will explore more complex variations

thereof in future works.

Finally, while Eq. (4) effectively enforces a smoothen-

ing effect across current beams, the strength of this effect is

homogenous across the beam extent. This prior is appropri-

ate in the current situation, as there are not enough internal

diagnostic observations within the plasma to resolve spatial

inhomogenaities of the s hyper-parameter. Indeed, the

MAST MSE system currently only provides internal mag-

netic field measurements in a highly localised region across

the plasma mid-plane. However, this prior can easily be gen-

eralised to include parameterisations of s as a function of

cross-section coordinate. This type of prior would be appro-

priate to use when there are multiple internal magnetic field

measurements for several different flux surfaces within the

plasma volume.

C. Diagnostic forward models

In toroidally axisymmetric magnetic-confinement devi-

ces, there exists a direct relation between the poloidal flux,

w, and the toroidal component of the plasma current vector.

For convenience, we use the standard cylindrical coordinate

system ðR; Z;/Þ with Z pointing upwards along the major

axis of the tokamak. Taking DðR; ZÞ to denote a vertically

oriented disk centred on the major axis of the tokamak at a

height Z and radius R, the poloidal flux function, w, is com-

monly defined as

wðR; Z; �IÞ �
ð

DðR;ZÞ
�BðR; Z; �IÞ � dS

¼
þ
@DðR;ZÞ

�AðR; Z; �IÞ � d‘ ¼ 2prA/ðR; Z; �IÞ; (6)

where �B is the magnetic field and �A is the vector potential.

A/ is related to the toroidal current I/ via Biot-Savart’s law

A/ðR; Z; �IÞ

¼ l0

4p

ð
I/ðR0; Z0ÞR0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZ � Z0Þ2 þ R2 þ R02 � 2RR0 cos /0
q dR0dZ0d/0:

(7)

It is clear that when only considering I/, �A will have zero R
and Z components. Thus, taking the curl of Eq. (6) and using

the definition of r� �A ¼ �B, one has

BRðR; Z; �IÞ ¼ �
1

R

@w
@Z

; (8)

BZðR; Z; �IÞ ¼
1

R

@w
@R

; (9)

where BR, BZ, and B/ indicate the components of the mag-

netic field in cylindrical coordinates. From Eqs. (6)–(9), it is

clear that if I/ is represented by an axisymmetric beam of

rectangular cross section and uniform current distribution,

then w, BR, and BZ will vary linearly with respect to the

beam currents. The importance of this will become clear in

the next two paragraphs.

The main diagnostics used to infer the current distribu-

tion are pickup coils, denoted FP, full flux loops, FF and the

polarisation angle c of the emitted light from neutral excited

species during neutral beam injection due to the MSE. The

responses of these diagnostics to the collection of beam cur-

rents are given by

FPðR; Z; �I; hÞ ¼ BR cosðhÞ þ BZ sinðhÞ; (10)

FFðR; Z; �IÞ ¼ 2pw; (11)

FMðR; Z; �I; �AÞ � tan cðR; Z; �I; �AÞ ¼ A0BZ þ A1BR þ A2B/

A3BZ þ A4BR þ A5B/
;

(12)

where h is the angle between a pickup coil’s normal and the

mid-plane and A0, A1, A2, A3, A4, A5 are constants for the

particular MSE viewing geometry. Both FP and FF have a

linear dependence on w, BR, and BZ and hence they are line-

arly dependent on the total current going through each toroi-

dal current beam. The function tan c has a non-linear

dependence on BR and BZ; however, given that both neutral

beams and MSE viewing optics all are on the mid-plane for

MAST, A1, A2, A3, A4 are all approximately zero. Using

012506-4 von Nessi et al. Phys. Plasmas 19, 012506 (2012)
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these properties, tan c can be written as a linear combination

of BR and BZ

tan cðr; z; �I; AÞ ¼ A0BZ þ A1BR

A5B/
: (13)

Even though the A1 term is small, it is still included in the

MSE forward model, as the model is still linear and the

added computational complexity is negligible. Since the cur-

rent beam plasma model does not take into account poloidal

currents, vacuum field values for B/ are used in Eq. (13) to

perform the current tomography calculations. Also, Eqs. (12)

and (13) both ignore the effect of the radial electric field on

tan c. Thus, given that FPðR; Z; �I; hÞ, FFðR; Z; �IÞ, and

FMðR; Z; �I; �AÞ all have a linear dependence on the current

flowing through �I, one may write out a generalised prediction

vector �p as

�p ¼ �MI þ �C; (14)

where M is the response matrix of the current vector �I corre-

sponding to all the plasma beams modelling the plasma and
�C represents the contribution to surface currents present in

the vessel walls.

IV. POSTERIOR INFORMATION AND EXTREME
OUTLIER OBSERVATIONS

As MAST represents and state-of-art device with many

complex, inter-dependent engineering subsystems put under

strenuous duty-cycles, diagnostic malfunctions do happen.

The equilibrium magnetics on MAST are particularly hard to

maintain as these diagnostics lie within the vacuum vessel

itself. As a result, routine equilibrium reconstruction on

MAST requires that at least 20 of these diagnostics be dis-

abled or have their signal rescaled from their calibration pa-

rameters. There is no quantifiable algorithm that guides the

implementation of this process outside of reworking signals

to the point where the equilibrium reconstruction is consist-

ent with observations of other, independent diagnostics and

MAST standard operational scenarios. In this section, we

present an algorithm which is able to robustly and consis-

tently pinpoint and remove malfunctioning diagnostics,

using methods from information theory.

We build on the model in Sec. III, developed by Svens-

son and Werner in Ref. 10, to include an algorithm to iden-

tify and remove extreme outlier diagnostic observations,

within particular diagnostic subsystems, from the current to-

mography inference. Extreme outlier observations are those

observations coming from diagnostics that our analysis fails

to model correctly. This situation may be due to an unidenti-

fied diagnostic malfunction/failure or the diagnostic falling

out of calibration. Although attempts have been made to

accurately model the many systematic errors associated with

the magnetics diagnostics, it is difficult (in practice) to ascer-

tain if a particular pickup coil or flux loop or pickup coil is

malfunctioning or has somehow fallen out of calibration, as

the information they provide is non-localised relative to the

plasma. The MSE system on MAST is fortunately easier to

maintain and diagnose, as its primary components lie outside

of the MAST vacuum vessel; this is not the case for mag-

netics. Moreover, MSE provides information that is most

sensitive to a highly localised region inside the plasma, and

thus, it is easy to identify malfunctioning channels. Given

this situation, the below procedure for identifying malfunc-

tioning diagnostics is done without the use of MSE data.

Removal of extreme outliers is necessary on MAST to

ensure that the vast majority (over 95%, to allow for sheath

currents) of current flows only in the plasma volume, thereby

ensuring an accurate current profile inference that is consist-

ent with all diagnostic observations. The model is flexible

enough to infer toroidal edge current just outside the LCFS.

The motivation is that inference of plasma currents using the

model in Sect. III is not correct, with large currents far out-

side the LCFS (beyond uncertainties), if diagnostics produc-

ing extremely outlying measurements are included. We

introduce a new method to effectively identify and remove

these measurements and thereby remove solutions with more

than 5% of the current flowing outside the last closed flux

surface.

A. Evidence cross-validation

The Bayesian notion of evidence was introduced in

Sec. II as a measure of consistency between observations

with each other and the prior knowledge, when likelihood

distributions are fixed, modulo translation. Diagnostics in

fusion experiments often have their calibrations cross-

validated against other diagnostics measuring related quanti-

ties in the experiment. By using evidence as a tool in a gen-

eralised notion of observation cross-checking, we have

developed a new technique, which we label “evidence cross-

validation” (ECV). The philosophy behind ECV is to rank

diagnostic observation according to how consistent they are

with all other measurements against a given, fixed prior and

set of given observational errors. The diagnostic observa-

tions are then removed from the analysis, with the most

inconsistent diagnostics being removed first. As diagnostics

are removed, the resulting posterior evidence is recorded.

Diagnostics are only removed up to the point where the evi-

dence is maximised during the procedure.

The technique proceeds as follows:

1. A baseline posterior, labeled P0 is calculated with all

diagnostics using Eq. (3).

2. One diagnostic observation, label it oi, is removed from

the inference, a new posterior is calculated, call it Pi, and

the associated log-evidence Ei :¼ lnðPðDÞÞ is computed

and associated with oi. We repeat this process for all

diagnostics.

3. The diagnostic with the lowest associated log-evidence is

then removed from future inversions, and a new baseline

posterior calculated without the most conflicting diagnos-

tic observation being present. The evidence of this new

posterior is then recorded and associated with the

removed diagnostic.

4. Steps (1)–(3) are repeated to generate a curve of posterior

evidence versus the number of diagnostics removed.

5. Diagnostics are removed such that the posterior evidence

recorded in Step (3) is maximised.
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Computationally, calculating the evidence of high-

dimensional posteriors is an extremely difficult problem.4 To

address this, we consider likelihood distributions to have the

following form:

Pð�lj�kj; ��R

¼ 1

ð2pÞNo=2j��Rj1=2
exp

�
� 1

2
ð �Fð�kÞ � �lÞT ��R

�1ð �Fð�kÞ � �lÞ
�
;

(15)

where ��R is the covariance matrix associated with the given

diagnostic errors; No is the number of observations; and F is

the forward model associated with the diagnostic observa-

tion. Since the forward models being employed in this

research are all linear, Eq. (15) shows that the associated

likelihood distributions will all be multivariate Gaussian dis-

tributions. This subsequently implies that the posterior distri-

bution itself will also be a multivariate Gaussian, as the GP

prior is a multivariate Gaussian distribution. Thus, the evi-

dence associated with the posterior distribution will have an

analytic expression based on the covariance matrix of the

posterior. It is this computational simplification that makes

this procedure computationally tractable, able to be com-

pleted on the order of minutes on an average desktop com-

puter. For the results presented here, the ECV procedure

calculates the evidence for up to 3850 diagnostic configura-

tions. The entire ECV procedure takes 50-60 min to com-

plete on a 2.9 GHz desktop CPU running in a serial

implementation. A second motivation for selecting Gaussian

PDFs for our likelihoods comes from the fact that Gaussian

distributions also minimises the amount of information con-

tained in a distribution when only the mean and variance of a

distribution are known.4 Thus, picking a multivariate Gaus-

sian distribution is a canonical choice for the likelihood, in

the current scenario.

While the ECV ordering of diagnostics is relatively

robust against various choices of s in the prior, some ranking

variations can occur. This is discussed at the end of Sec. IV B.

B. Plasma current smoothening and s selection

The parameter s is a pre-set value that determines the

degree of smoothening enforced by the prior across the

collection of current beams. As the GP prior represents a

zero-mean Gaussian distribution, making s too large (i.e.,

enforcing more smoothening) will reduce the total plasma

current inferred in our analysis. On the other hand, making

s too small allows for unphysical “current screening” to

occur that infers currents only in plasma beams that are clos-

est to the positions where diagnostic observations are made.

While it is possible to treat s as a nuisance parameter to be

marginalised (i.e., integrated out), this would make the GP

prior no longer a multivariate Gaussian distribution, relative

to the free-parameters of the problem. The subsequent sam-

pling and evidence calculation on the posterior would require

a completely different set of algorithms, which would require

substantially more computational effort than the present

analysis employs; and thus, this calculation is beyond the

scope of the research presented here.

In light of the above statements, our analysis is carried

out using a single s, which is chosen to maximise the evi-

dence associated with the posterior, when using data from

both magnetics and MSE. Indeed, MSE data will signifi-

cantly impact which s maximises the posterior evidence.

This method of prior parameter selection in Bayesian infer-

ence has been very successful in the context of machine

learning.21 While it is possible that the evidence make be

maximised only in the limit of s! 0, a distinct, non-zero

global maximum has always been observed in the dozens of

shots analysed using this procedure.

As mentioned previously, the ECV procedure can have

its result affected by different selections of s. However, we

have not seen the results of the ECV change (i.e., ranking or

number of diagnostics removed) for variations of s under

1 m on MAST discharge data. For s shifts of more than 1 m,

the ranking of a particular diagnostic has been seen to shift

by up to one place with the overall number of removed diag-

nostics varying by up to three. Given the robustness of ECV

results for s variances under 1 m, the ECV and s-selection

procedures are wholly compatible in a sense that by iterating

the ECV and s-selection procedures, one will converge to a

particular s and collection of magnetic diagnostics that have

been removed. Practically, s is usually about 0.25 m for

MAST discharges with MSE data. If using this as an initial

guess, the iteration of these processes will find the optimal

configuration of diagnostics and s after one iteration.

V. RESULTS

To demonstrate the Bayesian inference of MAST current

profiles, we analysed MAST discharge #22254 at 350 ms and

#24600 at 330 ms. Discharge #22254 is a strongly shaped

double-null diverter (DND) deuterium plasma that has been

heated with 3.1 MW of neutral beam power. The time at

350 ms corresponds to highest poloidal beta of the discharge

where the plasma is in H-mode, just before neutral beam turn-

off. Discharge #24600 at 330 ms is also a DND plasma heated

with 3 MW of neutral beam power but is in L-mode. Bayesian

inference of current profiles was calculated using approxi-

mately 76 pickup coil, 24 flux loop, and 31 MSE observations.

First, we tested the ECV procedure’s ability to pick out

failing diagnostics by randomly selecting 20% of the diag-

nostics and rescaling their signals by a randomly selected

factor of either 0:5 or 1:5. These scalings were chosen, as

pickup coils on MAST are actually installed in pairs (i.e.,

having the same cross-sectional coordinate), with their sig-

nals being averaged to produce the signal recorded on the

scheduler. Thus, if one of these paired pickup coils fail, the

signals are scaled down by 0.5. If MAST personal recognises

this failure, they will rescale to compensate. However, if the

failed diagnostic comes back online later, then the average

signal will be scaled by 1.5 times its true value. Applying

this artificial rescaling procedure both artificial (based on the

configuration depicted in #22254 at 350 ms) and real

(#22254 at 350 ms and #24600 at 330 ms), the ECV proce-

dure was able to consistently identify all diagnostics that had

underwent this random rescaling. Moreover, the ECV proce-

dure was able to pinpoint these diagnostics, even when the
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artificial signal corruption leads to inferences that signifi-

cantly altered the shape of the plasma (due to the random

selection corrupting many diagnostics around the X point of

the plasma).

Figure 2 shows the evidence corresponding to the

removed diagnostic during successive iterations of the

ECV procedure for two different MAST discharges. Specifi-

cally, these plots correspond to the final ECV run, in the

ECV/s-selection iteration described in Sec. IV. It is clear

from Figure 2, that the evidence obtains a sharp global maxi-

mum when nine to ten diagnostics are removed. In general, it

is not necessary to remove all the diagnostics leading up to

the peak of the evidence to get the existence of a physical

solution (i.e., little plasma current flowing outside of the

LCFS beyond uncertainties). However, removing diagnostics

to maximise the evidence, according to the methods outlined

above, has been seen empirically as a sufficient condition to

guarantee the inference of a physical plasma across dozens

of MAST discharge snapshots, without exception.

Corresponding to Fig. 2 in the ECV/s-selection iteration

is the final s-scan plot in Fig. 3. This figure clearly indicates

that s ¼ 0:3m maximises the evidence of the posterior infer-

ence, when nine diagnostics are removed via the ECV proce-

dure for discharge 22254 at 350 ms. Likewise, s ¼ :2m

maximises the evidence for discharge 24600 at 330 ms. The

well-defined maxima shown in Figs. 2 and 3 have been con-

sistently seen qualitatively, when analysing dozens of differ-

ent MAST discharge snapshots. Across all discharges

analysed with MSE data, the results of the ECV/s-selection

iteration have produced a range of s between 0.21 m and

FIG. 2. (Color online) Evidence values for diagnostics removed via the ECV procedure. (a) Corresponds to shot #22254 at 350 ms, with s ¼ 0:3m; and (b) cor-

responds to shot #24600 at 330 ms, with s ¼ 0:2m.

FIG. 3. (Color online) Calculated evidence for scanned values of s. (a) Corresponds to shot #22254 at 350 ms with nine magnetic diagnostics removed via

ECV and (b) to shot #24600 at 330 ms with 10 magnetic diagnostics removed.
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0.32 m with 8 to 12 diagnostics being removed. The reason

for the discrepancy between the peak evidence values

between Figs. 2 and 3 is due to the fact that the ECV proce-

dure does not use MSE data, as detailed in Sec. IV A.

Figure 4 contains plots of the expected current beam

profile and of the flux-surface distribution, calculated by

applying a Ampere’s law to current beam posterior samples

for discharge #22254. As the poloidal flux surface geometry

is very similar for both shots, Figure 5 only shows the cur-

rent beam plots for #24600. The EFITþþ LCFS has been

included only for comparison. The key feature of Figure 4 is

that errors on flux-surface can be ascertained from the

Bayesian inference of current-beams; it is not possible to

extract such errors when using conventional Grad-Shafranov

reconstruction techniques, in a mathematically rigorous way

(stemming from the fact that equilibrium reconstruction

requires solving the GS PDE with only a finite number of

diagnostic measurements and not a fully specified boundary

condition). This is of particular importance, as many diag-

nostics require data from the flux-surface geometry in order

for their observations to be correctly interpreted. The results

of Figure 4 are inferred from the combined observations

coming from magnetics and MSE.

In addition to giving errors on flux-surfaces, Bayesian

current tomography can also yield errors on any quantities

that can be calculated from a toroidal current profile. Figure

6 shows statistics on the q-profile and toroidal current den-

sity on the mid-plane, calculated from samples of the current

beam posterior for discharge #22254 at 350 ms. Very similar

results come from the analysis of #24600 at 330 ms.

The q-profile is important for understanding and predicting

plasma stability. The plot of the mid-plane current is

included to illustrate the fact that the Bayesian current

tomography yields a probability distribution for the 2D toroi-

dal current profile; and thus it is possible to extract errors on

any collection of beam currents. The main reason for the

q-profile being so well resolved relative to the mid-plane cur-

rent is due to the highly localised MSE observations almost

FIG. 4. (Color online) Current profile data inferred for MAST shot #22254 at 350 ms using pickup coils, flux loops, and MSE. The inferred LCFS is drawn in

black on (a), (c), and (d); the EFITþþ LCFS is under-layered on all figures in white/thin solid lines for comparison only. Flux loop locations are indicated by

stars outside the plasma region; position and orientation of pickup coils are indicated via heavy bars on the out-board edge of the first wall and as a vertically

oriented column line along the solenoid; and MSE observation positions are indicated by the stars across the mid-plane inside the plasma region. Non-black

diagnostics are those which have been removed by the ECV procedure. (a) Poloidal flux-surfaces corresponding to the expectation configuration of plasma

beams. (b) Line-density plot showing the uncertainties in the 0.25, 0.50, 0.75, and 0.99 normalised flux-surfaces as calculated from 200 posterior samples; the

solid lines indicate the expectation of these surfaces. (c) Shows the expected plasma beam configuration, the color bar indicating individual beam currents in

kA. (d) Indicates the standard deviation of plasma beam currents in kA.

FIG. 5. (Color online) Current profile data inferred for MAST shot #24600

at 330 ms using magnetic and MSE with LCFS curves and diagnostic

markers depicted as they were in Figure 4. (a) Shows the expected plasma

beam configuration, the color bar indicating individual beam currents in kA.

(b) Indicates the standard deviation of plasma beam currents in kA. Poloidal

flux statistics are difficult to distinguish from Figures 4(a) and 4(b) and thus

have not been included.
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directly corresponding to the pitch-angle of the magnetic

field. Such plots help to illustrate how uncertainties in the

current tomography propagate to errors in the flux-surfaces

and q-profiles.

The total plasma current for #22254 at 350 ms was com-

puted to be 808.70 6 30.44 kA, as compared to the 822.35

kA measured from the Rogowski coil. The log-evidence,

lnðPðDÞÞ, was computed to be 323.88, which corresponds to

the peak in Fig. 3. The inferred total plasma current for

#24600 at 330 ms was found to be 819.28 6 32.81 kA and is

within uncertainty of the measured total plasma current of

841.73 kA.

In addition to the above analysis, several other shots and

times have been analysed using the techniques outlined in

this paper, all of which yield very similar results, figures and

agreement with the EFITþþ LCFS, as the ones presented in

this section.

VI. CONCLUSIONS

We have demonstrated the successful implementation

and extension of the work of Svensson et al. to the MAST

experiment. In particular, a plasma beam current model has

been used in conjunction with Bayesian analytic techniques

to infer the equilibrium 2D toroidal current profile for a

high-performance MAST discharge. The ECV technique was

developed to identify and remove extreme outlier observa-

tions associated with diagnostics not correctly modelled in

the analysis. Using this, the most likely flux-surface geome-

try was computed, along with uncertainties in various spe-

cific flux-surfaces. Moreover, the corresponding q-profile for

the discharge was also calculated, along with uncertainty. A

major advantage of the techniques discussed is that the infer-

ence involves analysing and sampling from a Gaussian pos-

terior distribution, which are computations that can be

efficiently done using standard algorithms, even for distribu-

tions over high-dimensional domains. The use, however, of

non-analytic distribution functions makes Bayesian inference

computationally demanding, in both sampling and finding

the maximum of corresponding posterior distributions. The

treatment of such statistics is outside the scope of the work

and will be treated elsewhere.

While only nine diagnostics were removed via the ECV

procedure, physical current profiles are consistently inferred

removing anywhere from �5% to �20% of all magnetics

diagnostics. In some cases, physical inferences can be still

made, even if removing over 20% of the diagnostics. The pri-

mary advantage of the ECV procedure is that the inference

of toroidal current beams pre-supposes no detailed knowl-

edge of the plasma, and thus is implemented in a completely

automated way. By caching results from these procedures,

one might design real time systems that are actively able to

correct for a diagnostic failing or falling out of calibration.

The present analysis does not account for poloidal cur-

rents nor the radial electric field, and these are present

research foci. In MAST, modelling has suggested the correc-

tion to the q-profile is of order 10% for these effects. Prelimi-

nary modelling of poloidal currents through correction to the

toroidal flux functions has been recently presented.23 More-

over, the discrepancies between the computed and EFITþþ
LCFS, along with the total plasma current discrepancy,

may be resolved by making a more detailed analysis of

outlier errors via modification of the likelihood distributions.

This analysis creates a non-Gaussian posterior, which requires

new computational techniques to handle. While such methods

may enable better handling of outlier data and provide sup-

port for non-Gaussian likelihoods, they entail significantly

more computation to perform and are only suited for post-

analysis studies. This is another focus of current research.
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