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The Hahm–Kulsrud (HK) [T. S. Hahm and R. M. Kulsrud, Phys. Fluids 28, 2412 (1985)] solutions

for a magnetically sheared plasma slab driven by a resonant periodic boundary perturbation

illustrate fully shielded (current sheet) and fully reconnected (magnetic island) responses. On the

global scale, reconnection involves solving a magnetohydrodynamic (MHD) equilibrium problem.

In systems with a continuous symmetry, such MHD equilibria are typically found by solving the

Grad–Shafranov equation, and in slab geometry the elliptic operator in this equation is the 2-D

Laplacian. Thus, assuming appropriate pressure and poloidal current profiles, a conformal mapping

method can be used to transform one solution into another with different boundary conditions,

giving a continuous sequence of solutions in the form of partially reconnected magnetic islands

(plasmoids) separated by Syrovatsky current sheets. The two HK solutions appear as special cases.
VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4817276]

I. INTRODUCTION

Recently, there has been renewed interest in the second-

ary tearing instability of high-Lundquist-number current

sheets1 called the “plasmoid instability”.2 Numerical simula-

tions, supported by heuristic scaling arguments,3 demonstrate

that if the Lundquist number (S) based on the length of the

current sheet exceeds a threshold,4–8 the instability breaks up

a Sweet–Parker current layer into a sequence of magnetic

islands separated by a sequence of current sheets,9 and

evolves into a new nonlinear regime of reconnection in which

the reconnection rate becomes nearly independent of S.3,10–13

These simulation results suggest that there might exist par-

tially reconnected plasmoid solutions of the magnetostatic

equilibrium equations in which plasmoids exist, separated by

segments of current sheets. In this paper, we show that such

solutions can indeed be constructed within the framework of

the Hahm–Kulsrud–Taylor (HKT) model, described below.

The HKT model, developed by Hahm and Kulsrud14 fol-

lowing a suggestion by J. B. Taylor, considers the response

of a plasma slab with a sheared unperturbed magnetic field

to a resonant perturbation applied at the boundaries x ¼ 6a:
In Cartesian coordinates x; y; z, the magnetic field B is repre-

sented as $z� $wðx; yÞ þ Bzðx; yÞ$z: The unperturbed

“poloidal” flux function w is w0ðxÞ ¼ Bax2=2a; where the

constant Ba is the strength of the poloidal magnetic field at

the boundary x ¼ a:
In Ref. 14, the “toroidal” field Bz was assumed to be

effectively constant and much larger than Ba to allow incom-

pressibility to be assumed during a discussion of reconnec-

tion dynamics, but in this paper we will be concerned only

with finding static equilibrium solutions so this assumption

is not necessary. Instead, we regard the Bz profile function

FðwÞ in the Grad–Shafranov equation as free to choose, and

assume it is chosen so that B2
z=2l0 þ p is linear in w, where

pðwÞ is the pressure (and, for SI units, l0 is the permeability

of free space). This makes the Grad–Shafranov equation lin-

ear (though inhomogeneous) allowing analytic solutions to

be obtained.

The perturbed flux function at the boundaries is assumed

to be

wð6a; yÞ ¼ 1

2
aBa þ Bad cos ky

� aBa
1

2
þ a cos ky

� �
; (1)

where a � d=a is a dimensionless parameter measuring the

strength of the perturbation, d being the amplitude of a

notional small boundary ripple of wavelength k ¼ 2p=k; the

given planar boundary conditions being, to linear order in

a� 1; equivalent to a symmetric geometric rippling of per-

fectly conducting bounding walls.

This rippling is illustrated in Fig. 1, though the value of

a ¼ 0:1 we use in our standard illustrative case, defined in

the caption, is rather too large for the ripples to be even

approximately sinusoidal. However, in this paper we do not

really need to ripple the boundary and take the HKT bound-

ary conditions Eq. (1) as exact, so that a need not be infini-

tesimal. Thus, because of the assumed linearity of the

Grad–Shafranov equation mentioned above, we have exact

linearity and can write

w ¼ w0ðxÞ þ a~wðx; yÞ; (2)

where ~w is independent of a and obeys the boundary condi-

tions ~wð6a; yÞ ¼ aBa cos ky:
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Ideal magnetohydrodynamics (MHD) cannot predict the

timescale for magnetic reconnection (magnetic field changes

that violate the topological frozen-in-flux condition).

However, on a long enough length scale and a short enough

time scale, the intermediate states in the evolution of

driven15–18 or spontaneous19 magnetic reconnection can be

described as a continuous sequence of “global” MHD equi-

librium states (i.e., states that satisfy the boundary conditions

and internal force balance). In the present paper we do not

seek to describe the reconnection process in detail, merely to

find analytically solvable Grad–Shafranov equilibria that

plausibly illustrate a possible reconnection scenario.

In Sec. II, it is pointed out that the Grad–Shafranov

equation in slab geometry can include current sheets in two

ways—either as a superposition of d-function current-density

sources or as cuts in the x; y plane, the latter being the view-

point used in this paper. Force balance provides the boundary

conditions on the cuts. Current profiles are given such that

the Grad–Shafranov equation in slab geometry becomes a

linear Poisson equation and our definition of the HKT equi-

librium problem is made precise.

Hahm and Kulsrud14 found two exact MHD equilibrium

solutions, one involving a full current sheet covering the

plane x ¼ 0 and one describing a magnetic island with no

current sheet. The current sheet solution may be viewed as

representing how a shielding current [e.g., Ref. 20] initially

arises in order to prevent reconnection after a resonant per-

turbation is turned on, the magnetic island solution being

interpreted as the end state after a sufficient time has elapsed

that reconnection has run its course and an island has

“opened.” In Sec. III, we review the Hahm–Kulsrud (HK)

solutions and show that their full current sheet is one of a

continuous infinity of full current sheet solutions differing by

the strength of a constant intensity of current in the sheet, the

HK solution (~wI in Sec. III) being the one with zero net

current.

The existence of solutions to the HKT equilibrium prob-

lem with either a full current sheet or no current sheet raises

the possibility that there may be more solutions, intermediate

between the two solutions found in Ref. 14. As discussed

above, current sheets can be unstable to the formation of

plasmoids embedded in the current sheet. Thus we seek ideal

equilibria that illustrate topologically a scenario for the

decay of the shielding HKT current sheet via a plasmoid

mechanism of island formation, continuously connecting the

two extreme HK solutions. While our solution is not exact,

except for the two HK limiting cases, it satisfies Eq. (1) very

accurately [error Oðe�3kaÞ] so could presumably be made

exact by a small perturbation of our ansatz.

A typical plasmoid case is depicted in Fig. 2, where cur-

rent sheets, the black horizontal lines of length 2L ¼ k=3;
alternate with plasmoids of horizontal width 2k=3: A magni-

fied view of a typical current sheet end-point for the case

L ¼ k=2 is shown in Fig. 3. Note that, in order to find an ana-

lytic solution, we have used the Syrovatsky approach, which,

as it does not include separatrix current sheets, gives Y-like

bifurcated poloidal flux contours at the ends of Sweet–Parker

current sheets (Case 1 of Ref. 16). The more general physical

case (Case 2 of Ref. 16) is that there are secondary current

sheets on the separatrices, leading to cusped (!-like) flux

contour bifurcations, but this is probably not amenable to a

global analytic solution comparable to the one we present

here.

In Sec. IV, we review Syrovatsky’s complex variable

approach to finding an analytic solution of Laplace’s equa-

tion that represents a large-scale view of a Sweet–Parker cur-

rent sheet [e.g., Ref. 18] (see Fig. 7 in Sec. IV). Syrovatsky’s

solution was obtained by using a conformal mapping from

the simpler solution for the field around a neutral point in the

poloidal field.

In Sec. V, we introduce a new, periodic conformal map-

ping to transform the Syrovatsky solution into a plasmoid so-

lution of the HKT equilibrium problem.

In Sec. VI, we analyze the mismatch between the bound-

ary condition Eq. (1) and w obtained from our conformal

FIG. 1. Contours of w ¼ w0 þ a~w for the standard illustrative values used

throughout this paper: a ¼ 0:1; units such that a ¼ Ba ¼ 1; and wavelength

k ¼ 2p=k chosen to equal a, so k ¼ 2p: This illustrates the effective rippling

of the upper boundary (axes scales equal). Cuts corresponding to the case

L ¼ k=6 are also shown as thick gray lines on the y-axis.

FIG. 2. Contours of w� wcut; for the partially reconnected plasmoid case

L ¼ k=6 with cS ¼ 1: Here, wcut ¼ �0:000436 is the value of w on the cuts

shown as black lines on the y-axis.

FIG. 3. A magnified view of the w contours in the vicinity of the junction of

a current sheet and a plasmoid, for the case L ¼ k=4; cS ¼ 1; showing the

Y-point structure obtained for this value of cS (axes scales equal).
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mapping ansatz. We present this error both graphically, vs. y
and L in a typical case, and also give an analytic expression

for the first nonvanishing term (6th order!) in an expansion

in the small parameter � � expð�ak=2Þ:
In this paper, we have made no attempt to constrain the

members of our equilibrium sequence to represent almost-

ideal MHD time evolution. Thus this work, of itself, cannot

be regarded as a study of reconnection. However, in

Sec. VII, we indicate two approaches to be explored in fur-

ther work on developing a physical plasmoid reconnection

scenario: a relaxed MHD approach that leads naturally to lin-

ear Grad–Shafranov equations with no current sheets on sep-

aratrices, and an almost-ideal MHD approach that will

probably require numerical solution but includes separatrix

current sheets.

II. GRAD–SHAFRANOV EQUATION WITH CURRENT
SHEETS

For analyzing equilibria with ideal (zero thickness) cur-

rent sheets, the force-balance condition is best written in the

conservation form,

$ � pþ B2

2l0

 !
I� BB

l0

" #
¼ 0; (3)

where p is the plasma pressure and B is the magnetic field

(SI units). In regions where p and B are differentiable,

this implies the force balance condition, j� B ¼ $p; where

j ¼ l�1
0 ð$� BÞ is the plasma current. However, in the

neighborhood of an ideal current sheet, p and B are not
everywhere differentiable and we need to use generalized

functions, like the Dirac delta function dð1Þ; to find weak sol-

utions of Eq. (3).

However, we can avoid using generalized functions

explicitly by cutting the x; y plane along its intersections

with current sheets and solving on the cut plane with appro-

priate boundary conditions on the cuts. The boundary condi-

tions on the two sides 6 of a current sheet are found to be

[Ref. 21, Appendix A] the tangentiality conditions,

n � B6 ¼ 0 (4)

and the pressure-balance jump condition,

pþ B2

2l0

" #" #
¼ 0: (5)

The first condition implies that an equilibrium current sheet

must be a tangential discontinuity in B:
In the case of a cylindrical or slab plasma of arbitrary

cross section (independent of z), a general representation for

the equilibrium magnetic field is

B ¼ $z� $wþ FðwÞ$z; (6)

where wðx; yÞ is the flux function defined in Sec. I, x; y; z
being Cartesian coordinates with the z-axis in the symmetry

direction. Equation (4) implies that the two sides of an

equilibrium current sheet are level surfaces of w6 (in fact w
must be continuous across the current sheet, w� ¼ wþ; to

avoid infinite poloidal magnetic field there) while Eq. (5)

gives

pþ j$wj2 þ F2

2l0

" #" #
¼ 0: (7)

Taking the curl of Eq. (6) we find, everywhere except on

a cut,

l0j ¼ r2w $zþ F0ðwÞ$w� $z; (8)

where r2 is the 2-dimensional Laplacian, @2
x þ @2

y , and

F0 � @F=@w:
Summarizing, the equilibrium condition Eq. (3) is satis-

fied if and only if the two-dimensional Grad–Shafranov
equation for axisymmetric static MHD equilibria,

r2wþ @w l0pðwÞ þ 1

2
FðwÞ2

� �
¼ 0; (9)

is satisfied everywhere except on cuts, where the current

sheet force-balance condition Eq. (7) applies instead.

Equation (9) is in general nonlinear, but consider the spe-

cial case l0pðwÞ þ 1
2

FðwÞ2 ¼ const � ðBa=aÞw for which

Eq. (9) becomes a Poisson equation, r2w ¼ Ba=a; linear in w.

This can be solved as a linear superposition, w0 þ wh where wh

is a harmonic function, i.e., a solution of the Laplace equation,

r2wh ¼ 0; (10)

determined by the boundary conditions. Comparing with

Eq. (2), we identify wh with a~w: The wall boundary condi-

tions Eq. (1), current sheets on the y-axis, the assumed form

of w0ðxÞ; and Eq. (10), make up what we call the HKT
equilibrium problem, whose scope we expand by considering

a wider class of current sheet cuts in the domain on which

Eq. (10) is to be solved. This has the consequence that ~w
cannot be assumed necessarily to be sinusoidal in y.

Noting that vwb ¼ 0, we see from the assumption

l0pðwÞ þ 1
2

FðwÞ2 ¼ const� ðBa=aÞw that the equilibrium

jump condition Eq. (7) simplifies to

vj$wj2b ¼ 0: (11)

Although w is continuous, and by Eq. (11), j$wj is continu-

ous, $w can be discontinuous, its jump giving the intensity j�
of the d-function component of the current j ¼ $� B=l0;

j ¼ 1

l0

�
F0ðwÞ$w� $zþ Ba

a
þ v@xwbdðxÞ

� �
$z

�
(12)

at each point on the current sheets on the y-axis, whence

j�ðyÞ ¼ v@xwb=l0:

III. GENERALIZED HK SHIELDING SOLUTIONS

Hahm and Kulsrud14 found two solutions of the HKT

equilibrium problem, a shielding current sheet solution

082103-3 Dewar et al. Phys. Plasmas 20, 082103 (2013)
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~wIðx;yÞ¼ aBajsinhðkxÞjcosðkyÞ=sinhðkaÞ; and a fully devel-

oped island solution ~wIIðx;yÞ¼ aBa coshðkxÞcosðkyÞ=coshðkaÞ
with no current sheet.22

It is easily verified that

~wI� ðx; yÞ ¼ aBa
jsinhðkxÞj cosðkyÞ þ cSkðjxj � aÞ

sinhðkaÞ ; (13)

where cS is an arbitrary constant, also satisfies the HKT equi-

librium problem. The inclusion of the cS term represents a

small but important generalization of the HK shielding cur-

rent sheet solution that allows the dc level of the current in

the sheet to be adjusted, as illustrated in Fig. 4.

This has a rather profound influence on the topology of

the w contours, as illustrated in Figs. 5 and 6 where it is seen

that the HK solution w has saddle points at the current-

reversal points x ¼ 0; y ¼ k=4 6 nk=2; n ¼ 0; 1; 2;…; where

the w ¼ 0 contour bifurcates off the y-axis, forming mag-

netic islands.

In the following sections, we obtain these solutions as

limiting cases of a new family of solutions ~w obtained using

a conformal mapping approach,23 which relies on the facts

that the real or imaginary part of any analytic function,

FSðfÞ; f � xþ iy; is harmonic, and that the composition of

two analytic functions is itself analytic.

IV. THE SYROVATSKY CURRENT SHEET

The double-valued analytic functions6,24

FSðuÞ ¼ sgn ðReuÞfuðu2 þ 1Þ1=2 þ cS ln½uþ ðu2 þ 1Þ1=2�g;
(14)

F0SðuÞ ¼ sgn ðRe uÞ 2u2 þ 1þ cS

ðu2 þ 1Þ1=2
; (15)

defined on the complex u-plane with two Riemann sheets

joined by a cut joining branch points u ¼ 6i; may be used to

define the harmonic functions wSðx0; y0Þ � ReFSðx0 þ iy0Þ
and @x0wSðx0; y0Þ ¼ ReF0Sðx0 þ iy0Þ: The former can be inter-

preted as the flux function for a Sweet–Parker current sheet

positioned on the cut between y0 ¼ 61 and the latter gives

the intensity of the current sheet on the cut.

The form in Eq. (14) is that used in Ref. 6, with square

root z1=2 and natural logarithm lnz defined as usual on the

complex z-plane cut along the negative real axis. The step

function factor, sgn ðReuÞ ¼ 61; is needed to make the cut a

straight line joining y0 ¼ 61 rather than make two cuts radi-

ating outward to infinity. The function defined by Eq. (14)

is obtained by the following substitutions in Syrovatsky’s24

Eq. (44):

n 7! 2; b 7! i; A 7! pi

2
; a 7! 2; C 7! 2pcS; z 7! f0:

It is seen from Eq. (15) that in general the sheet current in-

tensity diverges at the endpoints y0 ¼ 61; but the choice

cS ¼ 1 [Ref. 24, Eq. (47)] makes the current go continuously

to zero at the endpoints, giving rise to the Y-points seen in

Fig. 7. This figure shows contours of wSðx0; y0Þ in the y0; x0

plane, the thick horizontal line indicating the cut/current

sheet, and the thinner continuous lines the magnetic field

lines. The ellipses and hyperbolae form a visualization of a

periodic conformal map shown in Sec. V to convert

Syrovatsky’s single current sheet solution into a plasmoid so-

lution of the HKT equilibrium problem.

V. SHINUSOIDAL TRANSFORMATION

The analytic function

f ðfÞ �
sinh

�
1

2
kf

�

sin

�
1

2
kL

� (16)

FIG. 4. Jumps in the gradient of w across the y-axis, giving the intensity of

the sheet currents by Eq. (12), for the original HK fully screened solution

cS ¼ 0 (dashed) and the modified HK solution cS ¼ 1 (solid) for which the

current sheet intensity never goes negative.

FIG. 5. Contours of w� wcut near the y-axis for the original HK fully

screened solution w ¼ w0 þ awI (w�I for cS ¼ 0), showing islands with sepa-

ratrices joining points where the sheet current changes sign.

FIG. 6. Contours of w� wcut near the y-axis for the modified fully screened

solution w ¼ w0 þ awI� with cS ¼ 1; showing the simple topology of the

magnetic surfaces in this case.
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will be used to map the single current sheet in the

Syrovatsky solution Eq. (14) to a periodic sequence of

current sheets of length 2L; replacing the X-points at y ¼ nk;
n ¼ 0;61;62;…; in the fully reconnected (magnetic island)

solution of Ref. 14, where k ¼ 2p=k is the wavelength of the

boundary perturbation.

Its appropriateness for this purpose will be verified

below a posteriori, but as partial motivation for this ansatz

we note some useful properties of f,

• f ðxÞ ¼ sinhð1
2

kxÞ=sinð1
2

kLÞ;
• f ðiyÞ ¼ isinð1

2
kyÞ=sinð1

2
kLÞ;

• f ðx6 1
2

ikÞ ¼ 6icoshð1
2

kxÞ=sinð1
2

kLÞ;
• f ðxþ iyÞ is periodic in y with wavelength 2k; but f ðxþ iyÞ2

has wavelength k.
• The only zeros of f ðfÞ are at f ¼ ink; i.e., at the X-points

of the fully reconnected solution, while at the first O-point,

y ¼ k=2; f ðik=2Þ ¼ i=sinð1
2

kLÞ ranges from i in the fully

reconnected case, L ¼ k=2; to i1 in the fully shielded

case, L¼ 0.
• The double-valued function sinð1

2
kLÞ½1þ f ðyÞ2�1=2

� ½ðsin 1
2

kL� sin 1
2

kfÞðsin 1
2

kLþ sin 1
2

kfÞ�1=2; has, within

the strip �k=2 < Imf 	 k=2; two branch points, located at

the endpoints f ¼ 6L; of the sought-for current sheet.

We now use the conformal map f0 ¼ f ðfÞ to transform

the Syrovatsky function to a function of f, FSðf
0 Þ ¼ FS 
 f ðfÞ;

that provides the harmonic function ~wðx; yÞ through the

equation,

~wðx; yÞ ¼ aBa
cþ ReFSðf0Þ

d
; (17)

where f0 ¼ f ðxþ iyÞ and the constants c and d are deter-

mined by requiring that the boundary condition ~wð6a; yÞ ¼
aB0cosky be satisfied to a good approximation (see Sec. VI).

Figure 2 illustrates how this transformation results in a

typical plasmoid structure for 0 < L < k=2: A graphical vis-

ualization of the transformation may be had by comparing

the mesh in Fig. 8 with its image in Fig. 7. Figure 1 illus-

trates the decay of the ripple away from the boundary before

it is amplified by the resonance effect near the poloidal field

reversal region, jxj � 0; as seen in Figs. 5 and 6.

Figure 9 shows the current sheet intensity for the cases

case cS ¼ 1 and case cS ¼ 0; showing the singular behavior

inherited from the Syrovatsky solution Eq. (15) in the latter

case. Figure 3 verifies that the case cS ¼ 1 leads to the typical

Y-point magnetic surface behavior expected of a Sweet–Parker

current sheet, whereas Syrovatsky [Ref. 24, Fig. 3] showed that

the case cS ¼ 0 leads to reentrant w-contours producing a cusp

pointing away from the current sheet.

It may be shown analytically that the solution Eq. (17)

reduces to the HK island solution ~wðx; yÞ ¼ aBacoshðkxÞ
cosðkyÞ=coshðkaÞ as L! 0; while it reduces to the general-

ized HK current sheet solution Eq. (13) as L! k=2:

VI. BOUNDARY ERROR ANALYSIS

The current sheet force-balance requirement Eq. (11) is

ensured by the restriction of the cuts to the y-axis, and the

assumed symmetry about this axis, but the boundary condi-

tions Eq. (1) are not imposed a priori for all y. Instead we

impose only two conditions involving the boundary error
function,

eaðyÞ � cþ ReFS½f ðaþ iyÞ� � d cos ky; (18)

in order to determine the two constants c and d in Eq. (17).

The two conditions are

eað0Þ � eaðk=2Þ ¼ 0 and eað0Þ þ eaðk=4Þ ¼ 0: (19)

FIG. 8. Contours of w ¼ w0 þ a~w for a plasmoid case L ¼ k=4; cS ¼ 1;
with magnified scale on x-axis. Mapped images of the vertical (orange) and

horizontal (green) mesh lines appear in Fig. 7.

FIG. 9. Jumps in the gradient of w across the y-axis for the half-screened

plasmoid case L ¼ k=4: The dashed curve is for the case cS ¼ 0; showing

current reversal within the current sheets and singularities at the ends, and

the solid curve is for the case cS ¼ 1 in which the current sheet intensity

never goes negative and joins continuously to the zero values within the

plasmoid regions.

FIG. 7. Contours (black) in the y0; x0-plane of the Syrovatsky solution

wSðx0; y0Þ ¼ ReFSðx0; y0Þ given in Sec. IV in the case cS ¼ 1: The orange

hyperbolae and green ellipses are the images of the rectangular mesh in

Fig. 8, extended to the range x 2 ½�0:2; 0:2�; under the periodic conformal

map x0 þ iy0 ¼ f ðxþ iyÞ defined in Sec. V (axes scales equal).
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We can now verify a posteriori that the boundary conditions

are satisfied to high accuracy for all y in typical cases. For

instance, in Fig. 10 we plot eaðyÞ for the same case as shown

in Fig. 8 and see that the conditions in Eq. (19) null out any

constant error and the fundamental, cosky; leaving only a

second harmonic error proportional to cos2ky; with an ampli-

tude that is extremely small in the case studied.

Noting that the error is an even function, periodic in y,

we see that y¼ 0 is a maximum point of the absolute value

of the error. In Fig. 11, we plot this maximum error vs. the

halfwidth, L, of the current sheet. This figure shows that the

error is zero for the two HKT cases L¼ 0 (complete recon-

nection) and L ¼ k=2 (complete shielding), and nowhere

gets much larger than it does in the typical intermediate case

depicted in Figs. 8 and 10.

In the plots, Eq. (19) has been solved numerically, but

to understand why the error is so extraordinarily small,

it is instructive to perform a perturbation expansion in

� � expð�ak=2Þ (¼ 0:0432… for the standard illustrative

values defined in the caption to Fig. 1), which allows us to

separate those terms that are large at x¼ a from those that

are small. For instance,

f ðaþ iyÞ �
��1 exp

�
1

2
iky

�
� � exp

�
� 1

2
iky

�

2 sin

�
1

2
kL

� : (20)

Expanding Eq. (17) in � and solving for c and d such

that the constant and cosky terms in eaðyÞ vanish we find, to

first nonvanishing order, the residual boundary error,

~wða; yÞ � aBacosky ¼ � aBa

4
e�3ak sin2kL

� ½2� cS � ð2� 3cSÞ coskL� cos2ky; (21)

which is Oð�6Þ; thus explaining the smallness of the error

found numerically.

VII. CONCLUSION

This paper demonstrates that solutions to the global

ideal-MHD equilibrium problem are far from unique when

interior current sheets are allowed. As mentioned in the

Introduction, we have made no attempt in this paper to

construct a physical reconnection sequence. However, it is

highly suggestive that evolution through a plasmoid phase

represents a topologically reasonable mechanism for an ini-

tial shielding current sheet to open into a magnetic island. To

establish this scenario as a reconnection mechanism, two

approaches appear promising, both applying a subset of the

ideal-MHD constraints:

1. A minimally constrained or relaxed MHD approach

based on a generalization of Taylor25 relaxation to include

more ideal-MHD invariants than the magnetic helicity

constraint assumed by Taylor, but only a sufficient num-

ber to capture the qualitative essence of the evolution

(cf., Refs. 26 and 27). A noncanonical Hamiltonian

approach has recently been developed28 in which the ideal-

MHD constraints appear as Casimir invariants. In this work

it was shown that bifurcation of a cylindrical Taylor

relaxed state to a helical relaxed state can be frustrated by

introducing a singular Casimir invariant corresponding to

the shielding HKT current sheet, the magnetic field every-

where else in the plasma being given by the linear Beltrami

equation, $� B ¼ lB; found by Taylor. This suggests

seeking, in slab geometry, a sequence of plasmoid solu-

tions analogous to those found in the present paper, espe-

cially in the limit l! 0 where the Beltrami field reduces

to a harmonic field corresponding to ~w:
2. A maximally constrained or almost-ideal MHD approach

assuming ideal MHD applies locally throughout the evo-

lution, except as a plasma passes through a Sweet–Parker

current sheet where the frozen-in-flux constraint is

relaxed and reconnection can occur. While respecting the

detailed physics of the process, it is not amenable to the

conformal mapping approach we have used to find analyt-

ical solutions as it does not preserve the condition of

linearity of l0pðwÞ þ FðwÞ2=2 assumed at the beginning

of Sec. V. Furthermore, it implies current sheets on the

plasmoid separatrices, so that the simple cut structure of

the Syrovatsky solution does not apply.16,19 Thus a com-

pletely different method of analysis would need to be

applied. An interesting approach has been discussed by

Kulsrud.29

Using either approach to generate an equilibrium

sequence with fixed boundary conditions, its applicability as

a physically plausible reconnection scenario could be deter-

mined, without the necessity of resolving the current sheets

into finite-width tearing layers, simply by showing that the

FIG. 10. The residual boundary error ~wða; yÞ � cosky vs. y for the case

L ¼ k=4:

FIG. 11. The residual boundary error maximized over y, i.e., j~wða; 0Þ � 1j;
vs. L.

082103-6 Dewar et al. Phys. Plasmas 20, 082103 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.203.176.45 On: Fri, 20 Jun 2014 22:47:39



plasma potential energy W ¼
Ð
½p=ðc� 1Þ þ B2=2l0�dV

(Ref. 30) decreases monotonically along the sequence, the

final state being a minimum of W. Presumably, if two sequen-

ces are parametrized by their reconnected fluxes and the graph

of the potential energy of one lies below that of the other, then

the first sequence is physically preferred. This could be used

to determine when and if the symmetry-breaking plasmoid

evolution found in Ref. 6 can occur, rather than the symmetric

evolution assumed in the present paper.
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