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The infinite interface limit of multiple-region relaxed magnetohydrodynamics
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We show the stepped-pressure equilibria that are obtained from a generalization of Taylor relaxation

known as multi-region, relaxed magnetohydrodynamics (MRXMHD) are also generalizations of ideal

magnetohydrodynamics (ideal MHD). We show this by proving that as the number of plasma regions

becomes infinite, MRXMHD reduces to ideal MHD. Numerical convergence studies illustrating this

limit are presented. VC 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4795739]

I. INTRODUCTION

The construction of magnetohydrodynamic (MHD)

equilibria in three-dimensional (3D) configurations is of fun-

damental importance for understanding toroidal magnetically

confined plasmas. The theory and numerical construction of

3D equilibria is complicated by the fact that toroidal mag-

netic fields without a continuous symmetry are generally a

fractal mix of islands, chaotic field lines, and magnetic flux

surfaces. Hole, Hudson, and Dewar1 have proposed a mathe-

matically rigorous model for 3D MHD equilibria that embra-

ces this structure by abandoning the assumption of

continuously nested flux surfaces usually made when apply-

ing ideal MHD. Instead a finite number of flux surfaces are

assumed to exist in a partially relaxed plasma system. This

model, termed a multiple relaxed region MHD (MRXMHD)

model, is based on a generalization of the Taylor relaxation

model2,3 in which the total energy (field plus plasma) is

minimized subject to a finite number of magnetic flux, helic-

ity, and thermodynamic constraints. The model leads to a

stepped pressure profile, with the pressure jumps across the

barrier interfaces counterbalanced by corresponding jumps

in the magnitude of the magnetic field.

Although it might be expected that this MRXMHD model

would reduce to ideal MHD in the limit of continuously

nested flux surfaces, the discontinuous stepped-pressure pro-

files exhibited by this model make this unintuitive. In this pa-

per, we prove that the MRXMHD model does reduce to ideal

MHD in the limit of continuously nested flux surfaces and

provide supporting numerical evidence using the Stepped

Pressure Equilibrium Code (SPEC).4 This demonstrates that

the model proposed by Hole, Hudson, and Dewar1 reduces to

usual results such as ideal MHD in the integrable limit where

continuously nested flux surfaces exist.

In Sec. II, we give a summary of the MRXMHD model

and its solution for a finite number of plasma regions. In

Sec. III, we prove the main result of the paper: that

MRXMHD reduces to ideal MHD in the limit of continu-

ously nested flux surfaces. This is followed by supporting

numerical evidence examining the convergence of SPEC to

axisymmetric continuous pressure-profile solutions in Sec.

IV. The paper is concluded in Sec. V.

II. THE MULTIPLE-REGION RELAXED MHD MODEL

As introduced previously,1,5–7 the MRXMHD model

consists of N nested plasma regions Ri separated by ideal

MHD barriers I i (see Fig. 1). Each plasma region is assumed

to have undergone Taylor relaxation2 to a minimum energy

state subject to conserved fluxes and magnetic helicity. The

energy functional for the MRXMHD model can be written as

W ¼
XN

i¼1

Ui �
1

2

XN

i¼1

liðHi � H0
i Þ �

XN

i¼1

�iðSi � S0
i Þ; (1)

where there are N nested plasma volumes, li and �i are

Lagrange multipliers, and

Ui ¼
ð
Ri

ds3 pi

c� 1
þ 1

2
B2

i

� �
; (2)

Si ¼
ð
Ri

ds3 p
1=c
i ; (3)

Hi ¼
ð
Ri

ds3 A � B� Dwp;i

þ
C<p;i

dl � A� Dwt;i

þ
C>t;i

dl � A: (4)

FIG. 1. Schematic of magnetic geometry showing ideal MHD barriers I i,

and the relaxed plasma regionsRi.
a)graham.dennis@anu.edu.au
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In each plasma region Ri, the term Ui is the potential energy,

Si is the plasma entropy, and Hi is the gauge-invariant mag-

netic helicity.8 The plasma regions Ri are enclosed by flux

surfaces, and are constrained to have helicity H0
i , plasma en-

tropy S0
i , poloidal flux Dwp;i, and toroidal flux Dwt;i. The C<p;i

and C>t;i are circuits about the inner (<) and outer (>) bounda-

ries ofRi in the poloidal and toroidal directions, respectively.

Local minimum energy solutions to Eqs. (1)–(4) are

obtained by requiring the variation of W to be zero. With a

fixed outer boundary IN , these solutions have the form1,5

Ri : r� B ¼ liB; pi ¼ const; (5)

I i : n � B ¼ 0; pi þ
1

2
B2

� �� �
¼ 0; (6)

where Eq. (5) applies in each plasma region Ri, Eq. (6)

applies on each ideal interface I i, n is a unit vector normal to

the plasma interface I i (see Figure 1), and ½½x�� ¼ xiþ1 � xi

denotes the change in quantity x across the interface I i.

III. THE CONTINUOUSLY NESTED FLUX-SURFACE
LIMIT

In this section, we show that the MRXMHD model

reduces to ideal MHD as the number of plasma regions

increases. We begin by obtaining the limit of the MRXMHD

energy functional Eqs. (1)–(4) for continuously nested flux

surfaces.

We take the continuously nested flux surface limit of the

MRXMHD energy functional Eqs. (1)–(4) by taking the limit

as the number of plasma volumes N !1 and the volume

and enclosed fluxes of each plasma region approach zero. In

this limit, the MRXMHD energy functional becomes

W ¼
ð

ds3 p

c� 1
þ 1

2
B2

� �

� 1

2

ð
lðsÞðdH � dH0Þ �

ð
�ðsÞðdS� dS0Þ; (7)

where s is an arbitrary flux-surface label; dH and dS are the

infinitesimal amounts of helicity and plasma entropy, respec-

tively, between infinitesimally separated flux surfaces; and

dH0 and dS0 are the corresponding constraints. This energy

functional is completed by expressions for the infinitesimal

helicity dH and plasma entropy dS.

The infinitesimal helicity dH follows from Eq. (4)

dH ¼ ds3 A � B� dwp

þ
CpðsÞ

dl � A� dwt

þ
CtðsÞ

dl � A; (8)

where CtðsÞ and CpðsÞ are toroidal and poloidal circuits along

flux surface s. This may be further simplified by defining the

enclosed flux functions

wtðsÞ ¼
þ
CpðsÞ

dl � A; (9)

wpðsÞ ¼ �
þ
CtðsÞ

dl � A; (10)

where wtðsÞ and wpðsÞ are the toroidal and poloidal fluxes

enclosed by the flux surface s.

Using Eqs. (8)–(10) and the infinitesimal for dS with

Eq. (7) gives the infinite-interface MRXMHD energy func-

tional as

W ¼
ð

ds3 p

c� 1
þ 1

2
B2 � 1

2
lðsÞA � B� �ðsÞp1=c

� �

þ 1

2

ð
ds lðsÞ wtðsÞ

dwpðsÞ
ds

� dwtðsÞ
ds

wpðsÞ
� �

þ
ð

ds
1

2
lðsÞ dH0ðsÞ

ds
þ �ðsÞ dS0ðsÞ

ds

� �
; (11)

where H0ðsÞ and S0ðsÞ are the helicity and plasma entropy

constraints.

The variation of this energy functional is subject to the

constraints (9) and (10) on the poloidal and toroidal fluxes

enclosed by each magnetic surface. As discussed by Spies,

Lortz, and Kaiser,9 these constraints lead to the following

relationship between the variation of the vector potential dA

and the variation of the interface positions dx

n� dA ¼ �ðn � dxÞB; (12)

where n is a unit vector normal to the flux surface.

In Sec. III A, we first reproduce the result of Taylor2 dem-

onstrating that in the absence of pressure the time-independent

solutions of Eq. (11) are nonlinear Beltrami fields. This result

is then generalized to non-zero pressure in Sec. III B.

A. Zero pressure limit

The zero-pressure limit of Eq. (11) may be taken by set-

ting p! 0; �ðsÞ ! 0. In this limit, we need to consider the

variation of this functional with respect to the vector poten-

tial, the positions of the flux surfaces, and the Lagrange mul-

tiplier lðsÞ.
The variation dlðsÞ is independent of dA and dx, and

may therefore be considered separately. Requiring the varia-

tion of W with respect to lðsÞ be zero enforces the helicity

constraint on each flux surface

dWjl ¼ �
1

2

ð
dlðsÞðdH � dH0Þ ¼ 0; (13)

or equivalently, HðsÞ ¼ H0ðsÞ.
The remaining variation of W with p¼ 0 is

dW ¼
ð

ds3 B � dB� 1

2
lðsÞðdA � Bþ A � dBÞ

� �

�
ð

ds3 1

2
A � B dlðsÞ

ds
dsðxÞ; (14)

where s(x) is the flux surface label as a function of position.

The variation of the terms on the second line of Eq. (11)

with fixed lðsÞ is zero as wtðsÞ and wpðsÞ is given functions

of the flux surface label s.

The variation of s(x) can be obtained by defining ~sðxÞ
� sðxÞ þ dsðxÞ to be the flux surface label after interface

032509-2 Dennis et al. Phys. Plasmas 20, 032509 (2013)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

150.203.176.45 On: Sat, 21 Jun 2014 00:25:18



perturbation, and using the requirement that the perturbation

does not change the label of a flux surface

~sðxþ dxÞ ¼ sðxÞ; (15)

sðxÞ þ dsðxÞ þ dx � rsðxÞ ¼ sðxÞ; (16)

dsðxÞ ¼ �dx � rsðxÞ: (17)

Using Eq. (17), the energy functional in Eq. (11) may be

written as

dW ¼
ð

ds3 B � r � dA� 1

2
lðsÞðdA � Bþ A � r � dAÞ

� �

þ 1

2

ð
ds3A � Bðdx � rlÞ; (18)

where the perturbation of the magnetic field dB has been

written in terms of the perturbation of the vector potential

using dB ¼ r� dA.

This expression may be simplified using the relationð
ds3 Q � r � dA ¼

ð
ds3 dA � r �Q; (19)

where Q is an arbitrary single-valued vector field, and Eq. (12)

and the assumption that the outermost interface remain

fixed (i.e., n � dx ¼ 0 on the boundary) have been used.

The relation Eq. (19) may now be used with Q! B and

Q! lA to simplify Eq. (18)

dW ¼
ð

ds3 dA � r � B� 1

2
½lBþr� ðlAÞ�

� �

þ 1

2

ð
ds3A � Bðdx � rlÞ; (20)

dW ¼
ð

ds3 dA � ½r � B� lðsÞB�

þ 1

2

ð
ds3½A � Bðdx � rlÞ � ðrl� AÞ � dA�: (21)

The last line of Eq. (21) is zeroð
ds3 A � Bðdx � rlÞ ¼ �

ð
ds3 A � ðrl� dAÞ; (22)

¼
ð

ds3 ðrl� AÞ � dA; (23)

where Eq. (12) has been used, noting that rlðsÞ k n.

The variation dW has now been shown to be

dW ¼
ð

ds3 dA � ½r � B� lðsÞB�: (24)

It is tempting to conclude from Eq. (24) that

r� B ¼ lðsÞB, however this is not true in general. The flux

conservation condition (12) requires that dA � B ¼ 0, hence

dA is not a completely free variation. Requiring that the

energy variation dW in Eq. (24) be zero for all possible var-

iations only shows that the coefficients of independent varia-

tions are zero.

The potential variation dA can be written in terms of in-

dependent variations using Eq. (12)

dA ¼ dx� Bþ n dA?; (25)

where dA? is the remaining free variation of A, which is per-

pendicular to the flux surfaces. dA? is independent of dx.

Using Eq. (25), the energy functional variation Eq. (24)

may be written as

dW ¼
ð

ds3 ½dx � ð�J� BÞ þ dA?n � J�: (26)

As dx and dA? are independent, the time-independent solu-

tions satisfy

J� B ¼ 0; (27)

n � J ¼ 0: (28)

These two conditions imply that the current is parallel to the

magnetic field

r� B ¼ kðxÞB; (29)

for some kðxÞ. As the fields and currents are time-

independent r � J ¼ 0 implies that B � rk ¼ 0, hence k is

constant on a field line.

Time-independent solutions of the infinite interface limit

of the MRXMHD model without pressure are therefore non-

linear Beltrami fields

r� B ¼ kðaÞB; (30)

where a labels the field line. This is the result of Taylor.2

One might have expected lðsÞ to replace kðaÞ in

Eq. (30) because for a finite number of interfaces the plasma

in each volume satisfies r� B ¼ liB [see Eq. (5)].

However, there are also surface currents on the interfaces

between the plasma volumes. In the limit of an infinite num-

ber of continuously nested surfaces, the plasma volume cur-

rent will have contributions both from the volume and

surface currents of the finite-N case. Only if the surface cur-

rents in the finite-N case are zero should we expect kðaÞ to

be equal to lðsÞ. For example, the surface currents will be

zero if the li are all equal, and in this case the solution is

r� B ¼ lB; (31)

with l a constant. In this case kðaÞ is equal to lðsÞ.
In Sec. III B, we consider the effect of pressure on the

time-independent solutions of the infinite interface

MRXMHD model.

B. Non-zero pressure

For non-zero pressure, the additional terms to the varia-

tion (26) that must be considered are the variations of the �
and p terms in Eq. (11).

The variation with respect to �ðsÞ enforces the plasma

entropy constraint

032509-3 Dennis et al. Phys. Plasmas 20, 032509 (2013)
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dWj� ¼ �
ð

d�ðsÞ ðdS� dS0Þ ¼ 0; (32)

or SðsÞ ¼ S0ðsÞ.
The variation with respect to pressure is

dWjp ¼
ð

dp
1

c� 1
� �ðsÞ 1

c
p1=c�1

� �
: (33)

As the variation dp is independent of dx and dA, time-

independent solutions satisfy

�ðsÞp1=c�1 ¼ c
c� 1

; (34)

which implies that p is constant on a flux surface.

The remaining additional term to the energy variation in

the zero-pressure case is the variation of �ðsÞ as the interface

positions are varied. This term is

ð
ds3p1=cðdx � r�Þ: (35)

The gradient of � can be written in terms of the pressure p
using Eq. (34)

p1=cr� ¼ rp: (36)

The variation of the MRXMHD energy functional

including pressure is Eq. (26) with the additional term in

Eq. (35)

dW ¼
ð

ds3 ½dx � ðrp� J� BÞ þ dA?n � J�; (37)

where Eq. (36) has been used. As the variations dx and dA?
are independent, the time-independent solutions of the infi-

nite interface MRXMHD functional satisfy

J� B ¼ rp; (38)

n � J ¼ 0; (39)

which are the equations for ideal MHD. In the limit of con-

tinuously nested flux surfaces, MRXMHD is equivalent to

ideal MHD. In particular, in the axisymmetric N !1 limit

MRXMHD reduces to the Grad-Shafranov equation.

In Sec. IV, we use SPEC4 to illustrate the convergence

of the MRXMHD model to axisymmetric ideal MHD with

continuous pressure profiles.

IV. NUMERICAL ILLUSTRATION

The stepped pressure equilibrium code4 solves the

MRXMHD model Eqs. (1)–(4) for an arbitrary (finite) num-

ber of plasma regions. We use this code to illustrate the

results of Sec. III by showing the numerical convergence of

SPEC to an axisymmetric continuous pressure-profile ideal

MHD solution as computed by the variational moments equi-

librium code (VMEC).10

The equilibrium is defined by a given, fixed outer

boundary, the pressure and rotational-transform profiles as a

function of the normalized toroidal flux, s ¼ w=wencl, where

wencl is the total enclosed toroidal flux. For this comparison,

we choose wencl ¼ 2p in units where l0 ¼ 1.

For the numerical convergence study, we choose the

fixed outer boundary to be an axisymmetric torus with circu-

lar cross-section

R ¼ 1:0þ 0:3 cos ðhÞ; Z ¼ 0:3sinðhÞ: (40)

We define the equilibrium by choosing the pressure and rota-

tional transform flux functions. The continuous pressure pro-

file is selected to be

pðsÞ ¼ p0ð1� 2sþ s2Þ; (41)

where p0 is to be adjusted; e.g., p0 ¼ 0 for zero-beta. The

continuous transform profile is selected to be

iðsÞ ¼ ia þ ðie � iaÞs; (42)

where ia ¼ ð8þ c9Þ=ð9þ c10Þ and ie ¼ ð1þ c1Þ=ð9þ c10Þ,
and c � ð1þ

ffiffiffi
5
p
Þ=2 is the golden mean. This transform pro-

file is selected to ensure that the rotational transform on the

ideal interfaces in the MRXMHD model are noble irration-

als. This ensures stability of the ideal interfaces.11

As input to SPEC, these profiles are discretized as fol-

lows. For convergence studies as the number of plasma

regions N !1, is it convenient to have the SPEC interfaces

equally spaced in
ffiffi
s
p

. So, for i¼ 1,…,N, we define si

�
ffiffiffiffiffiffiffiffi
i=N

p
and the interface transforms as ii ¼ iðsiÞ. The pres-

sure in each volume is constructed, so that

pi

ðsi

si�1

ds ¼
ðsi

si�1

pðsÞ ds: (43)

A discrete pressure profile, with N¼ 16 is shown in Fig. 2.

A comparison of the SPEC interfaces, for an N¼ 16,

zero-b case (i.e., p0 ¼ 0), is shown in Fig. 3, and for a high-

b case in Fig. 4. For the high-pressure case, p0 was increased

to give a Shafranov shift about one third the minor radius.

To quantify the difference between the SPEC and

VMEC solutions, we define a measure of the difference in

geometry of a given magnetic surface as

FIG. 2. Pressure profile used for demonstrating the N !1 limit of

MRXMHD. The continuous curve is the pressure profile in Eq. (41) which is

used with VMEC, and the stepped profile is the N¼ 16 approximation used

with SPEC.
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D �
ð2p

0

dhjxVMECðhÞ � xSPECðhÞj; (44)

where xðhÞ is the intersection of the surface with the / ¼ 0

plane, with / being the toroidal angle and h being the poloi-

dal angle.

Figure 5 shows D computed between the representative

s¼ 1/4 SPEC interface and the corresponding VMEC inter-

face as the number of interfaces N is increased up to the

maximum afforded by computational limitations and expedi-

ence of N¼ 128. In particular, the convergence of the error

is second order, D � N�2, as shown in Fig. 5.

V. CONCLUSION

We have demonstrated that the multiple-region relaxed

MHD model reduces to ideal MHD in the limit of an infinite

number of plasma regions. In this limit, the magnetic

geometry is characterized by continuously nested flux surfa-

ces. The appeal of MRXMHD is that for a finite number of

plasma regions, only a finite number of flux surfaces are

assumed to exist. The rest of the plasma may be character-

ized by smoothly nested flux surfaces, islands, chaotic fields,

or some combination of these. In particular, the work of

Hudson et al.4 demonstrates the application of SPEC to a

DIIID equilibrium with a fully 3D boundary in which mag-

netic islands form. In future work, we will apply MRXMHD

and SPEC to the RFX Quasi-Single Helicity state12 in which

two magnetic axes have been shown to form.
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FIG. 5. Convergence: the error (D) between the continuous pressure (VMEC)

and stepped pressure (SPEC) solutions are shown as a function of the number

of plasma regions N for the s¼ 1/4 SPEC interface. The dotted line shows the

zero-beta case (p0 ¼ 0), and the solid line shows the high-beta case

(p0 ¼ 16). The grey line has a slope �2, the expected rate of convergence.

These simulations were run on a single 3 GHz Intel Xeon 5450 CPU with the

longest (the N¼ 128 case) taking 10.1 min using 20 poloidal Fourier harmon-

ics and 768 fifth-order polynomial finite elements in the radial direction.
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