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Continuum resonance damping is an important factor in determining the stability of certain global

modes in fusion plasmas. A number of analytic and numerical approaches have been developed to

compute this damping, particularly, in the case of the toroidicity-induced shear Alfv�en eigenmode.

This paper compares results obtained using an analytical perturbative approach with those found

using resistive and complex contour numerical approaches. It is found that the perturbative method

does not provide accurate agreement with reliable numerical methods for the range of parameters

examined. This discrepancy exists even in the limit where damping approaches zero. When the

perturbative technique is implemented using a standard finite element method, the damping

estimate fails to converge with radial grid resolution. The finite elements used cannot accurately

represent the eigenmode in the region of the continuum resonance, regardless of the number of

radial grid points used. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4879802]

I. INTRODUCTION

Lightly damped global modes can exist in magnetically

confined plasmas due to various couplings between different

poloidal and toroidal harmonics.1 These couplings result

from asymmetry in the plasma geometry and create an effec-

tive potential well for the modes, analogous to defects in

optics. Such global modes include the toroidicity-induced

Alfv�en eigenmode (TAE), which is due to the coupling

between different poloidal harmonics resulting from toroidic-

ity.2 Resonances occur where the frequency of such a global

solution to the magneto-hydrodynamic (MHD) equations

coincides with that of the local continuum solution. These

resonances result in transfer of energy from the global mode

to the heavily damped continuum modes. Continuum reso-

nance damping can be one of the main sources of damping

for these global modes. As such, this damping plays an

important role in determining whether global modes will be

driven unstable due to resonances with fast particles.3

Damping due to interaction with the continuum can result in

transfer of energy from the TAE to heat narrow layers of

plasma surrounding resonances.4 Continuum resonance

damping at edge resonances typically inhibits the coupling of

energy from outside the plasma to its core, making it difficult

to use TAEs to efficiently couple energy to the core plasma.

Continuum resonance damping has been studied using

both analytic and numerical techniques. In ideal MHD, singu-

larities exist at continuum resonances, and their proper treat-

ment is determined by the causality condition, similar to the

analysis of Landau damping.5 Physically, this represents dis-

sipative effects, due to very small but non-zero resistivity and

viscosity. These effects are not included in ideal MHD but

are captured in more comprehensive treatments, for example,

two-fluid and kinetic models. For high toroidal mode number,

n, and large aspect ratio, A, continuum resonance damping

has been calculated analytically using asymptotic matching.6

Under these same assumptions, continuum damping has also

been analysed by applying a perturbative representation of

the resonance following a ballooning transformation of the

coordinates.7,8 Alternatively, for low n, continuum damping

can be calculated based on the perturbation of a quadratic

form constructed from the wave equation.9 A commonly used

numerical approach is to calculate the imaginary part of the

mode frequency in the limit as plasma resistivity is reduced

to zero.10 Finally, solving the equations for global modes

over a suitable contour in the complex plane also gives damp-

ing as an imaginary component of the mode frequency.11

This method is less numerically intensive than a resistive cal-

culation, though requires analytic continuations for equilib-

rium quantities. This paper compares the predictions of the

perturbative technique for cases of low n TAEs with those of

complex contour and resistive techniques.

Analytic approximations of continuum damping are of

interest because they can illuminate the dependence of

damping on equilibrium parameters. However, little informa-

tion exists regarding how these theories compare with

numerical results. Section II of this paper summarises the

perturbative technique developed by Berk et al.,9 the com-

plex contour technique developed by K€onies and Kleiber11

and the resistive technique. Subsequently, Sec. III compares

the damping estimates obtained using this analytic technique

for simplified geometry to those found using a numerical

technique solving the global mode equations over a complex

contour. In Sec. IV, the results from two MHD codes which

respectively implement perturbative and resistive methods

are compared for a more complex geometry.

II. OVERVIEW OF METHODS FOR CALCULATING
CONTINUUM RESONANCE DAMPING

A. Perturbative method

A perturbative technique for calculating the damping of

a TAE due to continuum resonances was developed by Berk
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et al.9 Their technique is based on a simplified coupled mode

equation for TAEs which is derived for a large aspect ratio

circular tokamak in the limit of low beta. That equation can

be expressed as follows:

d

dr
r3 x2

v2
A

� k2
km

 !
dEm

dr

" #
þ d

dr

x2

v2
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r2Em

� m2 � 1ð Þ x2
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 !
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þ d
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þ dEm�1

dr

� �� �
¼ 0; (1)

where Em is the mth poloidal Fourier component of the quan-

tity dU
r and dU is the perturbation of the electric potential

associated with the shear Alfv�en wave. Note that the gauge

is set such that the magnetic vector potential A is perpendic-

ular to the magnetic field. The radial and poloidal angle coor-

dinates in the flux-type straight-field-line coordinates defined

by Berk et al. are r and h, respectively.9 The inverse aspect

ratio is is � ¼ a
R0

where a is the minor radius of a tokamak

and R0 is its major radius.

A “flux” function Cm is defined as the sum of the terms

in square brackets in Eq. (1).9 This second order differential

equation is decomposed into a pair of coupled differential

equations in which the derivative of each of the two varia-

bles Em and Cm can be expressed as a linear function of the

other. At resonances, the definition for Cm becomes non-

invertible, though a Frobenius expansion reveals that Cm

remains finite at this point. Hence, the value of Cm at the

resonance can be used to calculate the discontinuity in Em at

that point.

The original wave equation is also used by Berk et al. to

derive an expression relating a quadratic form in terms of Em

and Cm to discontinuities in Em at resonant singular points.

Using Einstein notation,

G x;Emð Þ¼
X

j

lim
d!0þ

Em r�dð Þ�Em rþdð Þ
� �

Cm rs;jð Þ
h i

; (2)

for

G x;Emð Þ � P
ða

0

d

dr
EmCmð Þ

� �
dr: (3)

In this equation, P denotes the Cauchy principal value of the

integral with respect to the singular points. The locations of

the singularities are rs,j. Assuming that damping is a small

first order correction to the eigenfrequency x, this quantity

and the eigenfunction, Em, are, respectively, taken to be the

sum of an unperturbed part (E 0ð Þ
m and x 0ð Þ) and a perturbation

resulting from interaction with the continuum at the resonan-

ces (dEm and dx). In this formalism, E 0ð Þ
m and x(0) are solu-

tions to the TAE equation assuming that the wave function is

continuous across singularities due to resonances. In con-

trast, dEm is allowed to be discontinuous across resonances,

with a step change in its imaginary component occurring at

these points. These discontinuities can be calculated based

on analytic continuation of E 0ð Þ
m in accordance with the

causality condition. Variation in G with x can then be equa-

ted to an expression involving these discontinuities. Thus, it

is possible to find an approximate analytic expression for the

continuum resonance damping c ¼ = dxð Þ. This expression

can then be applied to TAEs calculated using a shooting

method, which ignores the discontinuity in these modes due

to resonances. The perturbation technique described assumes

that the first order correction to the TAE eigenfunction is

small, implying small damping. Terms involving the product

of two or more perturbed quantities are, therefore, neglected

in the perturbative calculation.

Such an analytical approach to calculate continuum

resonance damping could provide greater insight into its de-

pendence on equilibrium parameters than the purely numeri-

cal methods described below. The perturbative technique for

computing continuum resonance damping has been applied

in the ideal MHD code NOVA and the hybrid MHD/kinetic

code NOVA-K.13 Borba et al. conducted a study comparing

the results calculated by NOVA-K to the overall damping

calculated by various MHD and gyro-kinetic codes with

experiment.12 This total damping had significant contribu-

tions from both continuum and radiative damping compo-

nents. It was found that the total damping computed by

NOVA-K which included continuum damping, showed

reasonable agreement with other codes and experiment.

Although the total damping rate calculated by NOVA-K was

compared to accepted numerical techniques, the continuum

damping estimated using the perturbative method detailed in

Ref. 9 has not previously been directly compared with those

of accepted numerical techniques. Such a comparison is

carried out in Sec. IV.

The ideal MHD normal mode code NOVA has previ-

ously been adapted to use this perturbative approach to

calculate continuum resonance damping.13 The code was

used to calculate the very small damping due to the contin-

uum resonance of a double-gap Alfv�en eigenmode (DGAE).

Subsequent authors have applied this code to calculate con-

tinuum damping for other Alfv�en eigenmodes.14,15

B. Resistive method

In resistive MHD, the continuum resonance damping

corresponds to a component of resistive damping which is

independent of the resistivity. In the limit, as resistivity tends

towards zero, its effect can be represented by the addition of

the following term to the left hand side of the TAE wave

equation:11

�idr2
?

x2

v2
A

r2
? Emrð Þ

 !
; (4)

where the operator r2
? is approximately d2

dr2 þ 1
r

d
dr � m2

r2 .

Inclusion of this term in the TAE wave equation results in

complex eigenfrequencies, with the imaginary component

representing resistive damping. Continuum resonance damp-

ing is found by determining a limiting value which resistive

damping approaches as the resistivity parameter d is reduced.

Unfortunately, the addition of the resistive term increases the

order of the differential equation that must be solved. Hence,
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applying this resistive technique is relatively computation-

ally intensive.

Use of the resistive method requires that resistivity be

sufficiently large that at least two discretised continuum

modes are excited16 and that the resistive contribution to the

damping is negligible except near the resonance. These com-

peting requirements potentially limit the ability to determine

very small values of continuum damping using this method.

While the former condition can be addressed by sufficiently

increasing the grid resolution, this will increase computa-

tional requirements and potentially make the calculation

impractical. By contrast, the perturbative technique is

expected to be valid only where the continuum damping is

small. Thus, this method potentially complements the use of

resistive numerical codes for calculating continuum reso-

nance damping.

C. Complex contour method

Continuum resonance damping can also be determined

by solving the TAE wave equation from ideal MHD over an

appropriate complex contour.11 As in the resistive technique,

complex eigenfrequencies are found wherein the imaginary

part represents the damping. An integration path is chosen in

order to circumvent the poles due to continuum resonances.

For real x, these poles would be found on the real axis, as

before. However, when the TAE frequency x acquires an

imaginary component, the poles become complex. The cau-

sality condition specifies which side of the poles the contour

must lie on, similar to the case of Landau damping.5 This

condition implies that all poles due to resonances must be

between the complex contour and the real axis. Other poles,

which are not physically meaningful, may result from the

analytic continuation of equilibrium quantities. The contour

must also remain on the same side of these as the real axis to

avoid spurious contributions to the eigenmode and eigenfre-

quency. Providing that these conditions are met, x will be

independent of the contour used. The contour technique has

been shown to agree very closely with the accepted method

of performing damping calculations using resistive codes.11

III. COMPARISON OF PERTURBATIVE AND CONTOUR
METHODS

In this section, we compare the level of damping pre-

dicted by the perturbative method described by Berk et al.
with that predicted by the contour method described by

K€onies and Kleiber. Both methods were applied to calculate

the damping of a TAE due to two-mode coupling in a large-

aspect-ratio tokamak with circular cross-section. Coupling of

the (n, m)¼ (2, 2) and (2, 3) harmonics is considered, where

m is the poloidal mode number. For this case, the TAE wave

equation can be approximated using Eq. (1), which is used

by both techniques to calculate the TAE.

The coupled differential equations were solved using a

shooting method similar to the one outlined in Ref. 9, impos-

ing the condition that Em be finite at the magnetic axis, r¼ 0,

and zero at the plasma edge, r¼ a, (corresponding to a per-

fectly conducting wall). We use density and safety-factor

profiles similar to those used by K€onies and Kleiber11 for the

large-aspect-ratio circular cross-section tokamak

q rð Þ ¼ q0 þ qa � q0ð Þ
r

a

� �2

; (5)

n rð Þ ¼ n0

2
1� tanh

r

a
� D1

D2

0
@

1
A

0
@

1
A
; (6)

where the subscripts 0 and a refer to the magnetic axis and

plasma edge, respectively. The parameters D1 and D2 are,

respectively, the normalised radial location of the density

jump and scale length of the density gradient. This choice of

profiles results in a TAE mode which has a continuum reso-

nance at some location between the avoided crossing and the

plasma edge. The continuum spectrum for this two-mode

coupling case and the safety factor and density profiles is

plotted in Figure 1.

Figures 2–5 compare the results of the perturbative and

contour methods for varying qa (Figure 2), � (Figure 3), D1

(Figure 4), and D2 (Figure 5) while all other equilibrium pa-

rameters are held constant. For each case examined, the nor-

malised TAE eigenfrequency X0 ¼ x0R0

vA r¼0ð Þ and damping ratio
c

x0
were computed, where x0 and c, respectively, represent

the real and imaginary components of x. The safety factor at

the magnetic axis is chosen to be q0¼ 1.05. Varying qa alters

the q-profile, which in turn alters the location of the reso-

nance and that of the continuum gap which produces the

mode. The mode tends to be peaked in the vicinity of the

gap, so that a greater separation between the gap and contin-

uum tends to correspond to lower amplitudes at the reso-

nance and reduced damping. However, for the low n case

considered here, TAE modes have a relatively large radial

extent and cannot necessarily be thought of as being local-

ised at the gap. The parameter � determines the strength of

the coupling between poloidal modes. This parameter, there-

fore, affects the size of the gap, but does not significantly

affect its location or that of the resonance. By contrast, varia-

tion in D1 and D2 both alter the density of the plasma near

FIG. 1. Continuum resonance frequency as a function of radial position r
a

(solid line, left scale), considering only the (n, m)¼ (2, 2) and (2, 3) harmon-

ics. The frequency of the TAE due to the interaction of these harmonics is

indicated (dotted line) as is the q profile (dashed line, right scale). The equi-

librium parameters in this case are: q0¼ 1.05, qa¼ 1.6, �¼ 0.1, D1¼ 0.8,

and D2¼ 0.1.
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the edge. As the density determines the Alfv�en speed, these

parameters affect the location of the resonance. The parame-

ter D2 determines how rapidly density decreases around

r¼D1. It, therefore, affects how rapidly the continuum

frequency varies with the radial coordinate and, hence, the

radial variation of continuum frequency near the resonance.

The contour used in the complex contour method is

parameterised as r
a ¼ xþ iax 1� xð Þ, where x � (0, 1). The

parameter a is adjusted between damping calculations so

FIG. 2. Eigenfrequency and damping for varying qa calculated using the

perturbative method (solid line) and complex contour method (dashed line).

The other equilibrium parameters are fixed: �¼ 0.1, D1¼ 0.8, and D2¼ 0.1.

X is plotted in (a) and c
x0

is plotted in (b).

FIG. 3. Eigenfrequency and damping for varying � calculated using the per-

turbative method (solid line) and complex contour method (dashed line).

The other equilibrium parameters are fixed: qa¼ 1.6, D1¼ 0.8, and D2¼ 0.1.

X is plotted in (a), and c
x0

is plotted in (b).

FIG. 4. Eigenfrequency and damping for varying D1 calculated using the

perturbative method (solid line) and complex contour method (dashed line).

The other equilibrium parameters are fixed: qa¼ 1.6, �¼ 0.1, and D2¼ 0.1.

X is plotted in (a), and c
x0

is plotted in (b).

FIG. 5. Eigenfrequency and damping for varying D2 calculated using the

perturbative method (solid line) and complex contour method (dashed line).

The other equilibrium parameters are fixed: qa¼ 1.6, �¼ 0.1, and D1¼ 0.8.

X is plotted in (a), and c
x0

is plotted in (b).
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that the imaginary deformation of the contour is proportional

to the damping rate. This ensures that the contour remains on

the side of the resonance pole of Eq. (1) specified by the cau-

sality condition and that spurious poles are avoided.

In Figures 2–5, the estimate of damping provided by the

perturbative method is seen to be consistently larger than the

value calculated by the contour method. This discrepancy is

most significant where the contour technique calculates a

large value for the damping ratio. This corresponds to the

cases where the TAE mode is localised near the resonance

and the complex discontinuity in the wave function across

the resonance is large. Hence, it appears that the discrepancy

may result from a significant perturbation to the flux function

Cm at the resonance, as suggested by Berk et al.9 This func-

tion depends on both dEm

dr and x, which change when the

effect of the resonance is included.

The damping ratios calculated using the two techniques

are compared directly in Figure 6. Surprisingly, the damping

ratio estimates that are obtained using the perturbative

technique do not appear to approach those of the complex

contour method as damping becomes very small. Instead, the

ratio between the two damping estimates takes an approxi-

mately constant value, which depends on the equilibrium

parameter being varied. This indicates that the relative

change in Cm at the resonance due to inclusion of the effect

of the discontinuity remains significant even for very small

damping.

Nevertheless, there is qualitative agreement between the

two techniques regarding how damping varies with qa, �, and

D1. The perturbative and contour methods approximately

agree on the values of qa and D1 for which damping is maxi-

mised and minimised over the ranges of values examined.

The two methods are both able to account for changes in

damping as the position of the gap giving rise to the TAE

mode and that of the resonance are changed. Similarly, both

techniques show that the damping rate increases approxi-

mately linearly with �. This is to be expected, as increasing �
corresponds to increasing coupling between modes due to

toroidicity. In each of these three parameter scans, the values

of damping calculated using the two methods are approxi-

mately linearly related, as illustrated in Figure 6. This is not

true when D2 is varied. For this parameter scan, the damping

ratios cannot be overlaid by linearly rescaling the calculated

damping ratio. This indicates that the higher order terms

neglected by the perturbative approach are not linearly

related to the first order term which is considered. Unlike the

other parameter scans, the perturbative technique does not

agree closely with the complex contour technique regarding

which value of D2 maximises damping.

To quantify the degree of linearity in their relationship,

correlation coefficients are computed for the damping ratios

determined using the two techniques over the ranges of

parameters indicated in Figures 2–5. It is found that the cor-

relation coefficients for these estimates as qa, � or D2 are

each greater than 0.99, demonstrating a high degree of linear

correlation. By contrast, the correlation coefficient for the

estimates as D2 is varied is 0.59. Figure 6 illustrates the

approximately linear relationship in between damping

estimates for variation in qa, �, and D1 and the non-linear

relationship for variation in D2.

The two techniques also calculate different results for

the real part of the frequency of the TAE mode. The real

component calculated using the perturbative approach is

found to be smaller than that calculated using the complex

contour method for all of the sets of parameters examined.

This difference is of the same order of magnitude as the

FIG. 6. Damping calculated using the

perturbative method against that calcu-

lated using the complex contour

method for varying qa (blue, solid

line), � (red, medium dashed line), D1

(green, long dashed line), and D2 (or-

ange, short dashed line). The values of

equilibrium quantities are those stated

in Figures 2–5, respectively. A thin

solid black line indicates where the

two quantities are equal. Detail from

(a) is shown in (b).
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damping and scales with damping. This observation implies

that the TAE frequency expansion with respect to the per-

turbed quantities has a contribution from neglected higher

order terms that has a real component comparable to the first

order imaginary term considered in the formalism of Berk

et al. Such a contribution is consistent with a significant

change in Cm at the continuum resonance due to inclusion of

the discontinuity there.

As the contour technique has been shown to be accu-

rate,11 the discrepancy between this and the perturbative

technique must arise from the approximations made in the

latter technique. It is thought that the main source of error in

using the formalism of Berk et al. is inaccuracy in determin-

ing the variable Cm at the resonance.9 To verify this explana-

tion, the first order solution for a TAE using the method

described above is compared with a solution found by ana-

lytically calculating the contribution of poles at resonances,

similar to the method described by Chu et al.17 TAE modes

calculated using each method are compared in Figure 7. The

eigenfrequency and damping calculated by computing pole

contributions analytically agree closely with those calculated

by the complex contour method. However, by analytically

including pole contributions, the variables Em and Cm can be

found for positions on the real axis.

In the case examined, C3 has a significant imaginary

component and smaller real component near the resonance

location when the contribution of the corresponding pole is

considered. This corresponds to changes in the real and

imaginary components of E3 in this region. The discontinuity

in Em at the resonance has the same effect as significantly

changing the boundary conditions for the problem. The pro-

files for C2 and E2 are similar in both cases, as this mode is

less affected by the resonance, which is with a primarily

m¼ 3 branch of the continuum.

IV. COMPARISON OF PERTURBATIVE AND RESISTIVE
METHODS

The damping calculated using a perturbative method is

compared to that calculated using a resistive method for a

more detailed tokamak model. The large aspect ratio approx-

imation is not made in this case, so that the effect of terms in

the TAE mode equation which are of higher order with

respect to aspect ratio is included. The effect of including

more harmonics, in addition to the dominant TAE compo-

nents considered previously, is also incorporated.

A perturbative continuum damping calculation was first

performed using the finite element ideal MHD code

NOVA.13,18 Damping was then calculated for the same case

using CKA, which is a finite element code incorporating the

resistive term found in Eq. (4).11 In these codes, the problem

is discretised using the Galerkin method. A weak formulation

is obtained by multiplying the relevant force operator equa-

tion by a test function and integrating over the radial coordi-

nate. This leads to an equation in terms of a bilinear form,

which can be discretised by expressing the test function and

solution function as linear sums of a set of basis functions.

Thus, it is possible to approximate the problem as a general-

ised matrix eigenvalue equation, which can be solved compu-

tationally to find the TAE frequency and wave function.

The safety factor used for the comparison has a similar

form to that used in Sec. III, q sð Þ ¼ q0 þ qa � q0ð Þs, where

s � r
a

� �2
is the normalised flux. In this case, the parameters

q0¼ 1.5 and qa¼ 2.0 are used. The density profile has the

form n sð Þ ¼ n0 1� slð Þk, where the values of the parameters

are k¼ 7.0 and l¼ 7.5. The inverse aspect ratio has been

chosen to be �¼ 0.2. Plasma pressure p has been chosen

such that b ¼ 2pl0

B2 is negligible. These parameters and func-

tions have been chosen differently to those in Sec. III, in an

attempt to ensure the best possible convergence of the damp-

ing rate with respect to radial grid resolution. Thus the pa-

rameters are selected in order that the TAE is localised away

from the resonance, giving a small continuum damping value

for which the perturbative approach is most likely to be

valid. The two codes were used to compute a TAE within the

gap between the (n, m)¼ (6, 9) and (6, 10) branches of the

shear Alfv�en continuum. The shear Alfv�en spectrum for this

case, calculated using CKA, is shown in Figure 8.

The eigenvalue of the TAE in the resistive calculation is

x2 ¼ ð0:0871345753� i0:0000000136Þ vA

R0

� �2, representing a

normalised real eigenfrequency component of X0

¼ 0.295185662 and a damping ratio of c
x0
¼ �7:81� 10�7.

This value is found to have converged for 800 radial grid

points, 20 poloidal grid points and an artificial damping pa-

rameter of d¼ 10�12 (as described in Ref. 11). This conver-

gence is demonstrated by a change in calculated damping

ratio of 0.30% when the radial grid resolution is reduced to

FIG. 7. Em and Cm calculated by equating these quantities on both sides of

resonances as done by Berk et al.9 (thick line) and by applying resonance

pole contributions calculated analytically, similar to Chu et al.17 (thin line,

real solid, imaginary dashed). The n¼ 2, m¼ 2 (blue) and n¼ 2, m¼ 3 (pur-

ple) harmonics are shown. This case corresponds to the equilibrium parame-

ters qa¼ 1.6, �¼ 0.1, D1¼ 0.8, and D2¼ 0.1.
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600 points, a change of 1.7% when the poloidal grid resolu-

tion is reduced to 15 points, and a change of 0.15% in this ra-

tio when the damping parameter is increased to 10�11.

Radial grid points are clustered near the location of the reso-

nance in these calculations, in order to resolve the rapid vari-

ation of the wave function in this region.

By contrast, the estimate of continuum damping obtained

using the perturbative method does not converge satisfacto-

rily, as shown in Figure 9. For radial grid resolution between

101 and 401 radial grid points, very large variation in the

computed damping ratio is observed. Between 801 and 1201

radial grid points, there is lesser, but still significant, variation

in the continuum resonance damping computed using

NOVA. This suggests a damping ratio of between 1� 10�7

and 4� 10�7, significantly smaller than the resistive estimate.

However, further increasing the resolution to 1301 and then

1401 grid points results in a rapid increase in the calculated

damping ratio. In comparison, the real part of the TAE fre-

quency computed by NOVA converges to x0 ¼ 0:29572 vA

R0

� �
for 101 radial grid points, agreeing closely with the resistive

calculation using CKA (to within 0.2%). The mode structure

also converges and is in close agreement with CKA, except

in the region near the resonance. A sharp peak is observed at

the resonance, with its size generally increasing with esti-

mated damping. The wave functions are not symmetrical

about the singularity in the region surrounding the peak, con-

trary to the logarithmic form of the singularity indicated by a

Frobenius expansion. This results in an erroneous discontinu-

ity in the wave function at the singularity.

The convergence of the perturbative continuum damp-

ing estimate with respect to radial grid resolution has been

investigated for several additional cases. Using NOVA,

TAEs were found for various different values of n and differ-

ent q and q profiles. The effect of clustering radial grid

points near the resonance was also examined. In each case,

the continuum damping estimate did not satisfactorily con-

verge with radial grid resolution. Indeed, it was found that

addition of a single additional grid point could sometimes

dramatically change the continuum damping calculated.

The failure of the continuum damping estimate of

NOVA to converge appears to be due to the failure of the

ideal MHD code to properly incorporate the singularity due

to the resonance. NOVA represents the wave function using a

linear combination of B-spline functions. Splines are piece-

wise polynomials of order n which are differentiable to order

n � 1 at interior points. B-splines have the distinction of hav-

ing minimal support,19 simplifying the matrix eigenvalue

problem by minimising the number of non-zero elements

encountered. Polynomial functions cannot accurately repre-

sent the logarithmic singularity of the TAE at the resonance.

In an abstract sense, the TAE solution found using a finite

element is a projection of the exact solution onto the solution

space spanned by this basis set. When the bilinear form oper-

ates on the difference between the exact and finite element

solutions and any element of the basis set, the result is zero, a

condition referred to as Galerkin orthogonality. Therefore,

the location of the radial grid points around the singularity,

which determines the basis functions, significantly affects the

TAE solution obtained in this region. This means that it is not

possible to accurately or consistently compute the damping

using the perturbative approach, which relies on the value of

the TAE flux function at the resonance. This problem would

be encountered by any finite element implementation of the

perturbative method which does not use appropriate singular

finite elements to represent the function near resonances.

As the radial grid resolution is increased, the logarithmic

singularity is not resolved. The piecewise polynomial basis

functions cannot accurately represent the singular wave

function in a region encompassing the grid points nearest to

the resonance. This leads to a grid-dependent jump in the

FIG. 8. Shear Alfv�en spectrum for n¼ 6 with q and n as described in Sec.

IV. A TAE exists at X0� 0.295 in the gap due to the avoided crossing of the

(n, m)¼ (6, 9) and (6, 10) branches. This spectrum was calculated using

CKA with 20 poloidal grid points and 800 radial grid points, with clustering

at r¼ 0.876 near the location of the TAE continuum resonance.

FIG. 9. Convergence study of continuum resonance damping calculated by

NOVA. The damping ratio calculated for various radial grid resolutions

(solid line with circles indicating data points) is shown along with the con-

verged value from the resistive calculation performed by CKA (dashed line).
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wave function across the resonance. This jump does not

decay with increasing grid resolution, despite the reduction

in the region where the logarithmic behaviour is poorly rep-

resented. This is because dilation of a logarithmic function,

ln xð Þ, with respect to the variable x merely corresponds to a

translation in the function. A potential solution to the conver-

gence issue would be to use a singular finite element to rep-

resent the singularity at this point. Another method would be

to accurately determine the location of the resonance and

ensure that nearby grid points are spaced symmetrically

around it. Each of these methods would require foreknowl-

edge of the location of the continuum resonance, which is

itself dependent upon the TAE frequency. While such meas-

ures may improve convergence, they do not address the inac-

curacy inherent in the perturbative technique identified in

Sec. III. Moreover, such modifications are beyond the scope

of the present study.

Although a large number of harmonics are included in

these calculations,20 it was found that the dominant compo-

nents of the TAE were the (n, m)¼ (6, 9) and (6, 10) har-

monics, as expected. Therefore, it seems unlikely that

considering additional modes significantly alters the damp-

ing calculated. This was supported by the observation that

adding additional modes to the simplified perturbative TAE

calculation of Sec. III does not significantly alter the fre-

quency, damping or structure of the mode.

V. CONCLUSION

The perturbative technique examined can provide a qual-

itative understanding of how continuum resonance damping

varies with equilibrium parameters. However, the magnitude

of damping calculated by the perturbative technique generally

has a significant error with respect to the accepted value. This

is found even for cases with simplified geometry and very

small damping. The observed discrepancy results from viola-

tion of the assumption in the perturbative method that the

flux function Cm does not change significantly due to the

inclusion of the discontinuity at the resonance. Moreover, the

perturbative method has inherently poor convergence when

applied to ideal MHD finite element codes without appropri-

ate singular basis functions. The estimate obtained depends

strongly upon the wave function solution near the resonance,

which does not converge due to these codes’ failure to accu-

rately model the singularity due to the resonance. It is possi-

ble to accurately calculate continuum damping in ideal MHD

using a method which includes the imaginary part of this sin-

gularity, such as the complex contour method or analytically

calculating contributions from complex poles.
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