

INTRODUCTION TO MAGNETIC NUCLEAR FUSION

S.E. Sharapov

Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK

With acknowledgments to B.Alper for use of his transparencies

OUTLINE OF LECTURE 1

A REAL PROPERTY OF THE PARTY OF T

- Nuclear fusion
- Magnetic confinement of plasma
- Tokamaks
- Three main avenues of achieving burning/ignited plasmas in magnetic fusion
- Stellarators
- Summary

NUCLEAR FUSION

- Nuclear Fusion powering the stars and the Sun is (surprisingly!) possible on Earth
- This is thanks to large cross-section (a measure of the ability to fuse) of D-T reaction
- The aim of the fusion research is to use the fusion for power generation on Earth

CCFE

NUCLEAR FUSION OF HYDROGEN ISOTOPES D&T

A REAL PROPERTY OF THE REAL

 Nuclear fusion reaction D+T = He + n +17.6 MeV of hydrogen isotopes deuterium (D) and tritium (T) is the "easiest" to access.

ENVIRONMENTAL ADVANTAGES OF D-T FUSION

And the second second

- Deuterium is naturally abundant (0.015% of all water), Tritium must be obtained from lithium, ⁶Li + n = T + ⁴He. Raw materials are water & lithium.
- To generate 1GW for 1 year (equivalent to a large industrial city):

COAL: 2.5 Mtonnes – produces 6 Mtonnes CO₂; FISSION: 150 tonnes U – produces several tonnes of fission waste; FUSION: 1 tonne Li + 5 Mlitres water.

- Fusion gives no "greenhouse" gasses.
- Fusion reactor structure will become activated but will decay to a safe level in < 100 years. Tritium is radioactive: half life is 13 years.
- No plutonium or long-lived (thousands of years) active waste from fuel cycle.

PLASMA

- How to make the nuclear forces work? Nuclei of D and T must approach each other to a "nuclear" distance ~10⁻¹² cm, but they need to overcome the Coulomb electrostatic force between two positive nuclei!
- The solution: provide the colliding nuclei with kinetic energy larger than the Coulomb potential energy, i.e. the fuel must be hot enough. Optimum fusion rate for D-T achieved at T_D ≈ T_T ≈ 20 keV (200 Mdeg)
- At that temperature, the hot DT fuel is a plasma a mixture of positively charged nuclei ("ions") and negatively charged electrons

PLASMA IS THE FOURTH STATE OF MATTER

- Increasing Temperature \rightarrow

- As temperature increases, the confinement problem becomes more and more difficult
- Plasmas conduct electricity and can be controlled by magnetic fields

THERE ARE THREE CONDITIONS FOR NUCLEAR FUSION

- Fuel must be hot enough, T_i ≈ 20 keV (200 Mdeg), to overcome Coulomb force between D and T;
- Hot plasma must be insulated from walls Energy confinement time τ_E = Plasma energy/ Heat loss is high enough

Plasma with energy W = n T V (V is the volume of plasma) cools down as

dW/dt = - W/ $\tau_{\rm E}$

in the absence of any heating sources

• Fuel density n_D and n_T must be high enough that fusion reactions occur at a suitable rate. Maximum density is limited by impurities and instabilities

SELF-SUSTAINING FUSION REACTION

Manual Manual Contract of Contract

• Fusion alpha-particles (20% of fusion energy, P_{α} = 0.2 P_{FUSION}) heat the plasma and balance heat loss, i.e. the energy balance for steady-state is

dW/dt = - W/ $\tau_{\rm E}$ + P_a = 0

- Neutrons (80% of energy) breed new tritium and generate steam.
- The "ignition" condition for self-sustaining fusion reaction

n T
$$τ_E$$
 > 5 x 10²¹ m⁻³ keV s (≈ 10 atm s)

The primary aim of nuclear fusion research is to maximise the fusion triple product

POSSIBLE METHODS OF FUSION PLASMA CONFINEMENT

Gravity (Sun and stars) – works well but dimensions are too large;

Inertial (Hydrogen bomb, lasers or beams) – works well, needs pressure 10¹² atm for very short times 10⁻¹¹ s.

Largest H-bomb tested was 10 x [all explosive used in 2nd World War] http://www.youtube.com/watch?v=NiyUSv2Z07A

Magnetic – few atms x few seconds, plasma is confined by magnetic field B.

THE IDEA OF MAGNETIC CONFINEMENT:

In the presence of strong magnetic field, charged particles of plasma are trapped on helical orbits attached to magnetic field lines

MAGNETIC CONFINEMENT OF PLASMA

TWO MAIN TOROIDAL PLASMA CONCEPTS

- Tokamaks
- Stellarators

TOKAMAKS: THE TERMINOLOGY

and the second second

Schematic of the geometry of a tokamak. ϕ is the toroidal direction, \mathcal{G} is the poloidal direction

MAGNETIC SURFACES IN TOKAMAKS

The magnetic field line wraps helically around the Torus and maps out a magnetic surface.

Field lines at different radii lie on different magnetic surfaces which are nested inside each other.

PLASMA CURRENT AND SAFETY FACTOR $q(r)=rB_T/R_0B_P(r)$

THE COILS

Inner Poloidal field coils (Primary transformer circuit)

TOKAMAK JET (JOINT EUROPEAN TORUS)

A REAL PROPERTY AND A REAL

Volume = 100 m³; B_{max} = 4 T; I_{max} = 7 MA; P_{FUS} = 16 MW

TOKAMAK JET (JOINT EUROPEAN TORUS)

TOKAMAK JET (JOINT EUROPEAN TORUS)

Quantity:	$\mathcal{R}_{n,out}$	I_{φ}	B_{φ}	P_{out}	T_e	T_i	n_e	n_i
	$(10^{18} {\rm s}^{-1})$	(MA)	(T)	(MW)	(keV)	(keV)	$(10^{19} { m m}^{-3})$	$(10^{19} { m m}^{-3})$
Typical:	1-4	1-3	1-4	5 - 10	5 - 15	25 - 40	2-6	1-5
Record (D-T):	5.7	4.0	3.6	16.1	14	27	4.5	3.5
Record (D-D):	0.056	3.2	3.5	0.04	11	37	5.9	5.9

• Table showing typical DT, record DT (JET pulse # 42976), and record DD (JET pulse # 40554) neutron rates R_{n, out}, together with the corresponding machine and plasma parameters

SUMMARY OF PROGRESS ON TOKAMAKS

n T τ_E (in D-D plasma)

- 1970 25,000 times too small for ignition
- 1983 100 times too small
- 1995 only 5 times too small

Fusion power (in D-T plasma)

- 1991 JET 1.7 MW (10% T; 10 MW heating)
- 1995 TFTR 10 MW (50% T; 40 MW heating)
- 1997 JET 16 MW (50% T; 22 MW heating)

FUSION TRIPLE PRODUCT APPROACHING BREAK-EVEN

THE NEXT STEP ON TOKAMAKS: BURNING PLASMA

Same and the second second

- New element in burning plasmas: plasma is self-heated by fusion alphas → plasma is exothermic and highly nonlinear medium
- The leading-order effects may be identified in accordance with $Q=P_{FUS}/P_{IN}$,

 $Q \approx 1 - at the threshold$ $Q \approx 5 - alpha-effects on heating profile and Alfvén instabilities$ $Q \approx 10 - nonlinear coupling between alphas, MHD stability, bootstrap current, turbulent transport, interaction plasma-boundary$ $<math>Q \ge 20 - burn control and transient ignition phenomena$

• Reliable modelling is hardly possible for each of these regimes, we really need experimental data

WAYS OF ACHIEVING IGNITION IN MAGNETIC FUSION

• The "ignition" condition for self-sustaining fusion reaction

n T $τ_E$ > 5 x 10²¹ m⁻³ keV s (≈ 10 atm s)

• The ignition criterion for magnetic fusion can be better expressed via B and $\beta = P_{plasma}/P_{magnetic} = 4\mu_0(nT)/B^2$ as

$$\beta \tau_{\rm E} \mathbf{B}^2 > 4 \mathbf{T}^2 \mathbf{s}$$

Three main avenues exist for magnetic fusion:

- 1) Increasing energy confinement time τ_E
- 2) Increasing magnetic field B

3) Increasing β

INCREASING ENERGY CONFINEMENT TIME

• Increasing τ_E : larger size fusion reactors since energy balance for steadystate is determined by P_{α} = 0.2 P_{FUSION} :

$$\frac{dW}{dt} = -\frac{W}{\tau_E} + P_\alpha = 0$$

$$\downarrow$$

$$P_\alpha = \frac{W}{\tau_E} = nT\frac{V}{\tau_E}$$

- For a desired power P_{FUSION} , achieving ignition via the increase of τ_E means a larger size machine. For 1 GW power the volume must be $\approx 1000 \text{ m}^3$
- Next step international project ITER ≈ 1000 m³ will approach ignition
- Note: Largest volume present day machine is JET ≈ 100 m³. This means that so far tokamak experiments were all performed at sub-critical volumes

INCREASING MAGNETIC FIELD

• Increasing B: technologically challenging to obtain B > 5 T !!!

Present-day Alcator C-MOD (US),

Next step: IGNITOR (Italy) requires B=13 T

Parameters	Symbol	Value	Unit
Major Radius	R ₀	1.32	m
Minor radius	a,b	0.47, 0.86	m
Aspect ratio	А	2.8	
Elongation	κ	1.83	
Triangularity	δ	0.4	
Toroidal magnetic field	B _T	≈13	Т
Toroidal current	Ip	11	MA
Maximum poloidal field	B _{p,max}	≈ 6.5	Т
Mean poloidal field	$\overline{\overline{\overline{B}}}_{p} \equiv I_{p} / \sqrt{ab}$	≈ 3.44	Т
Poloidal current	Ι _θ	≲ 9	MA
Edge safety factor (@11MA)	q _ψ	3.6	
Confinement strenght	$S_c \equiv I_p \overline{\overline{B}}_p$	38	MA T
Plasma Surface	S ₀	≈ 34	m ²
Plasma Volume	V ₀	≈ 10	m ³
ICRF heating (140 MHZ)	P _{RF}	6 (*)	MW

THE IGNITOR POJECT

and the second second

INCREASING BETA

- Beta is limited by MHD instabilities at a level of few %. In contrast to technological difficulties in first two ways of achieving ignition, this is controlled by law of nature.
- Spherical tokamaks with a/R ≈ 1 achieve volume averaged < β> ≈ 40% Present day MAST (UK), NSTX (US), next step project, e.g. STPP (UK)

THE SPHERICAL TOKAMAK POWER PLANT (PROJECT)

Parameter	Value
Major radius/minor radius (m)	3.42/2.44
Elongation	3.2
Triangularity	0.55
Plasma current (MA)	31
Centre rod current (MA)	30.2
Safety factor on axis, at edge	3, 15
Line-avge, central density (×1019m-3)	10.8, 12.6
Greenwald density (×10 ¹⁹ m ⁻³)	16.6
Average temperature (keV)	22
β(%), β _N	59, 8.2
Internal inductance, l _i (2)	0.21
Z _{eff}	1.6
Fusion power (GW)	3.1
CD power (MW)	50
Auxiliary CD (MA)	2.3
Pressure driven current (MA)	28.7
Confinement HIPB98(y,1), HIPB98(y,2)	1.4, 1.6
τ _{He}	4
Avge neutron wall loading (MWm ⁻²)	3.5
Peak neutron wall loading (MWm ⁻²)	4.6

Table 1: Base-line parameters for the STPP.

Figure 2: Poloidal cross-section of the free boundary equilibrium reconstruction showing the positions of the PF coils.

H.R.Wilson et al., 19th IAEA Conf., Lyon, 2002, IAEA-CN-94/FT/1-5

STELLARATORS

MAIN PROPERTIES OF STELLARATORS

The stellarator is currently the principal rival to the tokamak
 as a fusion device using magnetically confined plasmas

 In a stellarator the helical fields required for confinement and stability are provided by currents in the external conductors only.

 This avoids the need for a transformer to generate a loop voltage to drive a plasma current.

Thus, steady-state operation is possible in such a device.

 There is greater flexibility in the magnetic geometry but this can lead to complex coil designs.

• The rotational transform, iota, $(\sim 1/q)$ is more generally used than q in a stellarator. Also, parameters (I,m) are used to define machine geometry. For example, a machine with 2 helical coils which spiral 4 times round the vessel has a (2,4) geometry.

STELLARATOR TYPES

Classical - Wendelstein 7-A

Modular - Wendelstein 7-AS

Torsatron (ATF)

The second s

Heliac - TJ-II

PERFORMANCE OF STELLARATORS

• Compared to tokamaks of similar size and power, the performance of stellarators is favourable.

 Most smaller machines have now ceased operation (including W7-AS) with TJ-II in Madrid the only modern European machine in operation.

 The world programme is now centred on 2 new large machines:
 LHD in Japan and in future W7-X in Germany.

TWO LARGEST STELLARATORS

LHD

 $R_{ax} = 3.4 - 4.1 \text{ m}, \text{ a} = 0.65 \text{ m}$ $V_{pl} = 30\text{m}^{3}$ $B = 2.9 \text{ T}, \iota(0) = 0.35, \iota(a) = 1.5$ high shear, 10 field periods, l = 2

W7-X $R_{ax} = 5.5 \text{ m}, \text{ a} = 0.53 \text{ m}$ $V_{pl} = 30\text{m}^3$ $B = 3.0 \text{ T}, \iota(0) = 0.88, \iota(a) = 0.97$ low shear, 5 field periods

LARGE HELICAL DEVICE

Torsatron - (2,4)

Operational for a several years (Japan)

Table 1. LHD plasma parameters

	Т	n _e		
High Electron Tempera- ture	10 keV	$6.0 \times 10^{18} \text{ m}^{-3}$		
High Ion Temperature	5 keV	1.2 10 ¹⁹ m ⁻³		
High Confinement	1.1 keV	$6.5 \times 10^{19} \text{ m}^{-3}$		
$\tau_{\rm E} = 0.3 \text{ s}, \ n T \tau_{\rm e} = 2.1 \times 1$ $P_{\rm abs} = 2 \text{ MW},$	0 ^{°°} keV m	,		
Maximum Stored Energy	W _p = 1.16 MJ			
Highest Beta	(β) ~ 3.2% at B = 0.5 T			

and the second second

W 7 – X COMPONENT ASSEMBLY

W 7 – X COILS

A REAL PROPERTY OF THE REAL

STELLARATORS VERSUS TOKAMAKS

Constant of the second se

The main advantages claimed for the stellarator are:

- Steady-state operation very small plasma current; no transients in superconducting field coils
- Disruption Free
- Field defined equilibrium
- Suppression of Neoclassical Tearing Modes
- Can operate at higher densities radiation not β limited

But

- Complicated coil system complex forces on coils
- · Large surface area to volume confinement/wall interactions
- Complex divertor tight design tolerances
- Smaller ports diagnostics/heating
- Bootstrap currents may be undesirable
- Impurity accumulation

SUMMARY

Constant of the Constant of the

- D-T fusion is the most attractive avenue: for generating 1 GW power for 1 year one needs 1 tonne Li + 5 Mlitres water
- To overcome the Coulomb electrostatic force between two positive nuclei D and T, high kinetic energy is needed corresponding to 20 keV → plasma
- Plasma can be confined by magnetic field in, e.g. toroidal solenoid
- The triple-product ignition criterion n T $\tau_E > 5 \times 10^{21} \text{ m}^{-3} \text{ keV s for magnetic}$ fusion yields $\beta B^2 \tau_E > 4 T^2 \text{ sec}$
- Three main avenues are being developed for approaching ignited plasmas: high- τ_E (large volume), high-B, and high- β (spherical tokamaks) machines
- Today's research aims on tokamaks are focussed on preparing for burning ITER plasmas
- Stellarators allowing steady-state operation are the principal alternative to tokamaks

