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OUTLINE 6F LECTURE 5A

Nonlinear evolution near the threshold: qualitative analysis

Nonlinear Berk-Breizman equation

Experimental observation of the pitchfork splitting

Experimental observation of the chaotic evolution

Experimental observation of the explosive instability

Summary
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DIFFERENT REGIMES OF MdDE EVOLUTION ARE OBSERVED
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NBI-driven bursting TAEs on MAST
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THE NEAR-THRESHOLD CONDITION

e Consider the scenario with a gradual build-up of fast ion pressure so that the fast ion
drive of TAE, 7, (t)OC -p (t), increases in time at unchanged TAE damping 7,

o TAE instability threshold: exact balance between TAE drive and damping, /'« = 74
e The near-threshold condition:

Ve = Vil <<vi <7,
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HOW TAE INSTABILITY SATURATES?

Particle
re-distribution

A

radius
e Non-linear TAE behaviour: competition between the field of the mode that
tends to flatten distribution function near the resonance (effect proportional
to the net growth rate y=y, -y4) and the collision-like processes that constantly

replenish it (proportional to v)

)
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e
COLLISIONALITY

e The near-threshold regime allows the “collisions” restoring the unstable distribution
function of fast ions to compete with the mode growth

‘7a_7d‘zveﬁ‘

e Demonstrate this effect analytically for the “bump-on-tail” problem in a 1D velocity
space. This problem has physics similar to TAE, but is 1D.

e The “bump on tail” problem: consider the nonlinear evolution of a marginally unstable

electrostatic wave with frequency o =0, = \/47T n,e’/m, in the presence of an unstable

beam distribution function (x, v, t) with collisional operator (Berk et al., PRL 76 1256
(1996))
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THE 1D BUMP ON TAIL INSTABILITY CAUSED BY dF/dv>0
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QUASI-LINEAR PLATEAU IS FORMED IN NONLINEAR PHASE

F A
v=w/k
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STARTING EQUATIONS FOR THE BUMP ON TAIL PROBLEM

e Consider F (x, v, t) in the presence of a wave with electric field
E = £ [E‘ II?LJI F,é(k:r—;s!._‘_l + (._(.]

¢ In order to accommodate the collisions, a Fokker-Planck equation has to be solved:

oF ~ JF e 1 l ‘
1 E xr‘ i(kx—wt) ' }
o +Er‘);r+2m [ o) .

F dF
v dt

coll
together with Maxwell’s equations for electric field (6B = 0 for this problem):

OF (t) .
. - i(kr—wt) o
[—fwm, { + C.(

Jj
dr— =10
ot i ot

where J; is the fast particle contribution to perturbed current produced by the wave.

y
e

=3

CCFE S.E.Sharapov, Lecture SA, Australian National University, Canberra, 7-9 July 2010



THE COLLISIC?I\TAL OPERATOR

e Only resonant particles contribute in the non-linear wave evolution, so the
competing collisional operator can be taken in the vicinity of the resonance:

dF o (OF  OF \ 2F  O2F, |
dt B a | - — 3 (F — F,
dt | o : (”H o ) v (;J”L’ Ou2 \ )
where
= JF\E‘ — W

e Here, & V, B are coefficients of drag, diffusion, and Krook operator

respectively. For the Krook operator the coefficient is constant, but for drag
and diffusion these are taken at the resonant point.
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THE WEAK NONLIN‘EARITY APPROACH -1

e Consider the equation with both perturbed electric field of the wave and the collisions
dF u+w\ OF ek 1~ . , OF Noaa
— E (t) ekt 4 ¢ ol — — 13
ot i ( k ) dx i 2m [ ()¢ i A il
, OF LO°Fy L, 0F
1/

— — BF = — —
o o U ? AL : 40

+ fJF:l
e For the sinusoidal wave we represent the distribution function as a Fourier series

F=F+ fo+ Z [frexp (iny) 4 c.c]

n=1
Y = kxr — wit

e The wave equation relating the field and the fast particle current becomes then

OF w [ . ,
Ty + 4fﬁ:>£_—2 / fidu+~4,E =0
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THE WEAK NONLINAEARITY APPROACH -2

e Consider time scales shorter than nonlinear bounce period of the wave. With the
distribution function being not too significantly perturbed, i.e. within the ordering

o> fi > fo, fo

/; admits a power series in £(t)
fi =~ C,E+C,E* +

, Which allows the first order (cubic) nonlinearity to be captured by the following
truncated Fourier expansion:

 fo 202 fo 5, fo , ek [ ~Of]
B ) S - (4 0 = —— F— e
Ot g il : 4l +hJ 2m r')u o
) r)‘g ) ek
iﬂL“fh—V fl— j[]‘|‘ Gfi = ——E (Fo+ fo+ f2)
( Ju? il 2m Ju
A f5 r)z}‘z r)fg ek -~ 0Of) -
OF2 | oi e _ 3f, — — v & ( _. )
ot + 2iufy = v il o’ du Rk QIJJ.E . +O(Efs
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T/2 T—22

a4 A7) — : / dz 2° A (1 — 2) / dyp o~ 372 (22/3+2)=B(22+2) +ia22(2+2)

0 0

where A = [ekE (t) /m (3 — va2)*| [/ (i — 7). 7= (v — ) t, 0% = 3/ (v — 7a)°,

& =af (y —4)°, 3 =23/ (vi — vq) and ~; = 272 (2w /mk?) OF, (w/k) /Ov.
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DIFFUSION ONLY CASE
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Nonlinear equation for the amplitude
t-27

Ay [ el

x A(t —1)A(t —7 — 1) A (t - 27

32'2(22'/3+2'1)]

- T, )dz'ldr

describes four regimes of mode evolution:
a) Steady-state;

b) Periodically modulated;

c) Chaotic;

d) Explosive

The explosive regime in a more complete non-
linear model leads to frequency-sweeping
‘holes’ and ‘clumps’ on the perturbed

distribution function (H.L.Berk, B.N.Breizman, and
N.V.Petviashvili, Phys. Lett. A234 (1997) 213)
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SUCH NONLINEAR SOLUTIONS ARE OBSERVED FOR ICRH-
DRIVEN TAE TOO
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When TAE amplitude modulation

becomes comparable to the amplitude,

chaotic TAE evolution is observed
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ICRH REPLENISHES FAST ION DISTRIBUTION VIA DIFFUSION
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Effect of quasi-linear

RF diffusion
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Amplitude

DRAG ONLY CASE - 1

x 10

Evolution of |A| in time, ¢ = p
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Nonlinear equation for the amplitude

dA 1t/2 t—-27
_:A__ 2 . A D
s 5 0 T ‘(‘)‘CXP X094 T(T+T1 )]

X A(t—T)A(t—r—Z'I)A*(t—2r—2'1 )a’rldr

In contrast to the diffusion case, drag gives
oscillatory behaviour in the kernel leading to the
explosive evolution of the amplitude blowing up
in a finite time,

-p
A oc (t - to)
This is the only scenario for the drag !

M.Lilley, B.N.Breizman, and S.E.Sharapov, Phys.
Rev. Lett. (2009)
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DRAG ONLY CASE - 2

e Why there is such a difference? Consider qualitatively

e The Krook and diffusion Homogeneous Differential Equations give the
solutions not symmetric with respect to the change u > —u, t > —¢, i.e.

Drphi=0 o fywewl-p)

2

%, V382f:0 R ﬂ)m(v3t)l/2eXp(— u j

ERR 4y°t
while the drag HDE gives a wave-type solution symmetricto u > —u, t > —¢:
Ao 29 _
6—;_a a—;—O o fy o folu+att)
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Beam energy decreases
due to the drag
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DRAG ONLY CASE -4
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COMBINED DRAG + DIFFUSION SOLUTIONS

0=10,10=30
150
100F
Np-—-.
s
" sof
z
op 0
o
=2
s
<= 50}
{l’_D
-100F \)
_1 5 1 1 'l 1 'l
=300 -200 =100 0 100 200 300
ﬂ=uj'l [wJ,rl—v\‘,rd:]

In the presence of both drag and diffusion, the solution /o becomes oscillatory and shifted
from the resonance “downstream”

y
e

—_

CCFE S.E.Sharapov, Lecture SA, Australian National University, Canberra, 7-9 July 2010



A pebble in a stream creates wave perturbation similar to the drag solution
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NONLINEAR EVOLUTION SUMMARY
Diffusion + drag

 For diffusion drag steady state solutions do exist

« For an appreciable amount of drag these solutions become
unstable (pitch fork splitting etc.)

« Explosive solutions again when drag dominates

STABLE
STEADY
STATE

NO STEADY STATE
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BACK TO TAE: NBI- DRIVEN AEs ON MAST ARE
DOMINATED BY THE DRAG IN THE V5 REGION
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AEs are seen in bursts not as steady-state modes
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HOW TO ASSESS DRAG VS [—)\IFFUSION FOR NBI-DRIVEN TAE ?

e Introduce the resonance
Q=0-n<p>-1<4>=0
where
<@p>=a, (E, F, ,u))
<9>=w,(E, P,, p)

e For NBI distribution function use the Fokker-Planck equation with Coulomb operator:

of V3{8V{V2a(v)8f (V)f}c(v) 1 { af}}_vfﬂf

ot 2v. ov V, sin$ 09 09
e We are interested in evolution of distribution function across the TAE resonance
dF 0 0 90\ ? 02
ar _9 5. f —bf<6P‘ﬁ D. an, . ?er
dt |, ., Ov ov 6v ov v 0P, ) 002

o) (or)
v aP; ) 90
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DRAG VS DIFFUSION FOR NBI-DRIVEN TAE ON MAST

e The comparison of the drag and diggusion terms can be express via resonance width:

(AQpig)° Py o 9P /00N /P, I -
g~ ‘D - b
':&Q[}l'ugj'[l v v EJR:‘. v

o Substitute MAST parameters and obtain

i, 7 b E:l J ' Lard — -I;I,-"rg E'?I,-"rg
L_.-"AEE]}]'H“JI ~ G O E‘\.‘ % 21’ Iy, I
(AQDrag)” " eByr? 2 64\ me E

l
L\Q[)u['I,.-”'Afl'[)]-ug ~ 0.2 —-1.06

Since drag dominates over the diffusion in the TAE resonance region, the explosive
solutions dominate

P
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DRAG VS DIFFUSION FOR ALPHA-DRIVEN TAE ON ITER

e Considering slowing down isotropic distribution function of alpha-particles on ITER,
we obtain

AQpig /AQprag = 1.4 (6, ~ 1)

e The Coulomb diffusion does dominate over the drag favouring the steady-state TAE
scenarios. However, the drag is not negligibly small and since the ratio scales as

1r_E:Ia'.,.u
the drag may become dominant in some ITER regimes.
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SUMMARY

Near the marginal stability, a nonlinear equation is valid for the amplitude of the mode
driven by fast particles
T/2 T—2=2

dA o1 9 . i 58,292 /342) — A2tz Lid2 2l 2
— = A(r)— = [ d22?A(T - 2) dp e~ 0 7% (22/3+x)—B(2z+e)+id 2z +x)
dr ' 2 ' _

[ (

XA(T—z—a) A" (1—22 —x)

Diffusion and Krook collisional operators give 4 different nonlinear regimes: steady
state, periodic modulation, chaotic, and explosive

All these regimes are seen in ICRH-driven TAEs on JET, since ICRH quasi-linear
diffusion well dominates over Coulomb effects

Drag collisional operator gives only explosive solution. No steady-state is possible
with drag

The drag dominant regime is fulfilled in NBl-driven TAEs on MAST

ITER will have diffusion somewhat exceeding drag dor fusion born alpha particles at
the Alfvén resonance region
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