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OUTLINE OF LECTURE 5B 
 

• Qualitative estimates of fast ion transport induced by TAE 
 

• Orbits comparable to a : enhanced prompt losses due to TAE 
 

• Orbits smaller than a : onset of particle orbit stochasticity and transport due 
to the resonance overlapping 

 

• Experimental measurements of confined and lost fast ions 
 

• Trapped ion redistribution by TAE inside the q=1 radius (“tornado” modes) 
 

• Multi-mode experiments on JET 
 

• Summary 
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QUALITATIVE ESTIMATES – 1 
 

• The unperturbed orbit of a particle is determined by three invariants: 
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• In the presence of a single TAE mode with perturbed quantities ( )tni ωϕ −∝ exp , the 

wave-particle interaction is invariant with respect to transformation 
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• In the presence of the TAE, neither E  nor ϕP  is conserved for particle orbit, but their 

following combination is still invariant: 
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• Change in the particle energy is related to change in particle radius produced by TAE 
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QUALITATIVE ESTIMATES – 2 
 

• The interaction between TAE and fast particles causes radial transport of the 
particles at nearly constant energy 

 

• This type of interaction is extremely unpleasant as it may deposit a 
population of fusion born alphas too close to the first wall 

 
 

• Losses of fusion born alphas must be minimised down to few percent (<5% 
on ITER) for avoiding the first wall damage 

 
 

• The radial redistribution also gives a non self-consistent alpha-heating 
profiles etc. and may affect the burn  
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TWO MAIN TYPES OF THE TAE-INDUCED TRANSPORT 
 

• Fast ion orbits comparable to the machine radius, 110/ 1 ÷≅ −aαρ . A single-

mode ‘convective’ transport is observed in present-day machines (DIII-D, 
TFTR, JET, JT-60U). TAE-induced enhancement of prompt losses is important, 

losses TAEBδ∝  

 

• For ITER with parameter 
210/ −≅aαρ  the dominant channel of alpha-particle 

transport is predicted to differ from present-day machines.  
 

• On ITER, higher-n (n > 10) TAEs will be most unstable. The radial width of a 

poloidal harmonic will be more narrow, nqrAEe /mod ∝∆ , but the number of 

unstable modes may be significantly larger than in present-day tokamaks 
 

• Resonance overlap will lead to a global stochastic diffusion of energetic ions 

over a broad region with unstable AEs, with transport 
2

TAEBδ∝  
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MODELLING TAE-ORBIT INTERACTION (HAGIS CODE) 
 
 
 
 
 
 
 
 
 
 

 

 

 
 

 S.D.Pinches et al., Computer Physics Communications 111 (1998) 133 
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HAMILTONIAN APPROACH FOR δf 
 

Trajectory of each individual macro-particle follows the Hamiltonian approach 
[White & Chance, Phys. Fluids 27 (10) 1984] leading to equations of the type: 
 

 

For the shear Alfvén modes, the assumption ( ) 0,~~
BxA ⋅= tα  is used; 

 

Nonlinear code: for the eigenmode structure provided by CASTOR or MISHKA, 
the mode amplitude and phase are evolving through (schematically): 
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δδδδf low-noise technique is used for deviation from f0 computed by launching >10
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MODE EVOLUTION FROM HAGIS 
 

 
γγγγd/ωωωω = 2%, ββββ〈〈〈〈f〉〉〉〉 = 3×10

-4
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FAST ION REDISTRIBUTION 
 

 
 
 



 

                           S.E.Sharapov, Lecture 5B, Australian National University, Canberra, 7-9 July 2010 
  
 

 

 

DRIFT ORBIT STOCHASTICITY (HAGIS MODELLING FOR JET) 

 
• The analytically derived stochasticity threshold (Berk et al Phys. Fluids B5, 1506, 

1993) is close to that obtained numerically: 

( ) mqSmRrBB TAEr /105.164/ 31

00

−− ×≅⋅>δ  
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NOTE  
 

• TAE is ideal MHD mode and does NOT cause stochasticity of magnetic 
field 

 

• The stochasticity affecting the fast ions arises in the DRIFT surfaces of the 
fast ions, NOT in the magnetic flux surfaces 
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STOCHASTIC TRANSPORT OF ALPHAS ON JET (HAGIS-95) 
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EXPERIMENTAL MEASUREMENTS OF LOST FAST IONS ON JET 
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THE SCINTILLATOR DATA  
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EXPERIMENTAL MEASUREMENTS OF CONFINED FAST IONS 
 

• Intense gamma-ray emission comes from JET plasmas 
 

• These gamma-rays come from nuclear reactions between fast ions with E > 
Ecrit and main plasma impurities C and Be 

 

• The gamma ray spectrum is discrete, each nuclear reaction gives gamma-ray 
of certain energy  
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GAMMA-CAMERA ON JET 
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Schematic of the JET gamma camera used for  
the spatial gamma-ray emissivity measurements. 
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TYPICAL GAMMA-RAY IMAGE OF FAST IONS 
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ENERGY SPECTRUM OF THE GAMMA EMISSION 
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Gamma-ray spectra measured by the NaI(Tl) detector 
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SIMULTANEOUS MEASUREMENTS OF 
4
He AND D FAST IONS 

 

Energy windows for ALL Gamma 
Camera channels 
 

I > 2.0 MeV  (total) 
II 2.5 - 3.5 MeV (D+C)      
III spare 
IV 4.0 - 5.0 MeV (

4
He+Be) 
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GAMMA-RAY IMAGES OF 
4
He (E>1.7 MeV) and D (E>0.5 MeV) 
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Tomographic reconstructions of 4.44-MeV γγγγ-ray emission from the reaction  9Be(4He,nγγγγ)12C (left) and  
3.09-MeV γγγγ-ray emission from the reaction  12C(D,pγγγγ)13C  (right) deduced from simultaneously measured 
profiles 
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“TORNADO” MODES AND ENERGETIC ION TRANSPORT ON JET 
 

• Tornado mode = TAE inside the q=1 radius. Usually precedes monster sawtooth crash. 
(Kramer, Sharapov et al, PRL 2004) 

 

 

• Tornado modes are considered to be possible reason for expelling fast ions from the q=1 
region and causing monster sawtooth crash due to the loss of fast ion stabilisation 
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JET (2004): GAMMA-RAY INTENSITY FROM 5MeV PROTONS  
 

200

180

160

140

120

100

80

60

40

20

0

220

8 9 10 11 12 13 14 15
Time (s)

JG
04

.5
02

-4
c

 

γγγγ-rays from reactions 12
C(p, p’γγγγ)12

C   

8

6

4

2

8 10 12 14
10

3  e
V

Time (s)

JG
04

.5
02

-5
c

 
Te at different radii show sawteeth at t=11.4,   

t=13 s occuring after decreases of γγγγ-intensity 
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Observed Gamma-ray Decrease Happens when  
TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist  
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Pulse No: 60195, Probe H302: mode amplitude
 log(|δB(T)|)


 

TAEs & tornadoes during first  
shaded time interval  
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TAEs & tornadoes during second 
shaded time interval 
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JET (2006): experiment with a more complete set of diagnostics 

 
 

ICRH (hydrogen minority) and NBI power waveforms and Te measured with multi-
channel ECE diagnostics in typical tornado mode discharge on JET (pulse #67673) 
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New high-quality detection of core-localised modes with  
far infra-red interferometry (JET discharge #67673) 

 

 

 
Tornado modes detected with vertical 
channel passing through the magnetic axis 
of the JET  interferometer  

 
 Geometry of JET interferometer 
with vertical lines-of-sight 
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Four sets of tornado modes precede four monster crashes in #67673: 
t=11.25 – 11.75 sec  t=13.0 – 13.53 sec  t= 15.1 – 15.68 sec  t = 16.9 – 17.4 sec 
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Gamma-ray emission from deuterons (E>500 keV) colliding with 

carbon, 
12

C(d,pγγγγ)13
C decreases before crashes 
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Losses of energetic ions measured with scintillator outside 
plasma are different before and during sawtooth crashes 

 

 
Ions with gyro-radii 6-10 cm are lost before 

sawtooth crash  

 
Ions with gyro-radii 4-6 cm are lost during 

sawtooth crash 
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Loss measurements indicate increase during tornado activity  
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MODELLING TORNADO MODES 
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TAEs with n=3, 4 within the q=1 radius (tornado),  
and n=5,6 TAEs outside the q=1 radius 
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Orbits of 5 MeV protons 

• Ideal MHD code used for computing these modes in JET with monotonic q-profile  

• Redistribution of protons from the q=1 radius by tornadoes considered main cause of the 
decrease in gamma-ray intensity 
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TAE DRIVEN BY ICRH-ACCELERATED FAST IONS  
 

 

• For trapped ions, the resonance VII = VA does not work, and drive comes via  
 

ΩΩΩΩ = ωωωω - n⋅⋅⋅⋅ωωωωϕϕϕϕ - p⋅⋅⋅⋅ωωωωθθθθ 
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FAST ION ORBITS – ICRH 
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FAST ION ORBITS – ICRH 
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THE RESONANCES  

0=−−=Ω ωωω θφ pnnp  
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Regions of phase space where ICRH-accelerated ions resonate with n=3 tornado 
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EVOLUTION OF THE RESONANCES WITH MODE FREQUENCY  
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Movement of resonant lines due to ALL tornado modes by 
 sweeping frequency in 3% steps over 15%. 
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ATTEMPT TO OBSERVE STOCHASTIC TRANSPORT DUE TO 
MULTIPLE MODES 
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EXPERIMENTS ON MULTI-MODE TRANSPORT ON JET: 
3
He WITH E>500 keV MEASURED 
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Profile of Fast He
3
 (Top) Measured Simultaneously with AEs (Bottom)   

 

Notches of ICRH power (5 MW →→→→1MW) show modes most sensitive to 
3
He ions 
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NO GLOBAL STOCHASTICITY FOR SUCH AMPLITUDES 
 

• Tens of AEs were excited, but no degradation of fast 
3
He observed in these 

I=2.3 MA discharges with orbit width of 
3
He ions ∆∆∆∆f /a <<1. 
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SUMMARY 
 

• Interaction between fast ion and a wave in the form ( )tni ωϕ −∝ exp  has invariant  

constP
n

E =− ϕ
ω

 

• TAE causes a radial transport of resonant fast ions at nearly constant energy 
 

• Two main transport mechanisms can be identified depending on the ratio a/αρ : 

convective single mode transport for large a/αρ  and global milti-mode stochastic 

transport for small a/αρ  

 

• Most present-day machines are in the regime of large a/αρ . Example: tornado modes 

on JET 
 

• ITER will be in the regime of small a/αρ . Modelling of global stochasticity on, e.g. JET 

shows that amplitudes 
3

0 10/ −>BBrδ  are required for that. Direct JET experiments on 

multi-mode transport could not achieve such numbers yet 


