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OUTLINE OF LECTURE 5B

e Qualitative estimates of fast ion transport induced by TAE
e Orbits comparable to a: enhanced prompt losses due to TAE

e Orbits smaller than a: onset of particle orbit stochasticity and transport due
to the resonance overlapping

e Experimental measurements of confined and lost fast ions
e Trapped ion redistribution by TAE inside the q=1 radius (“tornado” modes)
e Multi-mode experiments on JET

e Summary
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QUALITATIVE ESTIMATES — 1

e The unperturbed orbit of a particle is determined by three invariants:
Mv? My’
. E =

2 H
e In the presence of a single TAE mode with perturbed quantities ¢ €xp i("(” - OJf), the
wave-particle interaction is invariant with respect to transformation

U= ; ¢E—St//(r)+RMv¢

I >1t+7, 0>+

n
e In the presence of the TAE, neither £ nor £, is conserved for particle orbit, but their

following combination is still invariant:

10
E - —P(ﬂ = const
n

e Change in the particle energy is related to change in particle radius produced by TAE

AE = Z AP, = 22y Ar
n nc
e The relative change in particle energy is much smaller than in particle radius:
Av:a).Ar. where @ _ Py
v w, L,’ ere ™ 2rL,
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QUALITATIVE_-ESTIMATES -2

e The interaction between TAE and fast particles causes radial transport of the
particles at nearly constant energy

e This type of interaction is extremely unpleasant as it may deposit a
population of fusion born alphas too close to the first wall

e Losses of fusion born alphas must be minimised down to few percent (<5%
on ITER) for avoiding the first wall damage

e The radial redistribution also gives a non self-consistent alpha-heating
profiles etc. and may affect the burn
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TWO MAIN TYPES OF THE-TAE-INDUCED TRANSPORT

e Fast ion orbits comparable to the machine radius, p,/a=10"+1, A single-

mode ‘convective’ transport is observed in present-day machines (DIII-D,
TFTR, JET, JT-60U). TAE-induced enhancement of prompt losses is important,

losses « 0B,

e For ITER with parameter £,/a=10" the dominant channel of alpha-particle
transport is predicted to differ from present-day machines.

e On ITER, higher-n (n > 10) TAEs will be most unstable. The radial width of a

poloidal harmonic will be more narrow, A,..*<7.:/1nq, but the number of
unstable modes may be significantly larger than in present-day tokamaks

e Resonance overlap will lead to a global stochastic diffusion of energetic ions
over a broad region with unstable AEs, with transport < 5B;,,
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HAMILTONIAN APPROACH FOR of

Trajectory of each individual macro-particle follows the Hamiltonian approach
[White & Chance, Phys. Fluids 27 (10) 1984] leading to equations of the type:

oy,

D

_£
oP, D’ OP

D' o9 9| ac Dp| 89 a; )

0% D

For the shear Alfvén modes, the assumption A =a(x,7)-B, is used;

Nonlinear code: for the eigenmode structure provided by CASTOR or MISHKA,
the mode amplitude and phase are evolving through (schematically):

dA
_t=A0+ Z(---)—mampA; _% 2 (- ),

d particles particles

for unchanged mode structure

8f low-noise technique is used for deviation from f, computed by launching >10°
macro-particles
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Amplitude Evolution
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DRIFT ORBIT STOCHASTICITY (HAGIS MODELLING FOR JET)

1.6 S
53/8““ 108 - -7 SB,wa 2¢ 108 e

1.4 *

Safety facior
i

b
1.3F.

Safety factor

1.2

a "0'{5 1I.D 1:5 218 01.5 1|01|5 20
Phase (- wi/n) Phase (L- wi/n)

e The analytically derived stochasticity threshold (Berk et al Phys. Fluids B5, 1506,
1993) is close to that obtained numerically:

OB, /B, > rp, -(64mR,gS )" =1.5x107 /m
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NOTE

e TAE is ideal MHD mode and does NOT cause stochasticity of magnetic
field

e The stochasticity affecting the fast ions arises in the DRIFT surfaces of the
fast ions, NOT in the magnetic flux surfaces
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STOCHASTIC TRANSPORT OF ALPHAS ON JET (HAGIS-95)
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EXPERIMENTAL MEASUREMENTS OF LOST FAST IONS ON JET
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THE SCINTILLATOR DATA
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EXPERIMENTAL MEASUREMENTS OF CONFINED FAST IONS

e Intense gamma-ray emission comes from JET plasmas

e These gamma-rays come from nuclear reactions between fast ions with E >
E.i: and main plasma impurities C and Be

e The gamma ray spectrum is discrete, each nuclear reaction gives gamma-ray
of certain energy
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GAMMA-AMERA ON JET
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Schematic of the JET gamma camera used for
the spatial gamma-ray emissivity measurements.
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TYPICAL GAMMA-RAY IMAGE OF FAST IONS
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ENERGY SPECTRUM OF THE GAMMA EMISSION
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SIMULTANEOUS MEASUREMENTS OF 4He AND D FAST IONS

Energy windows for ALL Gamma
Camera channels
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GAMMA-RAY IMAGES OF “He (E>1.7 MeV) and D (E>0.5 MeV)
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Tomographic reconstructions of 4.44-MeV y-ray emission from the reaction °Be(*He,ny)'’C (left) and
3.09-MeV j-ray emission from the reaction '>C(D,py)"°C (right) deduced from simultaneously measured

profiles
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“TORNADO” MODES AND ENERGETIC ION TRANSPORT ON JET

Tornado mode = TAE inside the q=1 radius. Usually precedes monster sawtooth crash.
(Kramer, Sharapov et al, PRL 2004)

e Tornado modes are considered to be possible reason for expelling fast ions from the g=1
region and causing monster sawtooth crash due to the loss of fast ion stabilisation
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Observed Gamma-ray Decrease Happens when
TAEs within q<1 (tornado modes) and TAEs outside g=1 coexist

Pulse No: 60195, Probe H302: mode amplitude log(|dB(T)])
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JET (2006): experiment wit a more complete set of diagnostics
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ICRH (hydrogen minority) and NBI power waveforms and T, measured with multi-
channel ECE diagnostics in typical tornado mode discharge on JET (pulse #67673)
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New high-quality detectioh of core-localised modes with
far infra-red interferometry (JET discharge #67673)
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Four sets of tornado modes precede four monster crashes in #67673:
t=11.25 - 11.75 se t=13.0 — 13.53 sec t=15.1 — 15.68 sec t=16.9-17.4 sec

i

#67673: Toroidal Mode Numbers #67673: Toroidal Mode Numbers #67673: Toroidal Mode Numbers #67673: Toroidal Mode Numbers
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Gamma-ray emission from deuterons (E>500 keV) colliding with
carbon, *C(d,py)*°C decreases before crashes
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Losses of energetic ions measured with scintillator outside
plasma are different before and during sawtooth crashes

Pulea: 67673, lima: 53,425 ¢ Pulse: 7673, lima: 53,475 s

lons with gyro-radii 6-10 cm are lost before lons with gyro-radii 4-6 cm are lost during
sawtooth crash sawtooth crash
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Loss measurements indicate increase during tornado activity
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#60195
5MeV protons
red -r0=0.4
blue-r0=0.5
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s = (llJp / l.IJpedge)l/Z
TAEs with n=3, 4 within the q=1 radius (tornado), 20 25 30 35
and n=5,6 TAEs outside the q=1 radius Orbits of 5 MeVprotons

e |Ideal MHD code used for computing these modes in JET with monotonic q-profile
e Redistribution of protons from the gq=1 radius by tornadoes considered main cause of the
decrease in gamma-ray intensity
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TAE DRIVEN BY ICRH-ACCELERATED FAST IONS

e For trapped ions, the resonance V, =V, does not work, and drive comes via

Q=0-nwn,-P-0

=
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FAST ION ORBITS - ICRH

e ICRH auxiliary heating

e Distribution function
described by
N=puBy/E=1

— Trapped orbits with

turning points at ICRH
resonance layer

e Orbit properties
investigated using
HAGIS code
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FAST ION ORBITS - ICRH

* Determine natural particle frequencies, w, and wy
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THE RESONANCES

Q,=no,—po,—-o=0

Energy [MeV]
Regions of phase space where ICRH-accelerated ions resonate with n=3 fornado
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EVOLUTION OF THE RESONANCES WITH MODE FREQUENCY

All resononces n=3-7

-250

45 50 55 60 65 7.0 7.5
E [MeV]

Movement of resonant lines due to ALL tornado modes by
sweeping frequency in 3% steps over 15%.

CCFE S.E.Sharapov, Lecture 5B, Australian National University, Canberra, 7-9 July 2010



ATTEMPT TO OBSERVE STOCHASTIC TRANSPORT DUE TO
MULTIPLE MODES
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EXPERIMENTS ON MULTI MODE TRANSPORT ON JET:
*He WITH E>500 keV MEASURED

00 Gamma-ray spectra
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Profile of Fast He® (Top) Measured Simultaneously with AEs (Bottom)
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Notches of ICRH power (5 MW —1MW) show modes most sensitive to *He ions
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NO GLOBAL STOCHASTICITY FOR SUCH AMPLITUDES

o Tens of AEs were excited, but no degradation of fast *He observed in these
1=2.3 MA discharges with orbit width of *He ions A¢/a <<1.
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SUMMARY

Interaction between fast ion and a wave in the form o €xp i(n(ﬂ - a)t) has invariant

10
E — —P(p = const
n

TAE causes a radial transport of resonant fast ions at nearly constant energy

Two main transport mechanisms can be identified depending on the ratio ©,/a:
convective single mode transport for large ©,/a and global milti-mode stochastic
transport for small o, /a

Most present-day machines are in the regime of large £,/ . Example: tornado modes
on JET

ITER will be in the regime of small £,/a. Modelling of global stochasticity on, e.g. JET

shows that amplitudes 6B, /B, >10~ are required for that. Direct JET experiments on
multi-mode transport could not achieve such numbers yet
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