

TRANSPORT CAUSED BY TAE

S.E. Sharapov

Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK

OUTLINE OF LECTURE 5B

- Qualitative estimates of fast ion transport induced by TAE
- Orbits comparable to *a* : enhanced prompt losses due to TAE
- Orbits smaller than *a*: onset of particle orbit stochasticity and transport due to the resonance overlapping
- Experimental measurements of confined and lost fast ions
- Trapped ion redistribution by TAE inside the q=1 radius ("tornado" modes)
- Multi-mode experiments on JET
- Summary

QUALITATIVE ESTIMATES – 1

• The *unperturbed* orbit of a particle is determined by three invariants:

$$\mu \equiv \frac{M v_{\perp}^2}{2}; \qquad E \equiv \frac{M v^2}{2}; \quad P_{\varphi} \equiv -\frac{e}{c} \psi(r) + R M v_{\varphi}$$

• In the presence of a single TAE mode with perturbed quantities $\propto \exp i(n\varphi - \omega t)$, the wave-particle interaction is invariant with respect to transformation

$$t \rightarrow t + \tau; \quad \varphi \rightarrow \varphi + \frac{\omega}{n} \tau$$

• In the presence of the TAE, neither E nor P_{φ} is conserved for particle orbit, but *their* following combination is still invariant:

$$E - \frac{\omega}{n} P_{\varphi} = const$$

• Change in the particle energy is related to change in particle radius produced by TAE

$$\Delta E = \frac{\omega}{n} \Delta P_{\varphi} \cong \frac{\omega e}{nc} \psi' \Delta r$$

• The relative change in particle energy is much smaller than in particle radius:

$$\frac{\Delta v}{v} = \frac{\omega}{\omega_{*_{\alpha}}} \cdot \frac{\Delta r}{L_{\alpha}}; \quad \text{where } \omega_{*_{\alpha}} \equiv \frac{nq\rho_{\alpha}v}{2rL_{\alpha}} >> \omega$$

QUALITATIVE ESTIMATES – 2

Management of the state of the state of the

- The interaction between TAE and fast particles causes radial transport of the particles at nearly constant energy
- This type of interaction is extremely unpleasant as it may deposit a population of fusion born alphas too close to the first wall
- Losses of fusion born alphas must be minimised down to few percent (<5% on ITER) for avoiding the first wall damage
- The radial redistribution also gives a non self-consistent alpha-heating profiles etc. and may affect the burn

C EFJEA

TWO MAIN TYPES OF THE TAE-INDUCED TRANSPORT

• Fast ion orbits comparable to the machine radius, $\rho_{\alpha}/a \cong 10^{-1} \div 1$. A singlemode 'convective' transport is observed in present-day machines (DIII-D, TFTR, JET, JT-60U). TAE-induced enhancement of prompt losses is important, losses $\propto \delta B_{TAE}$

• For ITER with parameter $\rho_{\alpha}/a \cong 10^{-2}$ the dominant channel of alpha-particle transport is predicted to differ from present-day machines.

• On ITER, higher-*n* (*n* > 10) TAEs will be most unstable. The radial width of a poloidal harmonic will be more narrow, $\Delta_{mode} \propto r_{AE} / nq$, but the number of unstable modes may be significantly larger than in present-day tokamaks

• Resonance overlap will lead to a global stochastic diffusion of energetic ions over a broad region with unstable AEs, with transport $\propto \delta B_{TAE}^2$

MODELLING TAE-ORBIT INTERACTION (HAGIS CODE)

S.D.Pinches et al., Computer Physics Communications 111 (1998) 133

HAMILTONIAN APPROACH FOR δf

Trajectory of each individual macro-particle follows the Hamiltonian approach [White & Chance, Phys. Fluids 27 (10) 1984] leading to equations of the type:

$$\frac{\partial \psi_{p}}{\partial g} = \frac{1}{D} \left[I \frac{\partial \widetilde{A}_{\zeta}}{\partial g} - g \frac{\partial \widetilde{A}_{g}}{\partial g} \right]; \quad \frac{\partial \psi_{p}}{\partial \zeta} = \frac{1}{D} \left[I \frac{\partial \widetilde{A}_{\zeta}}{\partial g} - g \frac{\partial \widetilde{A}_{g}}{\partial \zeta} \right]; \quad \frac{\partial \psi_{p}}{\partial P_{g}} = \frac{g}{D}; \quad \frac{\partial \psi_{p}}{\partial P_{\zeta}} = -\frac{I}{D} \left[I \frac{\partial \widetilde{A}_{g}}{\partial g} - g \frac{\partial \widetilde{A}_{g}}{\partial \zeta} \right]; \quad \frac{\partial \psi_{p}}{\partial P_{g}} = \frac{g}{D}; \quad \frac{\partial \psi_{p}}{\partial P_{\zeta}} = -\frac{I}{D} \left[I \frac{\partial \widetilde{A}_{g}}{\partial g} - g \frac{\partial \widetilde{A}_{g}}{\partial \zeta} \right]; \quad \frac{\partial \psi_{p}}{\partial P_{g}} = \frac{g}{D}; \quad \frac{\partial \psi_{p}}{\partial P_{\zeta}} = -\frac{I}{D} \left[I \frac{\partial \widetilde{A}_{g}}{\partial g} - g \frac{\partial \widetilde{A}_{g}}{\partial \zeta} \right]; \quad \frac{\partial \psi_{p}}{\partial P_{g}} = \frac{g}{D}; \quad \frac{\partial \psi_{p}}{\partial P_{\zeta}} = -\frac{I}{D} \left[I \frac{\partial \widetilde{A}_{g}}{\partial g} - g \frac{\partial \widetilde{A}_{g}}{\partial \zeta} \right]; \quad \frac{\partial \psi_{p}}{\partial P_{g}} = \frac{g}{D}; \quad \frac{\partial \psi_{p}}{\partial P_{\zeta}} = -\frac{I}{D} \left[I \frac{\partial \widetilde{A}_{g}}{\partial g} - g \frac{\partial \widetilde{A}_{g}}{\partial \zeta} \right]; \quad \frac{\partial \psi_{p}}{\partial P_{g}} = \frac{g}{D}; \quad \frac{\partial \psi_{p}}{\partial P_{\zeta}} = -\frac{I}{D} \left[I \frac{\partial \widetilde{A}_{g}}{\partial g} - g \frac{\partial \widetilde{A}_{g}}{\partial \zeta} \right]; \quad \frac{\partial \psi_{p}}{\partial P_{g}} = \frac{g}{D}; \quad \frac{\partial \psi_{p}}{\partial P_{\zeta}} = -\frac{I}{D} \left[I \frac{\partial \widetilde{A}_{g}}{\partial g} - g \frac{\partial \widetilde{A}_{g}}{\partial \zeta} \right];$$

For the shear Alfvén modes, the assumption $\widetilde{\mathbf{A}} = \widetilde{\alpha}(\mathbf{x}, t) \cdot \mathbf{B}_0$ is used;

Nonlinear code: for the eigenmode structure provided by CASTOR or MISHKA, the mode amplitude and phase are evolving through (schematically):

$$\frac{dA}{dt} = A_0 + \sum_{particles} (...) - \gamma_{damp} A; \qquad \frac{d\varphi}{dt} = \varphi_0 + \sum_{particles} (...),$$

for unchanged mode structure

 δf low-noise technique is used for deviation from f₀ computed by launching >10⁵ macro-particles

MODE EVOLUTION FROM HAGIS

AND THE REPORT OF THE REPORT

S.E.Sharapov, Lecture 5B, Australian National University, Canberra, 7-9 July 2010

FAST ION REDISTRIBUTION

None of the second s

DRIFT ORBIT STOCHASTICITY (HAGIS MODELLING FOR JET)

• The analytically derived stochasticity threshold (Berk et al Phys. Fluids B5, 1506, 1993) is close to that obtained numerically:

$$\delta B_r / B_0 > r_{TAE} \cdot (64 m R_0 q S)^{-1} \cong 1.5 \times 10^{-3} / m$$

NOTE

- TAE is ideal MHD mode and does NOT cause stochasticity of magnetic field
- The stochasticity affecting the fast ions arises in the DRIFT surfaces of the fast ions, NOT in the magnetic flux surfaces

STOCHASTIC TRANSPORT OF ALPHAS ON JET (HAGIS-95)

EXPERIMENTAL MEASUREMENTS OF LOST FAST IONS ON JET

THE SCINTILLATOR DATA

And the second second

EXPERIMENTAL MEASUREMENTS OF CONFINED FAST IONS

- Intense gamma-ray emission comes from JET plasmas
- These gamma-rays come from nuclear reactions between *fast* ions with E > E_{crit} and main plasma impurities C and Be
- The gamma ray spectrum is *discrete*, each nuclear reaction gives gamma-ray of *certain* energy

GAMMA-CAMERA ON JET

The second s

Schematic of the JET gamma camera used for the spatial gamma-ray emissivity measurements.

TYPICAL GAMMA-RAY IMAGE OF FAST IONS

S.E.Sharapov, Lecture 5B, Australian National University, Canberra, 7-9 July 2010

Gamma-ray spectra measured by the Nal(TI) detector

SIMULTANEOUS MEASUREMENTS OF ⁴He AND D FAST IONS

L

Ш

GAMMA-RAY IMAGES OF ⁴He (E>1.7 MeV) and D (E>0.5 MeV)

Tomographic reconstructions of 4.44-MeV γ -ray emission from the reaction ${}^{9}Be({}^{4}He,n\gamma)^{12}C$ (left) and 3.09-MeV γ -ray emission from the reaction ${}^{12}C(D,p\gamma)^{13}C$ (right) deduced from simultaneously measured profiles

○ EF**Je**↑

"TORNADO" MODES AND ENERGETIC ION TRANSPORT ON JET

Constant of the Constant of the Constant

- Tornado mode = TAE inside the q=1 radius. Usually precedes monster sawtooth crash. (Kramer, Sharapov et al, PRL 2004)
- Tornado modes are considered to be possible reason for expelling fast ions from the q=1 region and causing monster sawtooth crash due to the loss of fast ion stabilisation

S.E.Sharapov, Lecture 5B, Australian National University, Canberra, 7-9 July 2010

JET (2004): GAMMA-RAY INTENSITY FROM 5MeV PROTONS

Observed Gamma-ray Decrease Happens when TAEs within q<1 (tornado modes) and TAEs outside q=1 coexist

JET (2006): experiment with a more complete set of diagnostics

ICRH (hydrogen minority) and NBI power waveforms and T_e measured with multichannel ECE diagnostics in typical tornado mode discharge on JET (pulse #67673)

New high-quality detection of core-localised modes with far infra-red interferometry (JET discharge #67673)

Tornado modes detected with vertical channel passing through the magnetic axis of the JET interferometer

Geometry of JET interferometer with vertical lines-of-sight

Four sets of tornado modes precede four monster crashes in #67673: t=13.0 – 13.53 sec

t=11.25 - 11.75 sec

AD State 2003 - Che (F/01F-4691-003) Time: 12,318 is 13,567 right 1,40006+07 ridge 2048 with 4066 H: 117,2 Hz 165,6 mode (All Sector - Sec and - 1166 A Sector 306

n decreases one-by-one: n= 8→7→6

n decreases one-by-one $n=9\rightarrow 8\rightarrow 7\rightarrow 6\rightarrow 5\rightarrow 4\rightarrow 3$

Gamma-ray emission from deuterons (E>500 keV) colliding with carbon, ¹²C(d,pγ)¹³C decreases before crashes

Losses of energetic ions measured with scintillator outside plasma are different before and during sawtooth crashes

Ions with gyro-radii 6-10 cm are lost before Ions with gyro-radii 4-6 cm are lost during sawtooth crash sawtooth crash

Loss measurements indicate increase during tornado activity

MODELLING TORNADO MODES

TAEs with n=3, 4 within the q=1 radius (tornado), and n=5,6 TAEs outside the q=1 radius

- Ideal MHD code used for computing these modes in JET with monotonic q-profile
- Redistribution of protons from the q=1 radius by tornadoes considered main cause of the decrease in gamma-ray intensity

TAE DRIVEN BY ICRH-ACCELERATED FAST IONS

• For trapped ions, the resonance $V_{II} = V_A$ does not work, and drive comes via

 $\Omega = \omega - \mathbf{n} \cdot \omega_{\varphi} - \mathbf{p} \cdot \omega_{\theta}$

FAST ION ORBITS – ICRH

FAST ION ORBITS – ICRH

• Determine natural particle frequencies, ω_{ϕ} and ω_{θ}

S.E.Sharapov, Lecture 5B, Australian National University, Canberra, 7-9 July 2010

THE RESONANCES $\Omega_{np} = n\omega_{\phi} - p\omega_{\theta} - \omega = 0$

Regions of phase space where ICRH-accelerated ions resonate with *n*=3 tornado

EVOLUTION OF THE RESONANCES WITH MODE FREQUENCY

Movement of resonant lines due to ALL tornado modes by sweeping frequency in 3% steps over 15%.

ATTEMPT TO OBSERVE STOCHASTIC TRANSPORT DUE TO MULTIPLE MODES

EXPERIMENTS ON MULTI-MODE TRANSPORT ON JET: ³He WITH E>500 keV MEASURED

Profile of Fast He³ (Top) Measured Simultaneously with AEs (Bottom)

Notches of ICRH power (5 MW \rightarrow 1MW) show modes most sensitive to ³He ions

NO GLOBAL STOCHASTICITY FOR SUCH AMPLITUDES

• Tens of AEs were excited, but no degradation of fast ³He observed in these I=2.3 MA discharges with orbit width of ³He ions $\Delta_f/a <<1$.

SUMMARY

• Interaction between fast ion and a wave in the form $\propto \exp i(n\varphi - \omega t)$ has invariant

 $E - \frac{\omega}{n} P_{\varphi} = const$

- TAE causes a radial transport of resonant fast ions at nearly constant energy
- Two main transport mechanisms can be identified depending on the ratio ρ_{α}/a : convective single mode transport for large ρ_{α}/a and global milti-mode stochastic transport for small ρ_{α}/a
- Most present-day machines are in the regime of large ρ_{α}/a . Example: tornado modes on JET
- ITER will be in the regime of small ρ_{α}/a . Modelling of global stochasticity on, e.g. JET shows that amplitudes $\delta B_r/B_0 > 10^{-3}$ are required for that. Direct JET experiments on multi-mode transport could not achieve such numbers yet

