

ALFVÉN CASCADE EIGENMODES IN ADVANCED TOKAMAK SCENARIOS

S.E. Sharapov

Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxfordshire OX14 3DB, UK

OUTLINE OF LECTURE 6

- Advanced tokamak scenarios and internal transport barriers
- Experimental scenarios for non-monotonic q(r)
- TAEs versus Alfvén Cascades
- Properties of Alfvén Cascade eigenmodes
- Correlation between ITB triggering and grand Cascades
- Summary

INTRO - 1

 "Advanced Scenario" in tokamak = improved plasma confinement at low inductive current. Achieved by optimising magnetic field topology.

ALL REAL PROPERTY AND A REAL PROPERTY A

- Internal Transport Barriers (ITBs) could be triggered in AT scenarios
- JET record fusion performance in Deuterium plasma was achieved in the ITB scenario, $S_n = 5.5 \times 10^{16} \text{ sec}^{-1}$ (JET pulse # 40554)
- JET record ion temperature, $T_i(0) \approx 40$ keV, radial gradient of ion temperature, \approx 150 keV/m, and the ion pressure gradient, $\approx 10^6$ Pa/m were achieved in Deuterium-Tritium ITB discharge # 42940 (Gormezano et al Phys. Rev. Lett. 80, 5544 (1998))

INTRO – 2

• Example of Deuterium-Tritium ITB plasma

C.Gormezano et al., Phys. Rev. Lett. 80, 5544 (1998)

Plasma density profile in JET discharge with ITB

HOW ONE TRIGGERS AN ITB? TIMING SCAN OF MAIN HEATING AT CURRENT RAMP-UP

the different time slices of main heating

TRIGGERING OF ITB AT INTEGER qmin

 R_{nt} vs q_0 for three domains of input power. At 20 MW, ITBs are formed in narrow range of target q_0 close to 2. At 22 and 24 MW the domain is less sensitive to the q-profile.

E. Joffrin et al., Nuclear Fusion 43 (2003) 1167

How to explain this experimental observation?

PLASMA TRANSPORT AND RATIONAL MAGNETIC SURFACES

TRANSPORT AND INTEGER MAGNETIC SURFACES (THEORY)

Constant of the second se

TRANSPORT IS AFFECTED BY THE PRESENCE OF INTEGER q:

- Collisionless transport parallel to magnetic field depends strongly on irrational versus low-order rational q if heating source and sink are poloidally localised R.D. Hazeltine, Phys. of Plasmas v.6, p.550 (1999)
- Helical temperature perturbations due to tearing modes: R.Fitzpatrick, Phys. of Plasmas, v.2, p.825 (1995)

TRANSPORT IS AFFECTED BY THE GAP IN RATIONAL SURFACES

 Transport profiles induced by radially localised modes in tokamaks, A.D. Beklemishev and W.Horton, Phys. Fluids B4, p.200 (1992) – seems to be the earliest paper on this subject.

TRIGGERING OF ITB AT INTEGER qmin

- In larger devices, where the power density is expected to be relatively small, the ITB triggering by integer q-values may be decisive in creating an ITB in the advanced tokamak scenario
- Identification of t_{ITB} satisfying $q_{min}(t_{ITB}) = ... 4,3,2,1$ are needed
- Can we employ Alfénic instabilities to mark times when q_{min}(t)=integer?

CORRELATION BETWEEN AN ALFVÉNIC MODE AND ITB

S.E.Sharapov, Lecture 6, Australian National University, Canberra, 7-9 July 2010

Positive and negative shear AT Scenarios

Top: Power and current waveforms for positive shear plasma #49384 *Bottom:* Same for negative shear plasma #49382

q(*r*)-profiles for positive (#49384) and negative (#49382) shear plasmas

Measured Spectrum of Alfvén Waves Excited by ICRH-accelerated Ions

Properties of Alfvén Cascades

Magnetic perturbations in JET with non-monotonic q(r). **ACs** of n=1 to n=6 are observed **below TAE** frequency.

1) Time scale of the frequency sweeping ~0.1-1 s, is comparable to time scale of *q(r)* evolution
2) Each cascade may consist of many modes with different *n*'s from *n*=1 to *n*=6
3) The frequency of the cascades starts from below the TAE frequency. During the evolution, the frequency increases up to the TAE frequency.
4) The modes with higher mode numbers exhibit a more rapid frequency sweeping, *df/dt* ∝ *n*.
5) The higher *n* modes re-occur more often than the lower *n* modes
6) Internal measurements show that Alfvén Cascades

are localised in the region of q_{\min}

S.E. Sharapov et al., Phys. Of Plasmas 9, 2027 (2002)

$$\omega(r) = k_{\parallel m}(r) V_A(r), \qquad k_{\parallel m}(r) = \frac{1}{R} \left(n - \frac{m}{q(r)} \right), \quad q = q_{\min} \text{ at } s = \left(\psi / \psi_{edge} \right)^{1/2} \cong r/a \approx 0.6$$

Time Evolution of the Alfvén Continuum Tip at q_{min}

• Temporal evolution of Alfvén continuum at the point of zero magnetic shear

$$\omega_{AC}(t) = \left| \frac{m}{q_{\min}(t)} - n \right| \frac{V_A(t)}{R_0}$$

S.E.Sharapov, Lecture 6, Australian National University, Canberra, 7-9 July 2010

Time Evolution of Alfvén Continuum Tip at q_{min}

$$k_{\parallel m}(t, r_{\min}) = \frac{1}{R} \left(n - \frac{m}{q_{\min}(t)} \right), \ \omega_{AC}(t) = \left| \frac{m}{q_{\min}(t)} - n \right| \ \frac{V_A(t)}{R_0}$$

S.E.Sharapov, Lecture 6, Australian National University, Canberra, 7-9 July 2010

Time Evolution of Alfvén Continuum Tips vs Experimental Data

S.E.Sharapov, Lecture 6, Australian National University, Canberra, 7-9 July 2010

Time Evolution of Alfvén Cascades as q_{min}(t) diagnostics

• Frequency of Alfvén cascades approximately satisfies

$$\omega_{AC}(t) = \left| \frac{m}{q_{\min}(t)} - n \right| \frac{V_A(t)}{R_0} + \Delta \omega$$

and it traces evolution of $q_{min}(t)$ in time as

$$\frac{d}{dt}\omega_{AC}(t) \approx m \frac{V_A}{R_0} \frac{d}{dt} q_{\min}^{-1}(t)$$

• Time of the "Grand cascade" when ACs with all mode numbers are excited simultaneously marks well times when q_{min}(t)=integer

S.E.Sharapov et al., Phys. Lett. A289, 127 (2001)

Condition for Alfvén cascade to appear:

 $m - nq_{\min}(t) = 0$, n and m are integers $\downarrow \downarrow$ n=1 ACs occur when $q_{\min}=1,2,3...;$ n=2 ACs occur when $q_{\min}=1, 3/2, 2, 5/2, 3...;$ n=3 ACs occur when $q_{\min}=1, 4/3, 5/3, 2, 7/3, 8/3, 3...$ Alfvén Cascade, in which all n's are present \Rightarrow Grand Cascade. It occurs when $q_{\min}(t)$ passes an integer value.

GRAND CASCADES VERSUS ITB

Correlation between Alfvén grand-cascades and the ITB triggering events was established with different types of the pre-heating, i.e. with LHCD, ICRH+LHCD, ICRH only, NBI only, and with pellets, for a large variety of plasma conditions,

- 1.5<I_P<2.2 MA
- 2.45<B_T<3.4 T
- 3<P_{total}<17 MW.

Can we improve time resolution for ACs in order to detect what happens first, the ITB formation or the appearance of integer q_{min} in plasma?

O-MODE "INTERFEROMETRY" ($\omega > \omega_{cut-off}$) ON JET: MICROWAVES LAUNCHED AND RECEIVED AT R=4 m

S.E. Sharapov et al., PRL 93, 165001 (2004)

ACs DETECTED WITH EXTERNAL MIRNOV MAGNETIC COILS

S.E.Sharapov, Lecture 6, Australian National University, Canberra, 7-9 July 2010

ACs DETECTED WITH INTERFEROMETRY

JET Shot: 80935 : Chn: DI/G3-CATS<COS:006 Time: 3.6000 to 5.0000 npt: 3180000 netp: 1024 nfft: 8192 f1: 30.00 f2: 170.0 cdmpec v310 - Umr: mhch : Fil Sep 12 1458:11 2003

GRAND-CASCADES VERSUS ITB TRIGGERING EVENTS

- Both AC and $T_{\rm e}$ diagnostics have now very high time resolution

GRAND-CASCADES VERSUS ITB TRIGGERING EVENTS

- Grand ACs and ITB triggering events found to correlate within $\Delta t < 0.2$ sec in JET plasmas with densities up to ~ 5 10¹⁹ m⁻³
- In most cases, Grand ACs happen after ITB triggering events ⇒ improved confinement in most cases is associated with "gaps" in rational surfaces BEFORE appearance of q_{min}=integer in the plasma

SUMMARY

 Alfvén Cascade eigenmodes (also called Reversed Shear AE) associated with q_{min} are used successfully for monitoring the q_{min}(t) evolution and the ITB triggering events

- A new way to see the Alfvén Cascades with interferometry mode was found
- The interferometry measurements offer a superior mode detection with higher time resolution than Mirnov coils
- It was found that ITB triggering happens on JET before integer q_{min} enters the plasma

