Geoffrey Campbell

Geoffrey Campbell
Long Term Campus Visitor
PhD (ANU), GDip Internet and Web Comp (RMIT University)

Content navigation

Affiliations

  Group

Research interests

In 2022-23 I have written six "Fun with Numbers" brief articles for the Gazette of the Australian Mathematical Society. These are small articles with often new to literature, simple number theoretic topics.

My main mathematics priority for 2022 and into 2023 has been the book project described below. My 2019 paper's approach to vector partition theory (See https://arxiv.org/abs/1906.07526) was the starting place for the work; a monograph now entitled Partitions, Visible Point Vectors and Ramanujan Functions. My motivation is to cover classical Integer Partitions, Rogers-Ramanujan Partitions in Statistical Mechanics Solved Models, and include Vector Partitions ideas and the Visible Point Vector identities I found some years ago. However, it now has chapters on Plane Partitions, Asymptotic Partition Formulas, Partition Congruences, Ramanujan Continued Fractions, Polylogarithms, Parametric Euler sum identities, Higher Dimensional Weighted Partition Identities. I expect the final draft to be done by March 2023.

My high level table of contents, as at early March 2023, is:

Partitions, Visible Point Vectors and Ramanujan Functions

Preface
   1. About this book and its academic context
   2. The author’s vision and motivations

Chapter 1. Historical background - The range of literature
   1. Partitions as grown from the Ramanujan works
   2. Andrews’ “The Theory of Partitions” and “Integer Partitions” with Eriksson
   3. The 2021 book ”G. E. Andrews 80 Years of Combinatory Analysis”
   4. Basic Hypergeometric Series
   5. Lattice Sums in Chemistry molecular structures
   6. Polylogarithms and computational research related results
   7. Partition theory in Statistical Mechanics and Theoretical Physics

Chapter 2. A brief history and timeline for partitions
   1. Leonhard Euler - 18th century
   2. Gauss, Cauchy and Heine - 19th century
   3. Rogers and Ramanujan - 1890s to 1920s
   4. Major Percy MacMahon - 1896 to circa 1920
   5. Hardy and Ramanujan - circa 1918 to the 1940s
   6. Andrews - early 1960s to circa 2020
   7. Rodney Baxter - 1980 to 2023 and beyond

Chapter 3. Integer partitions and their generating functions
   1. Preview
   2. Euler’s approach to partitions
   3. Euler’s partition identity
   4. Euler’s pentagonal number theorem
   5. The q-binomial Theorem
   6. The Jacobi Triple Product
   7. Two Identities from Gauss
   8. The Watson Quintuple Product
   9. The Heine fundamental transformation
   10. The q-analogues of Gauss’s Theorem and Kummer’s Theorem
   11. Euler-Pair theorem
   12. Rogers-Ramanujan identities

Chapter 4. Continued Fractions for partitions generating functions
   1. Euler’s Continued Fraction
   2. Euler’s continued fraction applied to partitions
   3. Rogers-Ramanujan Continued Fractions for partition functions
   4. Ramanujan’s three parameter continued fraction
  
Chapter 5. Congruence properties of partitions
   1. Ramanujan’s partition congruence insights
   2. 1944, Freeman Dyson, and the Crank
   3. 1988, Andrews and Garvan’s definition of crank
   4. Further congruence identities for partitions
   5. R¨odseth–Gupta theorem on binary partitions
   6. The 2D and 3D binary partitions congruence theory

Chapter 6. Ferrers graphs and Ferrers Boards
   1. Ferrers graphs and conjugate graphs
   2. Ferrers Boards
   3. Bijection proofs using Ferrers graphs
   4. Franklin’s near-Bijection proof of Euler’s Pentagonal Number Theorem
   5. Examples

Chapter 7. Durfee Squares
   1. What is a Durfee Square?
   2. Durfee Squares applied to Generating Functions
   3. Successive Durfee Squares
   4. Bijection proofs of Rogers-Ramanujan type identities

Chapter 8. Gaussian polynomials
   1. Definition and particular cases
   2. Combinatorial interpretations
      2.1. Balls into bins
      2.2. Reflection
   3. Analogs of Pascal’s identity
   4. q-binomial theorem analogue
   5. Gaussian polynomials in the Theory of Partitions

Chapter 9. Plane Partitions from MacMahon to Andrews
   1. Definitions of Plane Partitions
   2. Lozenge tilings of a hexagon.
   3. Generating functions for Plane Partitions
   4. The Ten Symmetry Classes of Plane Partitions
   5. Class 1: Unrestricted Plane Partitions
   6. Class 2: Symmetric Plane Partitions
   7. Class 3: Cyclically Symmetric Plane Partitions
   8. Class 4: Totally Symmetric Plane Partitions
   9. Class 5: Self-Complementary Plane Partitions
   10. Class 6: Transpose-Complementary Plane Partitions
   11. Class 7: Symmetric Self-Complementary Plane Partitions
   12. Class 8: Cyclically Symmetric Transpose-Complementary Plane Partitions
   13. Class 9: Cyclically Symmetric Self-Complementary Plane Partitions
   14. Class 10: Totally Symmetric Self-Complementary Plane Partitions
   15. The State of Play circa 2023 and Open Questions
   16. The Gog and Magog Trapezoids and Alternating Sign Matrices
   17. Inferences from Plane Partitions that may apply to Vector Partitions
   18. Exercises

Chapter 10. Asymptotics for partition functions
   1. The Circle Method of Hardy and Ramanujan
   2. The Rademacher exact formula
   3. The Theorem of Meinardus
   4. A polynomial analogue of Meinardus’ Theorem
   5. The Convolution Method for products of two series
    6. Bruinier and Ono’s exact formula for p(n)
   7. Exercises

Chapter 11. The partition function in Statistical Mechanics
   1. Baxter’s Hard Hexagon Model solved exactly by Rogers-Ramanujan identities
   2. Hard Hexagon Model Regime II identities from Baxter
   3. Outline of proofs of Baxter’s Regime II Conjectures
   4. Transforms between Baxter’s Regime II and Regime III.
   5. The partition function of the Hard Hexagon Model
      5.1. Solution
   6. Rogers-Ramanujan transition from Mathematics to Physics
   7. Partition generating functions in Physics are polynomial generalizations
   8. The Elliptic q-Gamma Function
   9. Exercises

Chapter 12. Vector partitions and their generating function identities
   1. Defining Vector Partitions
   2. Vector or Multipartite Partitions from Andrews
   3. Defining Vector Grids and resulting Partition Grids
   4. Partitions into exactly two parts, and exactly three parts
   5. First 3D hyperquadrant tableau reduced to a 2D tableau
   6. 2D and 3D Upper Radial Regions of vectors for partition identities
   7. Defining 2D Upper Visible Point Vectors in origin-radial regions
   8. Examples of 2D VPV finite generating functions
      8.1.  2D Distinct Upper VPV Coefficients - Order 2
      8.2.  2D Distinct Upper VPV Coefficients - Order 3
      8.3.  2D Distinct Upper VPV Coefficients - Order 4
      8.4.  2D Distinct Upper VPV Coefficients - Order 5
      8.5.  2D weighted Upper VPV Coefficients - Order 5
   9. Defining radial from origin region 2D Upper All Vectors aggregates
   10. Examples of 2D Upper All Vectors finite generating functions
      10.1.   2D Distinct Upper All Vectors Coefficients - Order 2
      10.2.  2D Distinct Upper All Vectors Coefficients - Order 3
      10.3.  2D Distinct Upper All Vectors Coefficients - Order 4
      10.4.  2D Unrestricted Upper All Vectors Partitions - Order 4
      10.5.  2D Distinct Upper All Vectors Coefficients - Order 5

Chapter 13. Integer Partitions to Vector Partitions
   1. Use of the q-binomial theorem
   2. Setting up a higher dimensional approach to q-binomial theorem
   3. Proof of the n-space q-binomial theorem.
   4. Finite Product 2D, 3D and nD cases of q-binomial extensions.
   5. Exercises

Chapter 14. Weighted Vector Partitions as hybrid n-space variations
   1. Examples of hybrid variations for identities generating weighted vector
   partitions
   2. Proof of the n-space hybrid q-binomial theorem.
   3. Exercises

Chapter 15. Functional Equations for n-space Vector Partitions
   1. An n-space q-binomial functional equation.
   2. An n-space binary vector partitions functional equation.
   3. Exercises

Chapter 16. Binary Partitions and their Vector Generalizations
   1. Elementary ideas for binary Partitions
   2. A few finite and infinite products for binary partitions
   3. 2D version of every integer is a unique sum of distinct binary powers
   4. The 2D binary, n-ary and 10-ary formulas
   5. Some binary integer partition preliminary results
   6. Some easy 2D binary partition transform generating functions
   7. A binary partition 2 -space variation of extended q-binomial theorem.
   8. First quadrant 2D binary partitions
   9. First quadrant lower diagonal 2D binary partitions
   10. First hyperquadrant 3D binary partitions
   11. Exercises

Chapter 17. n-ary Partitions and their Vector Generalizations
   1. Integer n-ary partitions
   2. A Base 10 or 10-ary set of cases
   3. The n-ary integer partition set of cases
   4. The binary vector partition set of cases

Chapter 18. Some Binary and n-ary Partition Analytic Formulas
   1. History on binary partition oscillating series
   2. Some lacunary series and products for n-ary partitions
   3. Binary and n-ary versions of Products for Distinct Partitions
   4. Exercises

Chapter 19. Visible Point Vector Identities in the first Hyperquadrant
   1. Introducing the VPV identities
   2. Deriving the 2D first quadrant VPV identity.
   3. Deriving the n-dimensional first hyperquadrant VPV identity.
   4. Hyperquadrant lattices and their hyperdiagonal line functions
   5. Some hyperdiagonal line generating functions
   6. Diversionary note on the abc Conjecture
   7. Applying a 3D VPV identity to the abc Conjecture
   8. Hyperdiagonal line generating functions for different nD slopes
   9. Exercises

Chapter 20. VPV Identity cases related to xy = yx and xyyx = vwwv.
      1. Rational solutions of xy = yx
      2. Solutions to xyyx = vwwv in rationals and integers
      3. VPV Identity transforms using xy = yx and xyyx = vwwv.

Chapter 21. Visible Point Vector Identities in Hyperpyramid lattices
   1. VPV identities in square hyperpyramid regions.
   2. Deriving 2D VPV identities in extended triangle regions.
   3. Deriving 3D VPV identities in square pyramid regions.
   4. VPV identities in nD square hyperpyramid regions.
   5. Exercises

Chapter 22. Polylogarithms, and Parametric Euler Sum identities
   1. Early history of the Dilogarithm
   2. The Trilogarithm function
   3. The Polylogarithm function
   4. Mordell-Tornheim-Witten ensembles
   5. Finite Euler Sums
        5.1. The 2D square hyperpyramid VPV identity.
      5.2. The 3D square hyperpyramid VPV identity.
   6. Parametric Euler Sum Identities
   7. Exercises

Chapter 23. Visible Point Vector identities related to particular Euler sum values
   1. Polylogarithms near trivial zeroes of the Riemann zeta function
   2. Identities near non-trivial zeroes of the Riemann zeta function
   3. Exercises

Chapter 24. Visible Point Vector Identities in Skewed Hyperpyramid lattices
   1. Visible Point Vector identities in asymmetric hyperpyramid regions.
      1.1. A more general hyperpyramid theorem.
   2. Exercises

Chapter 25. Harmonic Sums applied to VPV Identities
   1. The Sofo papers on Harmonic Sums

Chapter 26. The Ramanujan trigonometric function and visible point identities
   1. Introductory remarks
   2. Dirichlet series generating functions
   3. Proof of Theorem 2.1
   4. A new Jordan Totient generating function, and some related results
   5. Further multidimensional formulae
   6. Application of Jacobi theta series to the generalized summations.
   7. Exercises

Chapter 27. Other Non-weighted n-space Vector Partition Theorems
   1. A binary partition 2 -space variation of extended q-binomial theorem.

Chapter 28. Determinants, Bell Polynomial Expansions for Vector Partitions
   1. Some reference cases of the determinants in this book.
   2. Calculus of Determinant Evaluation

Chapter 29. The 2D and 3D Weighted Stepping Stone Models
   1. Weights and values for jumps
   2. Heuristic concepts for the known results

Chapter 30. The 2D and 3D Light Diffusion Models
   1. The 2D Light Diffusion Model in the first quadrant.
      1.1. 2D first quadrant Vector grid with lenses at each lattice point vector.
      1.2. Vector grid with lenses at each Visible Point Vector.
      1.3. 2D weighted Upper VPV Coefficients - Order 5
   2. Some 2D VPV partition grids for Light Diffusion on known identities
   3. Partition Grids for unweighted 2D VPVs
   4. Partition grid, distinct 2D VPVs, Order 5
   5. Partition grid, distinct 2D VPVs, Order 6

   Bibliography
  
Other projects:

Dirichlet series analogues of q-series, where arithmetical function identities encode quasicrystals. I give new analogue summations for classical q-series and hypergeometric series summations in terms of Riemann Zeta functions and Jordan Totient functions. This is a further monograph for me to complete.

So I have research interests in the Theory of Higher Dimensional Partitions, Aperiodic Order, Dynamical Systems, Combinatorics, Discrete Geometry, Number Theory, Quasicrystal tilings and their Dirichlet series functions, and Mathematical Physics, and areas where these theories may overlap.

I am Manager of the almost 40,000 member LinkedIn Number Theory Group located at https://www.linkedin.com/groups/4510047/.

I am an Administrator for the Facebook Group Classical Mathematics at https://www.facebook.com/groups/ClassicalMathematics presently with about 20,000 members.

Location

Room 2.73, Hanna Neumann Building 145

Publications

I am a published poet as well as a mathematics person.

POEMS: 
In 2010 I published Words in Common, which is a collection over decades of journal/magazine/anthology published poems partly funded by the Australia Council for the Arts many years ago. The book was officially launched by Professor Kevin Brophy from University of Melbourne, Creative Writing Department. It was edited by Associate Professor Trevor Code from Deakin University.

See a link with excerpts from the poems at http://bit.ly/3jAvlb8.
See a review of Words In Common by Canberra poet Michael Byrne at http://bit.ly/2MRlv8y.

A SELECTION OF MY MATHEMATICAL PAPERS:

35            CAMPBELL, G. B. Fun with numbers: Revisiting an Eulerian Problem Aust. Math. Soc. Gazette, Volume 50, No2, pp.10-12, May 2023. (https://austms.org.au/publications/gazette/gazette502/)

34            CAMPBELL, G. B. Fun with numbers: A base 7 identity Aust. Math. Soc. Gazette, Volume 50, No1, pp.13-14, March 2023. (https://austms.org.au/publications/gazette/gazette501/)

33            CAMPBELL, G. B. Vector Partition Identities for 2D, 3D and nD LatticesarXiv:2302.01091v1 [math.CO], Feb 2023. (https://arxiv.org/abs/2302.01091)

32            CAMPBELL, G. B. Continued Fractions for partition generating functionsarXiv:2301.12945v1 [math.CO], Jan 2023. (https://arxiv.org/abs/2301.12945)

31            CAMPBELL, G. B. Fun with numbers: Rational solutions to xyyx = vwwv Aust. Math. Soc. Gazette, Volume 49, No5, pp210-211, November 2022. (https://austms.org.au/publications/gazette/gazette495/)

30            CAMPBELL, G. B. Fun with numbers: Identities containing a certain algebraic form Aust. Math. Soc. Gazette, Volume 49, No4, pp162-163, September 2022. (https://austms.org.au/publications/gazette/gazette494/)

29            CAMPBELL, G. B. Fun with numbers: Consecutive 6th powers and base 6 numbers,  Aust. Math. Soc. Gazette, Volume 49, No3, pp108-109, July 2022. (https://austms.org.au/publications/gazette/gazette493/)

28            CAMPBELL, G. B. Fun with numbers: Ramanujan 6-10-8 identity,  Aust. Math. Soc. Gazette, Volume 49, No2, pp71-72, May 2022. (https://austms.org.au/publications/gazette/gazette492/)

27            CAMPBELL, G. B. An interview with Rodney James Baxter, Aust. Math. Soc. Gazette, Volume 47, No1, pp24-32, March 2020. (https://austms.org.au/wp-content/uploads/2020/07/471Web.pdf)

26.           CAMPBELL, G. B. Some n-space q-binomial theorem extensions and similar identities, arXiv:1906.07526v1 [math.NT], Jun 2019. (https://arxiv.org/abs/1906.07526)

25            CAMPBELL, G. B. and ZUJEV, A. The series that Ramanujan misunderstood, arXiv:1610.03693v1 [math.NT], Oct 2016. (https://arxiv.org/abs/1610.03693v1)

24            CAMPBELL, G. B. and ZUJEV, A. On integer solutions to x5 - (x+1)5 - (x+2)5 + (x+3)5 = 5m + 5n, arXiv:1603.00080v1 [math.NT], Feb 2016. (https://arxiv.org/abs/1603.00080v1)

23            CAMPBELL, G. B. and ZUJEV, A. Some equations with features of digit reversal and powers, arXiv:1602.06320v1 [math.NT], Feb 2016. (https://arxiv.org/abs/1602.06320v1)

22            CAMPBELL, G. B. and ZUJEV, A. Gaussian integer solutions for the fifth power taxicab number problem, arXiv:1511.07424v1 [math.NT], Nov 2015. (https://arxiv.org/abs/1511.07424v1)

21            CAMPBELL, G. B. and ZUJEV, A. Variations on Ramanujan's nested radicals, arXiv:1511.06865v1 [math.NT], Nov 2015. (https://arxiv.org/abs/1511.06865v1)

20            CAMPBELL, G. B. and ZUJEV, A. A diophantine sum with factorials, arXiv:1510.03056v2 [math.NT], Oct 2015. (https://arxiv.org/abs/1510.03056v2)

19            CAMPBELL, G. B. The q-Dixon sum Dirichlet series analogue, arXiv:1302.2664v1, Feb 2013. (https://arxiv.org/abs/1302.2664v1)

18            CAMPBELL, G. B. Ramanujan and Eckford Cohen totients from Visible Point Identities, arXiv:1212.2818v1 [math.NT], Dec 2012. (https://arxiv.org/abs/1212.2818v1)

17            CAMPBELL, G. B. D-analogues of q-shifted factorial and the q-Kummer sum, arXiv:1212.2248v1 [math.NT], Dec 2012. (https://arxiv.org/abs/1212.2248v1)

16            CAMPBELL, G. B. Polylogarithm approaches to Riemann Zeta function zeroes, arXiv:1212.2246v1 [math.NT], Dec 2012. (https://arxiv.org/abs/1212.2246v1)

15            CAMPBELL, G. B. Dirichlet series analogues of q-shifted factorial and the q-Kummer sum, Research paper 2003-6, Department of Mathematics, LaTrobe University, 2003.

14            CAMPBELL, G. B. An Euler Product transform applied to q series, Ramanujan J (2006) 12:267-293. (https://doi.org/10.1007/s11139-006-0078-y)

13            CAMPBELL, G. B. A New Class of Identities akin to q-Series in Several Variables, Research paper no (to be determined), Centre for Mathematics and its applications, The Australian National University, 1998.

12            CAMPBELL, G. B. Combinatorial Identities in Number Theory related to q-series and Arithmetical functions, Bull. Austral. Math. Soc., Vol. 58, (1998) pp345-347.

11            CAMPBELL, G. B. On generating functions for vector partitions, Research paper no 55-97, Centre for Mathematics and its applications, The Australian National University, 1997.

10            CAMPBELL, G. B. Visible point vector summations from hypercube and hyperpyramid lattices, Internat. J. Math. & Math. Sci., Vol 21, No 4, 741-748, 1998. (https://www.researchgate.net/publication/26536267_Visible_point_vector_summations_from_hypercube_and_hyperpyramid_lattices)

9              CAMPBELL, G. B. Infinite products over hyperpyramid lattices, Internat. J. Math. & Math. Sci., Vol 23, No 4, 2000, 271-277. (http://downloads.hindawi.com/journals/ijmms/2000/108918.pdf)

8              CAMPBELL, G. B. A closer look at some new identities, Internat. J. Math. & Math. Sci., Vol 21, No 3, 1998, pp581-586. (https://www.researchgate.net/publication/26536244_A_closer_look_at_some_new_identities)

7              CAMPBELL, G. B. Infinite products over visible lattice points, Internat. J. Math. & Math. Sci., Vol 17, No 4, 1994, 637-654. (http://downloads.hindawi.com/journals/ijmms/1994/705467.pdf)

6              CAMPBELL, G. B. A new class of infinite product, and Euler's totient, Internat. J. Math. & Math. Sci., Vol 17, No 4, 1994, 417-422.

5              CAMPBELL, G. B. Formulae with functions exhibiting self-similarity, Research Paper preprint series, Centre for Mathematics and its Applications, The Australian National University, 1993.

4              CAMPBELL, G. B. A generalised formula of Hardy, Int. J. Math. Math. Sci., Vol 17, No 2, 1994, 369-378.

3              CAMPBELL, G. B. Dirichlet summations and products over primes, Internat. J. Math. & Math. Sci., Vol 16, No 2, 1993, 359-372.

2              CAMPBELL, G. B. Multiplicative functions over Riemann zeta function products, J. Ramanujan Soc. 7 No. 1, 1992, 52-63.

1              CAMPBELL, G. B. Generalization of a formula of Hardy, La Trobe University preprints no 79-5, 1979 (written whilst a young student.)

Social media