Counting products of integer matrices with bounded height

Muhammad (Afif) Afifurrahman

School of Mathematics and Statistics
University of New South Wales, Sydney, Australia
6 September 2023

Motivation: the scalar case (Erdős)

\times	1	2	\ldots	H
1	1	2	\ldots	H
2	2	4	\ldots	$2 H$
\vdots	\vdots	\vdots	\ddots	\vdots
H	H	$2 H$	\ldots	H^{2}

- Erdős multiplication table problem (1955): How many distinct numbers are there in this table, as $H \rightarrow \infty$?
- Trivially there are less than H^{2} numbers, but what is the correct (asymptotical) answer?
- Erdős conjectured that this quantity is $O\left(H^{2} /(\log H)^{\alpha}\right)$, for some positive α.
- Ford gave the asymptotical formula of this quantity in 2008.

Motivation: the scalar case (Ford, Koukoulopoulos)

What about more variables? How many numbers are there asymptotically in the set

$$
\mathcal{A}_{m}(H)=\left\{a_{1} a_{2} \ldots a_{m}: 1 \leq a_{i} \leq H \text { for } i=1, \ldots, m\right\} ?
$$

Koukoulopoulos (2010), the case $m=2$ corresponds to Ford (2008)

For $m \geq 2$, let $\rho=(m+1)^{1 / m}$ and $Q(u):=u \log u-u+1$. We have

$$
\# \mathcal{A}_{m}(H) \asymp \frac{H^{m}}{(\log H)^{Q\left(\frac{1}{\log \rho}\right)}(\log \log H)^{\frac{3}{2}}}
$$

A matrix analogue

- We replace the integers $1 \leq a_{i} \leq H$ in the multiplication table problem with matrices A_{i} of bounded height H.
- In this setting, we have the following problem analogue: how many elements are there in

$$
\left\{A_{1} \ldots A_{m}: A_{i} \in X\right\}
$$

where X is some set of $n \times n$ matrices of bounded height H, as $H \rightarrow \infty$?

- In this talk, we are interested in the case where $X:=\mathcal{M}_{n}(\mathbb{Z} ; H)$ is the set of integer matrices with entries bounded by H in absolute value.
- These problems are in line with Ostafe and Shparlinski's 2022 paper on multiplicatively dependent tuples of matrices in $\mathcal{M}_{n}(\mathbb{Z} ; H)$.
- The main obstacles in passing from numbers to matrices: matrix noncommutativity and the absence of a prime number factorisation analogue for matrices.

Integer matrices with bounded height

Notation:

$$
\mathcal{M}_{n}(\mathbb{Z} ; H):=\left\{\left(a_{i j}\right)_{i, j=1}^{n}: a_{i j} \in \mathbb{Z},\left|a_{i j}\right| \leq H \text { for } i, j=1, \ldots, n\right\} .
$$

We have $\mathcal{M}_{n}(\mathbb{Z} ; H)=(2 H+1)^{n^{2}} \asymp H^{n^{2}}$. We now can state the first problem as follows:

Problem 1

Give nontrivial upper and lower bounds for

$$
\# \mathcal{W}_{m, n}(\mathbb{Z} ; H):=\#\left\{A_{1} \ldots A_{m}: A_{1}, \ldots, A_{m} \in \mathcal{M}_{n}(\mathbb{Z} ; H)\right\}
$$

as $H \rightarrow \infty$ and m and n fixed.
In this talk, we are only focused on the order of the bounds. Trivial bounds:
$H^{n^{2}} \ll \# \mathcal{W}_{m, n}(\mathbb{Z} ; H) \ll H^{m n^{2}}$.

Related questions while bounding $\# \mathcal{W}_{m, n}(\mathbb{Z} ; H)$

Problem 2

Give nontrivial upper and lower bounds for

$$
\# \mathcal{T}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H), C\right):=\#\left\{\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{M}_{n}(\mathbb{Z} ; H)^{m}: A_{1} \ldots A_{m}=C\right\}
$$

for a fixed C uniformly.
Trivial bound: $\# \mathcal{T}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H), C\right) \ll H^{m n^{2}-1}$.

Problem 3

Give nontrivial upper and lower bounds for

$$
\begin{aligned}
\# \mathcal{U}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H)\right) & :=\#\left\{\left(A_{1}, \ldots, A_{m}, B_{1}, \ldots, B_{m}\right) \in \mathcal{M}_{n}(\mathbb{Z} ; H)^{2 m}\right. \\
& \left.: A_{1} \ldots A_{m}=B_{1} \ldots B_{m}\right\}
\end{aligned}
$$

Trivial bounds: $H^{m n^{2}} \ll \# \mathcal{U}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H)\right) \ll H^{2 m n^{2}}$.

Previous results on $\mathcal{M}_{n}(\mathbb{Z} ; H)$

Katznelson (1993), Shparlinski (2010)

Fix an integer d. Then, uniformly on d there are $O\left(H^{n^{2}-n} \log H\right)$ matrices in $\mathcal{M}_{n}(\mathbb{Z} ; H)$ of determinant d.
If $d=0$, then the number of matrices in $\mathcal{M}_{n}(\mathbb{Z} ; H)$ with determinant 0 is in order of magnitude $H^{n^{2}-n} \log H$.

If we fix $d \neq 0$, Duke-Rudnick-Sarnak actually give an asymptotical formula of the number in $\mathcal{M}_{n}(\mathbb{Z} ; H)$ with determinant d as $H \rightarrow \infty$, with main term of order $H^{n^{2}-n}$. However, this result is not uniform with respect to d.

Katznelson (1994)

The number of matrices in $\mathcal{M}_{n}(\mathbb{Z} ; H)$ of rank k is in order of magnitude $H^{n k+o(1)}$.

The equation $A_{1} \ldots A_{m}=C$

We give some bounds on $\# \mathcal{T}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H), C\right)$, the number of tuples $\left(A_{1}, \ldots, A_{m}\right) \in \mathcal{M}_{n}(\mathbb{Z} ; H)^{m}$ that satisfies the equation

$$
A_{1} \ldots A_{m}=C
$$

The bounds are uniform with respect to C.
Theorem 2.1 (MA, 2023)

$$
\# \mathcal{T}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H), C\right) \leq \begin{cases}H^{(m-1)\left(n^{2}-n\right)+o(1)}, & \text { if } C \text { is nonsingular, for all } m, \\ H^{n^{2}+o(1)}, & \text { if } C \neq O_{n} \text { is singular and } m=2, \\ H^{m n^{2}-n}, & \text { if } C \neq O_{n} \text { is singular and } m>2\end{cases}
$$

If $C=O_{n}$ (the zero $n \times n$ matrix), we have

$$
H^{(m-1) n^{2}} \ll \# \mathcal{T}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H), O_{n}\right) \leq H^{(m-1) n^{2}+o(1)}
$$

Sketch of the proof: $A_{1} \ldots A_{m}=C$

- For nonsingular C : For a fixed $\left(A_{1}, \ldots, A_{m-1}\right)$ we have a unique A_{m}. We also have

$$
\operatorname{det}\left(A_{1}\right) \ldots \operatorname{det}\left(A_{m}\right)=\operatorname{det}(C)
$$

Next, we use a bound on the divisor function, then use Shparlinski's determinant bound.

- For singular $C \neq O_{n}$ and $m=2$: We rewrite the equation $A B=C$ as

$$
\left(\begin{array}{c|c|c}
X_{1} & V_{1} \\
\hline W_{1} & Y_{1}
\end{array}\right)\left(\begin{array}{l|l}
X_{2} & V_{2} \\
\hline W_{2} & Y_{2}
\end{array}\right)=\left(\begin{array}{c|c}
X & V \\
W & Y
\end{array}\right)
$$

then bound the number of solutions based on rank A.

- For singular $C \neq O_{n}$ and $m>2$: One of the matrices in

$$
A_{1} \ldots A_{m}=C
$$

must be singular.

Sketch of the proof: $A_{1} \ldots A_{m}=O_{n}$

- Lower bound:

$$
O_{n} A_{2} \ldots A_{m}=O_{n}
$$

then we have at least $H^{(m-1) n^{2}}$ solutions.

- Upper bound: From Sylvester's rank inequality, we have $(m-1) n \geq \sum_{i=1}^{m}$ rank A_{i}. Applying Katznelson's rank theorem, we have

$$
\# \mathcal{T}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H), O_{n}\right) \leq \sum_{\substack{0 \leq k_{1}, \ldots, k_{m} \leq n \\ k_{1}+\ldots+k_{m} \leq(m-1) n}} H^{n k_{1}+o(1)} \ldots \ldots \cdot H^{n k_{m}+o(1)} \leq H^{(m-1) n^{2}+o(1)}
$$

- These two bounds match, up to an error factor $H^{o(1)}$.

The equation $A_{1} \ldots A_{m}=B_{1} \ldots B_{m}$

We can use the previous results to derive some upper bounds for $\# \mathcal{U}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H)\right)$ and $\# \mathcal{U}_{m}\left(\mathcal{M}_{n}^{*}(\mathbb{Z} ; H)\right)$, the number of solutions of equation

$$
A_{1} \ldots A_{m}=B_{1} \ldots B_{m}
$$

where $A_{i}, B_{i} \in \mathcal{M}_{n}(\mathbb{Z} ; H)$ or $\mathcal{M}_{n}^{*}(\mathbb{Z} ; H)$ (the set of all invertible matrices in $\mathcal{M}_{n}(\mathbb{Z} ; H)$), respectively.

Corollary 2.2 (MA, 2023)

For all $m, n \geq 2$, we have

$$
\# \mathcal{U}_{m}\left(\mathcal{M}_{n}^{*}(\mathbb{Z} ; H)\right) \leq H^{(2 m-1) n^{2}-(m-1) n+o(1)}
$$

We also have

$$
\# \mathcal{U}_{m}\left(\mathcal{M}_{n}(\mathbb{Z} ; H)\right) \leq \begin{cases}H^{3 n^{2}-n+o(1)}, & \text { if } m=2 \\ H^{2 m n^{2}-2 n+o(1)}, & \text { if } m>2\end{cases}
$$

The product set: Lower bound

We recall that our main problem is to bound

$$
\# \mathcal{W}_{m, n}(\mathbb{Z} ; H)=\#\left\{A_{1} \ldots A_{m}: A_{1}, \ldots, A_{m} \in \mathcal{M}_{n}(\mathbb{Z} ; H)\right\}
$$

From our previous result, for a fixed invertible C there are at most $H^{(m-1)\left(n^{2}-n\right)+o(1)}$ solutions for the equation

$$
A_{1} \ldots A_{m}=C
$$

This implies there are at least $H^{n^{2}+m n-n+o(1)}$ different invertible matrices C in the set. This improves the trivial lower bound $H^{n^{2}}$.

The product set: Upper bound

For the upper bound, we use Koukolopoulos' result on integer product set and Shparlinski's determinant result.

Theorem 2.3 (MA, 2023)

For all $m, n \geq 2$, we have

$$
H^{n^{2}+m n-n+o(1)} \leq \# \mathcal{W}_{m, n}(\mathbb{Z} ; H)=O\left(\frac{H^{m n^{2}}}{(\log H)^{Q\left(\frac{1}{\log \rho}\right)-1}(\log \log H)^{\frac{3}{2}}}\right)
$$

where $\rho=m^{1 /(m-1)}$ and $Q(u):=u \log u-u+1$.
If $Q\left(\frac{1}{\log \rho}\right) \geq 1$, we have $\# \mathcal{W}_{m, n}(\mathbb{Z} ; H)=o\left(H^{m n^{2}}\right)$. Unfortunately, this is only true if $m \geq 6$. However, we believe this is also true for $2 \leq m \leq 5$.

Thank you

M. Afifurrahman, "Some counting questions for matrix products", Bull. Aust. Math. Soc, to appear. Preprint available at arXiv:2306:04885.

