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Overview of this talk

1. Review of three ways to do stage-2 optimization.
2. New method for coil optimization:

a. No shape optimization. 
b. Makes no topology assumptions.
c. Not quite “finite-build” coils.

3. Unifying the coil and permanent magnet problems as topology 
optimization.

4. Some fun results for QA, QH stellarators. 
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A brief review of stage-2 stellarator optimization
● Assume a good stage-1-optimized plasma is available
● Question is how to build coils such that normal component of B vanishes on the 

plasma surface.
○ Primary objective:

Zhu, Zarnstorff, Gates, & Brooks, Nuclear Fusion, 2020.Landreman, Nuclear Fusion, 2017. Zhu, Hudson, Song, & Wan, Nuclear Fusion, 2017.

● Three methods: “winding surface” of currents, permanent magnets, or discrete filaments.
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Stellarator coils can be designed with fixed grid and local basis 
functions
● New fourth method for coil optimization – allows for finite-builds & no topology assumptions.
● Initialize continuous 3D grid where current can flow, optimize for coils, but need to enforce 

current conservation. 
● Divergence-free, linear basis functions for the currents:

● Still need constraints to match 
fluxes at interfaces:

● N basis functions (N = 5) and 
D total voxels
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Simple 2D voxel solution illustrates circulating current solutions

Solution for 
four 2D square 
voxels. There 
are 12 free 
parameters and 
11 unique 
constraints from 
flux matching at 
cell interfaces. 
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The voxel optimization problem is sparse regression
● Optimization in the voxel method reduces to optimizing the basis 

coefficients of the 𝜶: 
Match the 
target field

Tikhonov 
regularization

Avoid the trivial 
solution 

Zero out 
most voxels

Enforces div(J) = 0
everywhere
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Permanent magnet optimization is the same problem
● Optimization in the PM method reduces to optimizing the dipole 

moments 𝜶: 

Match the 
target field

Tikhonov 
regularization

TF coils provide 
this so σ = 0

Zero out 
most magnets

Enforces max dipole 
strengths
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The quasi-equivalent fully discrete problem is called 
topology optimization

Match the 
target field

Tikhonov 
regularization

Avoid the 
trivial solution

Only discrete values for 
the optimization variables

Linear constraints

= {0, 1, 2, … }

● Very important problem in structural mechanics and other fields!
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Results: axisymmetric torus with no sparsity
Full geometry & 
solution for an 
axisymmetric torus with 
1 Tesla on-axis (𝝀 = 0). 
The unique quarter of 
the voxel grid is 
pictured. Bᐧn errors are 
shown on the plasma 
surface S and the 
cell-averaged J solution 
vectors are color-coded 
by ||J||.
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Results: axisymmetric torus with sparsity

Full geometry & 
solution for an 
axisymmetric torus 
with 1 Tesla on-axis  
(𝝀 > 0). 
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Results: Landreman/Paul QA stellarator without sparsity

Full geometry for the 
Landreman & Paul QA 
stellarator, (𝝀 = 0). The 
unique quarter of the 
voxel grid is pictured. 
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Results: Landreman/Paul QA 
stellarator with sparsity
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Voxel solutions can be used to 
initialize filament topology and then 
filament optimization performed

Three views of a 40 meter filament coil generated from a voxel solution.
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Helical coils for the 
Landreman-Paul 
QH stellarator

Three views of the helical coils with combined 24 + 29 = 53 meter length, 
generated from a voxel solution for the Landreman-Paul QH stellarator. 

Often get solutions that 
aren’t sparse enough to 
get coils out of
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Some numerical speed tests Grid of 114,208 
unique voxels, 
571,040 optimization 
variables, and 326 
billion nonzero 
elements in the ATA 
matrix from fB.
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Advertisement for permanent magnet work

Original PM4Stell solution New PM4Stell solution with same fB error but 30% 
fewer magnets!
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Future directions for voxel optimization
● Future work includes: 

○ Implementation of higher-order basis functions, 
○ Tetrahedral meshes, 
○ Algorithmic speedups through improved iterative solvers and preconditioners or improved 

sparse regression algorithms, additional loss terms in the optimization,
○ Reformulation as stochastic optimization to control for coil errors, and much more.
○ A reformulation may be possible that builds in the current conservation by construction.
○ Initial conditions for the optimization can bias the solutions towards producing a particular 

topological structure or a certain number of identifiable coils. 
○ Loss terms to bunch up the currents better? 

This work is so far most compelling for providing principled topology choices to initialize more 
complex filament optimization for stellarators.
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Extra slides
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Relax and split method for solving the optimization

Match the 
target field

Tikhonov 
regularization

Avoid the trivial 
solution 

Zero out 
most voxels

Enforces div(J) = 0
everywhere
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Relax and split method for solving the optimization
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Hyperparameters in the voxel method


