# Algebraic approach to interfaces in the three-state Potts model

Jesper L. Jacobsen 1,2,3

<sup>1</sup>'Ecole Normale Supérieure, Paris (Laboratoire de Physique)

<sup>2</sup>Sorbonne Université, Paris (Faculté des Sciences et Ingénierie)

<sup>3</sup>Commisariat à l'Energie Atomique, Saclay (Institut de Physique Théorique)

Baxter memorial conference, 10 September 2025

Collaborators: Augustin Lafay, Azat Gainutdinov



# From loops to webs

## Loop models: what, why, how?

- Self-avoiding (open or closed) simple curves in two dimensions
- Polymers, level lines, domain walls, electron gases
- Lattice: Integrability, knot theory, cellular algebras, category theory
- Continuum limit: CFT, CLE, SLE

#### Definition and features

- Fix lattice of nodes and links
- Place bonds on some links so as to form set of loops
- Weight x per bond (+ maybe further local weights) and N per loop
- For  $|N| \le 2$ , dense and dilute critical points  $x_c^{\pm}$
- Continuum limit of compactified free bosonic field (Coulomb gas)
   [Nienhuis, Di Francesco-Saleur-Zuber, Duplantier, Cardy ...]



#### Generalisation to webs

- Allow for branchings and bifurcations (with weights)
- Topological rules give weight to each connected web component
- Properties and possible critical behaviour?

#### Generalisation to webs

- Allow for branchings and bifurcations (with weights)
- Topological rules give weight to each connected web component
- Properties and possible critical behaviour?

### Motivations for webs

- Domain walls in spin systems [Dubail-JJ-Saleur, Picco-Santachiara]
- Network models for topological phases [Kitaev, Levin-Wen, Fendley]
- Spiders in invariance theory [Kuperberg, Kim, Cautis-Kamnitzer-Morrison]

# Thin and thick domain walls (Q = 3 Potts model)



# Questions (physics)

- How to define a "good" model of webs on the lattice?
- Fractal dimension of such domain walls (bulk / boundary)?
- Fractal dimension of an entire web component?
- Topological weight of web versus chromatic polynomial in Q = 3?
- Web model away from this special point?

## Questions (physics)

- How to define a "good" model of webs on the lattice?
- Fractal dimension of such domain walls (bulk / boundary)?
- Fractal dimension of an entire web component?
- Topological weight of web versus chromatic polynomial in Q = 3?
- Web model away from this special point?

### Questions (mathematics)

- Algebraic construction accounting for bifurcations?
- Loop model has  $U_{-q}(\mathfrak{sl}_2)$  symmetry, can we get  $U_{-q}(\mathfrak{sl}_n)$ ?



# Web model from Kuperberg $A_2$ spider $(U_{-q}(\mathfrak{sl}_3)$ case)

#### Lattice considerations

- $\bullet$  Hexagonal (honeycomb) lattice  $\mathbb H$  with nodes and links
- Configuration *c* by drawing bonds on some links, with constraints:
  - Nodes have valence 0, 2 or 3: closed web with 3-valent vertices
  - Each bond is oriented. Orientations conserved at 2-valent nodes
  - Vertices are sources or sinks (all bonds point in or out)

# Web model from Kuperberg $A_2$ spider $(U_{-q}(\mathfrak{sl}_3)$ case)

#### Lattice considerations

- $\bullet$  Hexagonal (honeycomb) lattice  $\mathbb H$  with nodes and links
- Configuration *c* by drawing bonds on some links, with constraints:
  - Nodes have valence 0, 2 or 3: closed web with 3-valent vertices
  - Each bond is oriented. Orientations conserved at 2-valent nodes
  - Vertices are sources or sinks (all bonds point in or out)

Each configuration can be seen as an abstract graph (vertices/edges). It is closed, planar, trivalent, bipartite. Fix an orientation (= 'up').





# Rules for 'reducing' a configuration [Kuperberg]

$$\bigcirc = [3]_q \tag{1}$$

$$= [2]_q$$
 (2)

$$= + +$$

$$(3)$$

- Rotated and arrow-reversed diagrams not shown.
- A web component always has  $\geq$  1 polygon of degree 0, 2 or 4.
- The three rules thus evaluate any web to a number (its weight)

Define *q*-deformed numbers:  $[k]_q = \frac{q^k - q^{-k}}{q - q^{-1}}$ 

### Defining the web model

- Sum over configurations  $c \in K$  on  $\mathbb{H}$
- Local weights: x<sub>1</sub> (up bond), x<sub>2</sub> (down bond), y (sink), z (source)
- Partition function:

$$Z_{\rm K} = \sum_{c \in K} x_1^{N_1} x_2^{N_2} (yz)^{N_V} w_{\rm K}(c)$$

with  $N_1$  up-bonds,  $N_2$  down-bonds, and  $N_V$  vertex pairs

# $\mathbb{Z}_3$ spin model

### Definition

- Spins  $\sigma_i \in \mathbb{Z}_3 := \{0, 1, 2\}$  defined on triangular lattice  $\mathbb{T} = \mathbb{H}^*$ .
- Weight of link  $(ij) \in \mathbb{T}$  defined as  $x_{\sigma_i \sigma_i}$ , with j to the right of i.
- Normalise  $x_0 = 1$ . Weight  $x_1$  or  $x_2$  for a piece of domain wall.

# $\mathbb{Z}_3$ spin model

### Definition

- Spins  $\sigma_i \in \mathbb{Z}_3 := \{0, 1, 2\}$  defined on triangular lattice  $\mathbb{T} = \mathbb{H}^*$ .
- Weight of link  $(ij) \in \mathbb{T}$  defined as  $x_{\sigma_j \sigma_i}$ , with j to the right of i.
- Normalise  $x_0 = 1$ . Weight  $x_1$  or  $x_2$  for a piece of domain wall.

Note: vertex is a sink (source) if spins follow cyclically  $0 \to 1 \to 2 \to 0$  upon turning anticlockwise (clockwise).

# $\mathbb{Z}_3$ spin model

### **Definition**

- Spins  $\sigma_i \in \mathbb{Z}_3 := \{0, 1, 2\}$  defined on triangular lattice  $\mathbb{T} = \mathbb{H}^*$ .
- Weight of link  $(ij) \in \mathbb{T}$  defined as  $x_{\sigma_i \sigma_i}$ , with j to the right of i.
- Normalise  $x_0 = 1$ . Weight  $x_1$  or  $x_2$  for a piece of domain wall.

Note: vertex is a sink (source) if spins follow cyclically  $0 \to 1 \to 2 \to 0$  upon turning anticlockwise (clockwise).

### Partition function

$$Z_{\text{spin}} = 3 \sum_{c \in K} x_1^{N_1} x_2^{N_2}$$

• Equivalent to web model if  $w'_K(c) := (yz)^{N_V} w_K(c) = 1$  for any c.

## Equivalence at a special point:

$$q=e^{i\frac{\pi}{4}}$$
,

$$q = e^{i \frac{\pi}{4}},$$
  
 $yz = 2^{-\frac{1}{2}}.$ 

# Equivalence at a special point:

$$q = e^{i\frac{\pi}{4}},$$
  
 $yz = 2^{-\frac{1}{2}}.$ 

**Proof**: Absorb y and z into the vertices. Use  $[3]_q = 1$  and  $[2]_q = \sqrt{2}$ . Then the rules become probabilistic:



# Generalisation to $U_{-q}(\mathfrak{sl}_n)$ symmetry

# Based on spider defined by [Cautis-Kamnitzer-Morrison]

- Webs are still closed, oriented, planar, trivalent graphs.
   But not always bipartite as before.
- Edges carry an integer flow  $i \in [1, n-1]$ .
- Generators conserve flow, or change by n due to 'tags':



• Flow labels fundamental representations of  $U_{-q}(\mathfrak{sl}_n)$ . Orientation distinguishes between dual or not.

Rules (mirrored and the arrow-reversed versions omitted):

$$k = \begin{bmatrix} n \\ k \end{bmatrix}_{q}$$

$$k+l$$

$$k+l$$

$$k+l$$

$$k+l$$

$$k+l$$

$$k+l+m$$

$$k+$$



### Short summary of results

- Case n = 3 gives back the Kuperberg web model.
- Case n = 2 gives the well-known Nienhuis loop model.
- Special point  $q = e^{i\frac{\pi}{n+1}}$  equivalent to  $\mathbb{Z}_n$  spin model.

### Outlook this far

- $\mathbb{Z}_n$  spin models known to be critical and integrable (with appropriate weights) [Fateev-Zamolodchikov]
- Therefore expect the special point to be critical for any n.
- Web models likely have larger critical manifold (vary q and x, y, z).
- Same remark for integrability.

### Outlook this far

- Z<sub>n</sub> spin models known to be critical and integrable (with appropriate weights) [Fateev-Zamolodchikov]
- Therefore expect the special point to be critical for any *n*.
- Web models likely have larger critical manifold (vary q and x, y, z).
- Same remark for integrability.

# To investigate criticality/integrability we wish a local formulation

- Analogous to vertex models for Potts and O(N) models.
- The locality enables us to define a transfer matrix / R-matrix.
  - Good for numerical study and makes contact with integrability.
  - Non-local TM also possible for loops, but seems difficult for webs.
- Vertex model defines equivalent (n-1) component height model.
  - Starting point for Coulomb gas construction and CFT identification.

# Local reformulation for $U_{-q}(\mathfrak{sl}_3)$ web model

### Basic idea

- Decorate bonds by extra degrees of freedom (n = 3 colours).
- They allow to redistribute the web weight locally.
- Summing over colours gives back the undecorated model.
- Each link can now be in 7 different states.

# Local reformulation for $U_{-q}(\mathfrak{sl}_3)$ web model

#### Basic idea

- Decorate bonds by extra degrees of freedom (n = 3 colours).
- They allow to redistribute the web weight locally.
- Summing over colours gives back the undecorated model.
- Each link can now be in 7 different states.



# Reminder for n = 2 loop case

- Write  $N = q + q^{-1} = [2]_q$ .
- Orient each loop in two ways (clockwise, anticlockwise).
- Give  $q^{-\frac{\theta}{2\pi}}$  to a left-turn through angle  $\theta$ .

# Reminder for n = 2 loop case

- Write  $N = q + q^{-1} = [2]_q$ .
- Orient each loop in two ways (clockwise, anticlockwise).
- Give  $q^{-\frac{\theta}{2\pi}}$  to a left-turn through angle  $\theta$ .



## Reminder for n = 2 loop case

- Write  $N = q + q^{-1} = [2]_q$ .
- Orient each loop in two ways (clockwise, anticlockwise).
- Give  $q^{-\frac{\theta}{2\pi}}$  to a left-turn through angle  $\theta$ .

$$=xq^{-\frac{1}{6}}, \qquad =xq^{\frac{1}{6}}, \qquad =1$$

#### Remark

Better to think of these two 'orientations' as colourings. The analogue for n=3 is the three colours. The orientations distinguish (for  $n\geq 3$ ) fundamental and dual fundamental, but for n=2 the two coincide!

#### Basic idea for n = 3

- Three colours RBG.
- Weight  $q^2 + 1 + q^{-2} = [3]_q$  for sum over (say) clockwise loop. Opposite phases for an anticlockwise loop (same sum). Set  $x_1 = x_2$  for convenience.



# The 'tricky' part involving vertices



## Proof for the 'digon' rule (2)



### Proof for the 'digon' rule (2)



# Proof for the 'square' rule (3)



### Proof for the 'digon' rule (2)



# Proof for the 'square' rule (3)



Other colours / arrangements of external legs work similarly.

# Defining the transfer matrix



Built of pieces  $t_{(1)}: \mathcal{H} \otimes \mathcal{H} \to \mathcal{H}$  and  $t_{(2)}: \mathcal{H} \to \mathcal{H} \otimes \mathcal{H}$ , so that

$$T = \left(\prod_{k=0}^{L-1} t_{2k+1}\right) \left(\prod_{k=1}^{L-1} t_{2k}\right)$$

with  $t = t_{(2)}t_{(1)}$ . Write  $t_i$ , with i specifying the position.

Technically T is an intertwiner of the quantum group action.

- Let  $\{v_1, v_2, v_3\}$  be a basis of the first fundamental  $V_1$  of  $U_{-q}(\mathfrak{sl}_3)$ .
- Let  $\{w_1, w_2, w_3\}$  be a basis of the dual  $V_1^*$ , so that  $w_i(v_j) = \delta_{ij}$ .

- Let  $\{v_1, v_2, v_3\}$  be a basis of the first fundamental  $V_1$  of  $U_{-q}(\mathfrak{sl}_3)$ .
- Let  $\{w_1, w_2, w_3\}$  be a basis of the dual  $V_1^*$ , so that  $w_i(v_j) = \delta_{ij}$ .
- Relate  $\{v_1, v_2, v_3, w_1, w_2, w_3, 1\}$  to the basis  $\{|\uparrow\rangle, |\uparrow\rangle, |\uparrow\rangle, |\downarrow\rangle, |\downarrow\rangle, |\downarrow\rangle, |\downarrow\rangle\}$  of coloured arrows. Amounts to drawing each link vertically and providing the corresponding powers of q.

- Let  $\{v_1, v_2, v_3\}$  be a basis of the first fundamental  $V_1$  of  $U_{-q}(\mathfrak{sl}_3)$ .
- Let  $\{w_1, w_2, w_3\}$  be a basis of the dual  $V_1^*$ , so that  $w_i(v_j) = \delta_{ij}$ .
- Relate {v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub>, w<sub>1</sub>, w<sub>2</sub>, w<sub>3</sub>, 1} to the basis {|↑⟩, |↑⟩, |↑⟩, |↓⟩, |↓⟩, |↓⟩, |↓⟩, |⟩ of coloured arrows. Amounts to drawing each link vertically and providing the corresponding powers of q.
- Draw the diagrams of all transitions in  $t_{(1)}$  and  $t_{(2)}$ . For instance:



- Let  $\{v_1, v_2, v_3\}$  be a basis of the first fundamental  $V_1$  of  $U_{-q}(\mathfrak{sl}_3)$ .
- Let  $\{w_1, w_2, w_3\}$  be a basis of the dual  $V_1^*$ , so that  $w_i(v_j) = \delta_{ij}$ .
- Relate {v<sub>1</sub>, v<sub>2</sub>, v<sub>3</sub>, w<sub>1</sub>, w<sub>2</sub>, w<sub>3</sub>, 1} to the basis {|↑⟩, |↑⟩, |↑⟩, |↓⟩, |↓⟩, |↓⟩, |↓⟩, |⟩ of coloured arrows. Amounts to drawing each link vertically and providing the corresponding powers of q.
- Draw the diagrams of all transitions in  $t_{(1)}$  and  $t_{(2)}$ . For instance:

$$t_{(1)} = zx_1x_2^{\frac{1}{2}} + yx_1^{\frac{1}{2}}x_2 + x_1 + x_1 + x_2 + x_1^{\frac{1}{2}}x_2^{\frac{1}{2}} + x_1^$$

• Let us have a look at just the first term!

• Express each diagram in terms of the elementary blocks (maps)



Their expressions follow from quantum group considerations.

• Express each diagram in terms of the elementary blocks (maps)

Their expressions follow from quantum group considerations.

• The first term is the composition of coev and w:



• In the bases  $\{|\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle\}$  of  $V_1 \otimes V_1$  and  $\{|\downarrow\rangle, |\downarrow\rangle, |\downarrow\rangle\}$  of  $V_1^*$ , we finally get

$$egin{pmatrix} 0 & 0 & 0 & 0 & q^{rac{1}{6}} & 0 & q^{-rac{1}{6}} & 0 \ 0 & 0 & q^{rac{1}{6}} & 0 & 0 & 0 & q^{rac{1}{6}} & 0 & 0 \ 0 & q^{rac{1}{6}} & 0 & q^{-rac{1}{6}} & 0 & 0 & 0 & 0 \end{pmatrix}$$

Looks familiar?

• In the bases  $\{|\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle, |\uparrow\uparrow\rangle\}$  of  $V_1 \otimes V_1$  and  $\{|\downarrow\rangle, |\downarrow\rangle, |\downarrow\rangle\}$  of  $V_1^*$ , we finally get

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & q^{\frac{1}{6}} & 0 & q^{-\frac{1}{6}} & 0 \\ 0 & 0 & q^{\frac{1}{6}} & 0 & 0 & 0 & q^{\frac{1}{6}} & 0 & 0 \\ 0 & q^{\frac{1}{6}} & 0 & q^{-\frac{1}{6}} & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

- Looks familiar?
- Hint:



#### Summary of this technical part

- The diagrams are intertwiners of  $U_{-q}(\mathfrak{sl}_3)$ .
- We can compute all elements of T in this way.
- We are now ready to diagonalise T numerically.

### Phase diagram of the web model

More efficient to use the geometry



Connection to the (effective) central charge of CFT:

$$egin{align} f_L &= -rac{2}{\sqrt{3}L}\log(\Lambda_{\mathsf{max}})\,, \ f_L &= f_{\infty} - rac{\pi c_{\mathsf{eff}}}{6L^2} + o\left(rac{1}{L^2}
ight)\,. \end{array}$$

# $c_{\rm eff}$ for $q=e^{i\pi/5}$ in the $(\sqrt{x},y)$ plane



- Based on sizes L = 5 and L = 6.
- Coulomb gas prediction: dilute  $c = \frac{4}{5}$  and dense  $c = \frac{6}{5}$  phases.

### Zoom of the interesting region



### Coulomb gas predictions

Set  $q = e^{i\gamma}$  with  $\gamma \in [0, \pi]$ .

#### CG of two bosons compactified on the root lattice of sl<sub>3</sub>

Coupling constant  $g = 1 \pm \frac{\gamma}{\pi}$  in dilute (+) or dense (-) phase.

Central charge  $c = 2 - 24 \frac{(g-1)^2}{g}$ .

### Coulomb gas predictions

Set  $q = e^{i\gamma}$  with  $\gamma \in [0, \pi]$ .

#### CG of two bosons compactified on the root lattice of sl<sub>3</sub>

Coupling constant  $g=1\pm\frac{\gamma}{\pi}$  in dilute (+) or dense (-) phase.

Central charge  $c = 2 - 24 \frac{(g-1)^2}{g}$ .

### Example I: $\gamma = \frac{\pi}{5}$ as in numerical figures

Coupling constant  $g = \frac{6}{5}$  (dilute) or  $g = \frac{4}{5}$  (dense).

Central charge  $c = \frac{6}{5}$  (dilute) or  $c = \frac{4}{5}$  (dense).

## Coulomb gas predictions

Set  $q = e^{i\gamma}$  with  $\gamma \in [0, \pi]$ .

#### CG of two bosons compactified on the root lattice of sl<sub>3</sub>

Coupling constant  $g=1\pm\frac{\gamma}{\pi}$  in dilute (+) or dense (-) phase.

Central charge  $c = 2 - 24 \frac{(g-1)^2}{g}$ .

### Example I: $\gamma = \frac{\pi}{5}$ as in numerical figures

Coupling constant  $g = \frac{6}{5}$  (dilute) or  $g = \frac{4}{5}$  (dense).

Central charge  $c = \frac{6}{5}$  (dilute) or  $c = \frac{4}{5}$  (dense).

#### Example II: $\gamma = \frac{\pi}{4}$ as at special point

Coupling constant  $g = \frac{5}{4}$  (dilute) or  $g = \frac{3}{4}$  (dense).

Central charge  $c = \frac{4}{5}$  (dilute) or c = 0 (dense).

Corresponds to Q=3 Potts model at  $T=T_c$  or  $T=\infty$ .

### What about integrability?

• The n = 2 model (Nienhuis loops) is integrable in both the dilute and dense phases [Baxter 1986-87]

### What about integrability?

- The n = 2 model (Nienhuis loops) is integrable in both the dilute and dense phases [Baxter 1986-87]
- For webs, we study three different rank-2 models [Kuperberg]:
  - $A_2$  web model ( $Z_{\mathbb{Z}_3}=3Z_{A_2}$  at  $q=e^{i\pi/4}$ )



•  $G_2$  web model ( $Z_{\mathbb{Z}_3}=3Z_{G_2'}$  at  $q=e^{i\pi/6}$ , with only single lines)



ullet B<sub>2</sub> web model ( $Z_{\mathbb{Z}_4}=4Z_{\mathsf{B}_2}$  at  $q=e^{i\pi/4}$ )



ullet They satisfy distinct spider relations and lead to models on  $\mathbb{H}$ .

#### Intertwiners

- Intertwining maps for cups, caps and trivalent vertices constructed as before, by invariance considerations.
- For  $A_2$ : 7-dim representation  $V_1 \oplus V_2 \oplus \mathbb{C}$ , where  $V_1$  ( $V_2$ ) are 3-dim fundamental representations of  $U_q(A_2)$  of highest weight  $w_1$  ( $w_2$ ).
- For  $G_2$ : 8-dim representation  $V \oplus \mathbb{C}$ , where V is 7-dim fundamental representation of  $U_q(G_2)$  of highest weight  $w_1$ .
- For  $B_2$ : 10-dim representation  $V_1 \oplus V_2 \oplus \mathbb{C}$ , where  $V_1$  ( $V_2$ ) is 4-dim (5-dim) fundamental repr. of  $U_q(B_2)$  of highest weight  $w_1$  ( $w_2$ ).

# Integrable $\check{R}(u, v)$ : General strategy

- Test case  $A_1$  (dilute loop model), then web cases  $A_2$ ,  $G_2$ ,  $B_2$ .
- Guess quantum affine algebra  $U_t(\tilde{X}_n^{(k)})$  that contains as a Hopf subalgebra the non-affine quantum group  $U_q(X_m)$  of the web.
- In practice, identify affine Dynkin diagram  $\tilde{X}_n^{(k)}$  that reduces to the simple Dynkin diagram  $X_m$  upon erasing one node.

| $U_t(\tilde{X}_n^{(k)})$ | $U_q(X_m)$     | $	ilde{X}_n^{(k)}, 	ilde{X}_m$ |
|--------------------------|----------------|--------------------------------|
| $U_t(A_2^{(2)})$         | $U_{t^4}(A_1)$ |                                |
| $U_t(G_1^{(2)})$         | $U_{t^3}(A_2)$ |                                |
| $U_t(D_4^{(3)})$         | $U_t(G_2)$     |                                |
| $U_t(A_4^{(2)})$         | $U_{t^2}(B_2)$ |                                |

- Find an irreducible evaluation representation  $(\rho_u, V_u)$ ,  $u \in \mathbb{C}$  of  $U_t(\tilde{X}_n^{(k)})$  that decomposes under  $U_q(X_m)$  as  $V_u = V$ , the u-independent local space of states of the web model.
- Then (following Jimbo) solve the equation for  $\check{R}(u, v)$ :

$$\check{R}(u,v)(\rho_u\otimes\rho_v)(a)=(\rho_v\otimes\rho_u)(a)\check{R}(u,v),\quad a\in U_t(\tilde{X}_n^{(k)})$$

- Since  $\rho_u \otimes \rho_v$  is irreducible, this admits a unique solution, up to a multiplicative constant.
- Since  $U_t(\tilde{X}_n^{(k)})$  has a universal R-matrix,  $\check{R}(u, v)$  satisfies the spectral-parameter dependent YBE.
- Expanding  $\check{R}(u, v)$  as a sum of intertwiners of  $U_q(X_m)$  from  $V \otimes V$  to itself, we get a linear system for the coefficients.
- Finally, identify values  $(u^*, v^*)$  of (u, v) so that only web diagrams that can appear in the transfer matrix on  $\mathbb{H}$  have non-zero coefficients.

# Integrable $\check{R}(u, v)$ : Results

- For  $A_1$  we correctly recover Nienhuis'  $A_2^{(2)}$  dilute model (9 intertwiners).
- For  $A_2$  webs, solution with 33 intertwiners.
- For  $G_2$  webs, solution with 15 intertwiners.
- For B<sub>2</sub> webs, solution with 43 intertwiners.

#### Summary

- Web models generalise the  $U_{-q}(\mathfrak{sl}_2)$  loop model to  $U_{-q}(\mathfrak{sl}_n)$ .
- Geometrical content with applications to  $\mathbb{Z}_n$  spin interfaces.
- Dense and dilute critical points for  $q = e^{i\gamma}$  and  $\gamma \in [0, \pi]$ .

### Summary

- Web models generalise the  $U_{-q}(\mathfrak{sl}_2)$  loop model to  $U_{-q}(\mathfrak{sl}_n)$ .
- Geometrical content with applications to  $\mathbb{Z}_n$  spin interfaces.
- Dense and dilute critical points for  $q = e^{i\gamma}$  and  $\gamma \in [0, \pi]$ .

#### More developments

- Coulomb gas description and fractal dimension of defects
- Statistical models for all rank-2 spiders: A<sub>2</sub>, G<sub>2</sub> and B<sub>2</sub>
- Corresponding integrable models constructed, but their properties need to be studied.

### Summary

- Web models generalise the  $U_{-q}(\mathfrak{sl}_2)$  loop model to  $U_{-q}(\mathfrak{sl}_n)$ .
- Geometrical content with applications to  $\mathbb{Z}_n$  spin interfaces.
- Dense and dilute critical points for  $q = e^{i\gamma}$  and  $\gamma \in [0, \pi]$ .

#### More developments

- Coulomb gas description and fractal dimension of defects
- Statistical models for all rank-2 spiders: A<sub>2</sub>, G<sub>2</sub> and B<sub>2</sub>
- Corresponding integrable models constructed, but their properties need to be studied.

#### Further possibilities

SLE-like description of branching curves?