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Distribution of Primes

If we want to think about how the primes are distributed, we should start with:

How many primes are there up to some bound?

By Hadamard and Poussin: if π(x) counts the number of primes less than x ,

π(x) ∼ x

log x
as x → ∞.
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Distribution of Primes (in residue classes)

We can then ask the same question about arithmetic progressions!

Given coprime integers a and m:

How many primes are there up to some bound, congruent to a mod m?

If π(x ;m, a) counts the primes less than x , congruent to a mod m,

π(x ;m, a) ∼ π(x)

ϕ(m)
as x → ∞.
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Distribution of Primes (in residue classes)

π(x ;m, a) ∼ π(x)

ϕ(m)
as x → ∞.

But how much bigger does x have to be than m?

More precisely: does there exist some function Q(x) (tending to infinity as
x → ∞), such that the above holds uniformly for all m ≤ Q(x) and all a coprime
to m?

Siegel-Walfisz: Q(x) = (log x)A.

Assuming GRH: Q(x) = x1/2(log x)−2.

Can we move beyond this barrier of 1/2?

I have no idea... but we can think about it in function fields...
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Moving to Function Fields

Let q be an odd prime power, and Fq[T ] the set of univariate polynomials over Fq.

What is important to remember is that there are similarities between the prop-
erties of prime numbers and the properties of irreducible polynomials.
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Distribution of Irreducibles

We can reframe the questions asked at the start but for Fq[T ]!

How many (monic) irreducible polynomials are there of degree n?

If π(n) counts the number of (monic) irreducible polynomials of degree n then
by a counting argument

π(n) ∼ qn

n
as n → ∞
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Distribution of Irreducibles (in residue classes)

We could also ask about arithmetic progressions!

Given coprime A,F ∈ Fq[T ],

How many (monic) irreducible polynomials are there of degree n, congruent
to A mod F?

Again, let’s focus on this one!
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Distribution of Irreducibles (in residue classes)

If π(n;F ,A) count the number of monic irreducible polynomials of degree n,
congruent to A mod F , then

π(n;F ,A) ∼ π(n)

ϕ(F )
as n → ∞.

For how big of a range of F (in terms of n) does this hold uniformly?

It turns out GRH holds here, so deg F <
(
1
2 − ϵ

)
n. This is the same as the 1/2

barrier over Z!

Can we have this hold for deg F <

(
1

2
+ δ

)
n for some δ > 0?
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Moving past 1/2

In a very nice paper, Sawin and Shusterman (among many other things) were able
to move past this barrier.

Theorem (Sawin and Shusterman (2022))

For q sufficiently large in terms of char(Fq) and ϵ,

π(n;F ,A) ∼ π(n)

ϕ(F )
uniformly for deg F <

(
1

2
+

1

126
− ϵ

)
n and F square-free.

Sawin subsequently improved on this.

Theorem (Sawin (2023))

For q sufficiently large in terms of ϵ,

π(n;F ,A) ∼ π(n)

ϕ(F )
uniformly for deg F <

(
1

2
+

1

2
− ϵ

)
n and F square-free.

What about arbitrary modulus F?
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Arbitrary Modulus

The methods used to prove Sawin’s most recent result are very high-powered and
specialized to square-free modulus.

But one of the ingredients in their first result
can be worked on, to give the following.

Theorem (B.)

For q sufficiently large in terms of char(Fq) and ϵ,

π(n;F ,A) ∼ π(n)

ϕ(F )
uniformly for deg F <

(
1

2
+

1

62
− ϵ

)
n.
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Which ingredient?

Using the von Mangoldt function, Vaughan’s identity reduces the problem to
bounding sums of the form

∑
degX<a
(X ,F )=1

µ(X )
∑

degY<b
XY≡A (mod F )

1.

In certain ranges of a and b, it is very difficult to get the type of cancellation
needed (what Sawin and Shusterman did using some algebraic geometry).

But in other ranges, it turns out to be a job for exponential sums...
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Detour on Exponential Sums

Let G be some (additive) group. A character of G is a homomorphism

ψ : G → {z ∈ C : |z | = 1}.

We are interested in them here because we can often represent counting problems
as a “character sum”; due to the orthogonality relation (for finite G )

∑
x∈G

ψ(x) =

{
|G |, ψ is trivial

0, otherwise
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Back in R for a moment

Recall that in R, there is a “canonical” additive character often used:

e2iπx .

This is defined on all of R, but also mixes very well over Z.

For any integer m, the function

x → e2iπx/m

is a non-trivial additive character of Z/mZ. This provides the orthogonality
relation

1

m

m−1∑
x=0

e2iπax/m =

{
0, a ̸≡ 0 (mod m)

1, a ≡ 0 (mod m).

Christian Bagshaw September 5, 2023



Back in R for a moment

Recall that in R, there is a “canonical” additive character often used:

e2iπx .

This is defined on all of R, but also mixes very well over Z.

For any integer m, the function

x → e2iπx/m

is a non-trivial additive character of Z/mZ. This provides the orthogonality
relation

1

m

m−1∑
x=0

e2iπax/m =

{
0, a ̸≡ 0 (mod m)

1, a ≡ 0 (mod m).

Christian Bagshaw September 5, 2023



Back in R for a moment

Recall that in R, there is a “canonical” additive character often used:

e2iπx .

This is defined on all of R, but also mixes very well over Z.

For any integer m, the function

x → e2iπx/m

is a non-trivial additive character of Z/mZ.

This provides the orthogonality
relation

1

m

m−1∑
x=0

e2iπax/m =

{
0, a ̸≡ 0 (mod m)

1, a ≡ 0 (mod m).

Christian Bagshaw September 5, 2023



Back in R for a moment

Recall that in R, there is a “canonical” additive character often used:

e2iπx .

This is defined on all of R, but also mixes very well over Z.

For any integer m, the function

x → e2iπx/m

is a non-trivial additive character of Z/mZ. This provides the orthogonality
relation

1

m

m−1∑
x=0

e2iπax/m =

{
0, a ̸≡ 0 (mod m)

1, a ≡ 0 (mod m).

Christian Bagshaw September 5, 2023



Defining an additive character in Fq[T ]

Recall that we are working in Fq[T ].

It might be nice to have an additive
character defined as explicitly as e2iπx .

To do this, we first are going to view Fq[T ] as living inside some larger space. We
are going to let Fq(T )∞ denote the set of Laurent series in 1/T , so elements look
like

n∑
−∞

aiT
i = anT

n + ...+ a1T + a0 + a−1T
−1 + a−2T

−2 + ...

Fq[T ] very naturally sits inside Fq(T )∞ (polynomials are the Laurent series with
no negative powers of T ).
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Building additive characters

We will define the function

eq

(
n∑

i=−∞

aiT
i

)
= e2πi Tr(a−1)/p

where Tr : Fq → Fp is the absolute trace (p being the characteristic of Fq).

As an example, if q is prime then our function becomes

eq

(
n∑

i=−∞

aiT
i

)
= e2πi(a−1)/p

First, one can easily verify that this function satisfies

eq(X + Y ) = eq(X )eq(Y ).
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Orthogonality

Why the coefficient on 1/T?

It turns out that for any F ∈ Fq[T ],

X → eq

(
X

F

)
defines a non-trivial additive character modulo F , yielding the orthogonality
relation

1

qdeg F

∑
degX<deg F

eq

(
AX

F

)
=

{
0, A ̸≡ 0 (mod F )

1, A ≡ 0 (mod F ).

Additionally, a very nice property in this setting is that

1

qn

∑
degX<n

eq

(
AX

F

)
=

{
1, deg(A mod F ) < deg F − n

0, otherwise.
.

Together with other properties, eq(X ) is familiar enough to adapt tools for dealing
with exponential sums over the real numbers.
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Back to prime distribution

Now recall we were talking about the distribution of irreducible polynomials in
residue classes,

which reduced to a sum of the form

∑
degX<a

µ(X )
∑

degY<b
XY≡A (mod F )

1.

Orthogonality now means

∑
degX<a

µ(X )
∑

degY<b
XY≡A (mod F )

1 =
1

qb

∑
degY<deg F−b

∑
degX<a

µ(X )eq

(
AX−1Y

F

)

The specifics don’t matter so much, but what is important is that these
types of sums have been dealt with before over the integers.
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Bounds on exponential sums

The most important case is ∑
degX<deg F

µ(X )eq

(
AX−1

F

)

Sawin and Shusterman adapted some methods of Fouvry and Michel (1998) to
prove the following.

Theorem (Sawin and Shusterman)

For F square-free and arbitrary A, an upper-bound of ≪ qdeg F (31/32+ϵ).

By adapting some methods of Garaev (2010) and Fouvry and Shparlinski (2011),
this can be improved.

Theorem (B.)

For F and A arbitrary, an upper-bound of ≪ qdeg F (15/16+ϵ).
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Best hope for arbitrary modulus (at the moment)?

If one could obtain square-root cancellation∑
degX<deg F

µ(X )eq

(
AX−1

F

)
≪ qdeg F (1/2+ϵ).

then

π(n;F ,A) ∼ π(n)

ϕ(F )
uniformly for deg F <

(
1

2
+

1

6
− ϵ

)
n.
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Time permitting

We wanted to bound

1

qb

∑
degY<deg F−b

∑
degX<a

µ(X )eq

(
AX−1Y

F

)
.

Expanding using Vaughan’s identity yields something like an average over bilinear
Kloosterman sums of the form∑

degY<n

∑
degX1<m1

∑
degX2<m2

αX1βX2eF (AYX
−1
1 X−1

2 ).

Sufficiently strong bounds on these might help.
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Thank you!
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