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• Baxter’s work, like a star, led a way from classical to
quantum integrability.
I. Classical integrability

• In 1973-1974, Ludwig Faddeev and I were fascinated by the
Sine-Gordon equation

ϕtt − ϕxx +
m2

β
sinβϕ = 0

— a completely integrable Hamiltonian system on the real line, with
the boundary condition

lim
|x|→∞

ϕ(x) = 0 mod
2π

β
Z.
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• “One relativistic field generates several particles”.
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• 1977 — continuous Heisenberg spin chain

~St = ~S × ~Sxx, ~S ∈ S2

with the boundary condition

lim
|x|→∞

~S(x) = ~S0.

•
Volume 64A, number 2 PHYSICS LETTERS 12 December 1977

INTEGRATION OF THE CONTINUOUS HEISENBERG SPIN CHAIN
THROUGH THE INVERSE SCATTERINGMETHOD

L.A. TAKHTAJAN
Leningrad Branch of Steclov Mathematical Institute of the USSR Academy of Sciences, 198152 Leningrad, USSR

Received 22 September 1977

The inverse scattering method is applied to the Heisenberg chain. We give the general scheme of the solution of
the equations of motion. We describe the process of solitons scattering and show the existence of an infinite series of
constants ofmotion.

In recent years the continuous Heisenberg spin S -~ exp ~ it~0}S exp {— ~ i
chain has aroused considerable interest [l—3]. Thus
in [3]was given the explicit formula for the single- enables us to eliminate the second term in eq. (3). Thus
soliton solution in the isotropic case. In this letter we we obtain the equation
shall show that the well-known inverse scattering = (l/2~’l~s~ 4
method [4] can be applied to the classical isotropic ~ 1 L ‘ xx
continuous Heisenberg spin chain, where
We consider an infinite linear chain with spin-den-

sity S1(x, t),j = 1,2,3; the length of the spins is equal S = S , S
2 = I, trS = 0, limS(x, t) = a

3 . (5)
to 1, i.e. ~~1S~(x, t) = 1. The Poisson brackets
~S1(x,t),Sk(y, t)}= efklSl(x, t)cS(x—y) and the Ha- It should be noted that the eq. (4) permits Lax re-
miltonian presentation, i.e. eqs. (4), (5) are equivalent to the ope-

rator equation

H(s)= J’ f~.(S~)2+(S0—S,c� 0)}dx, aL/at=i[L,MJ , (6)
where

generate the dynamical system — the Heisenberg chain. L = ~ ~ M = 2S a2/av2 +s~a/ax . (7)
The equations ofmotion are the following

Thus we have embedded the Heisenberg chain into the
S=SXS +SXIZ . (1)

XX 0 general scheme of the inverse scattering method.
Here the vectorfl~does not depend on x and t. The The solution of the direct and inverse scattering
boundary conditions are problems for the operator L is based on the existence

of Jost solutionsf(x,X) andg(x, X) of the equation
lim S(x, t) = S

0. (2) iW~= XS(x)~I’,—~ < X <00. These solutions have the
following representations

As the Hamiltonian is invariant under rotations in spin
space it is sufficient to consider the case S0 = (0,0, 1). p
With the help of Pauli matrices we rewrite the eq. (1) f(x, X) = e(Xx) + Xj K(x,y)e(Xy)dy,

S~=(l/2i)[S,S~~]+(1/2i)[S,cl0], (3)

where g(x,X)zre(Xx)+XfN(x,y)e(Xy)dy,

S(S,~), &
2
0=(fl0,G), c,(a1,a2,a3). .where e.g. kernelK(x,y) is the solution of the Goursat

The substitution problem

235

• Lax pair, inverse problem, commuting classical integrals of motion,
action-angle variables, etc. (as in the book L.F. – L.T. “Hamiltonian
methods in the theory of solitons”)

• Definition of quantum integrals of motion, their commutativity and
their joint spectrum?
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• A. Luther paper “Eigenvalue spectrum of interacting massive
fermions in one dimension”, Phys. Rev. B 14:5, 1976 cites

•
ANNALS OF PHYSICS: 70, 193-228 (1972) 

Partition Function of the Eight-Vertex Lattice Model 

RODNEY J. BAXTER 

Research School of’ Physical Sciences, The Australian National llnicersit~~, 
Canberra, A.C. T. 2600, Australia 

Received May 20, 1971 

The partition function of the zero-field “Eight-Vertex” model on a square M by N 
lattice is calculated exactly in the limit of M, N large. This model includes the dimer, 
ice and zero-field Ising, F and KDP models as special cases. In general the free energy 
has a branch point singularity at a phase transition, with an irrational exponent. 

1. INTRODUCTION 

There are very few models in statistical mechanics for which the partition 
function has been calculated exactly. The only models of multidimensional 
interacting systems that have been solved are certain two-dimensional lattice 
models. These can be classified into two types, 

(a) those whose partition function can be expressed as a Pfaffian, notably 
the Ising, dimer and “free-fermion” models [l]; 

(b) the “ice-type” models which can be solved by a Bethe-type ansatz for the 
eigenvectors of the transfer matrix [2-41. 

For the square lattice all of these (except for the ferroelectric models in the 
presence of electric fields) can be regarded as special cases of a more general 
zero-field “Eight-Vertex” model (c.f. [l], [5], and Appendix A of this paper). 
As previously reported [6], we have calculated the partition function of this model 
exactly in the limit of a large lattice. In this paper we present this calculation. The 
method is new, but is inspired by the results of the Bethe ansatz. 

The model is defined in Section 2 and certain symmetry relations stated. The 
principal results are given in Sections 7 and 8. As far as possible, detailed working 
is left to the appendices. 

2. DEFINITION OF THE MODEL 

Consider a lattice of M rows (labelled Z = l,..., M) and N columns (labelled 
J = l,..., N), with toroidal boundary conditions. Place arrows on the bonds of the 
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0 1972 by Academic Press, Inc. 
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• Commuting transfer matrices:

210 BAXTER 

FIG. 3. The lattice transformation of Appendix A. A dimer covering of the original lattice 
(solid lines) is equivalent to an eight-vertex model on the superbond lattice (dotted lines). 

vertex. With each such configuration we associate as a weight the product of the 
activities of the dimers on the surrounding four bonds. Noting that there are two 
dimer arrangements corresponding to configuration 7, this gives 

6J1 = w, = z, cog = wq = z’, (A5) 
wg = we = 0, (A@ 
w, = z2 + 2’2, % - - 1, (A7) 

where z, Z’ are the activities of dimers on the horizontal and vertical bonds, 
respectively, of the original lattice. 

Clearly vertices of type 7 and 8 occur in pairs (being sinks and sources of arrows). 
Thus the partition function is unaffected if we replace (A7) by 

w, = w* = (z” + z’2)1/2. W) 

Summing over allowed arrow configurations on the superbond lattice with these 
weights is equivalent to summing over dimer coverings of the original lattice, 
so we have reduced the dimer problem to a zero-field 8-vertex model. 

APPENDIX B 

Here we obtain the conditions under which two transfer matrices commute. Let 
T be the transfer matrix defined by (3.3) and (3.8) and let T’ be similarly defined, 
but with the wj replaced by wj’. Then from (3.3) 

[T T’h = Tr \fi S(w, ,&I~, 

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 
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FIG. 3. The lattice transformation of Appendix A. A dimer covering of the original lattice 
(solid lines) is equivalent to an eight-vertex model on the superbond lattice (dotted lines). 

vertex. With each such configuration we associate as a weight the product of the 
activities of the dimers on the surrounding four bonds. Noting that there are two 
dimer arrangements corresponding to configuration 7, this gives 

6J1 = w, = z, cog = wq = z’, (A5) 
wg = we = 0, (A@ 
w, = z2 + 2’2, % - - 1, (A7) 

where z, Z’ are the activities of dimers on the horizontal and vertical bonds, 
respectively, of the original lattice. 

Clearly vertices of type 7 and 8 occur in pairs (being sinks and sources of arrows). 
Thus the partition function is unaffected if we replace (A7) by 

w, = w* = (z” + z’2)1/2. W) 

Summing over allowed arrow configurations on the superbond lattice with these 
weights is equivalent to summing over dimer coverings of the original lattice, 
so we have reduced the dimer problem to a zero-field 8-vertex model. 

APPENDIX B 

Here we obtain the conditions under which two transfer matrices commute. Let 
T be the transfer matrix defined by (3.3) and (3.8) and let T’ be similarly defined, 
but with the wj replaced by wj’. Then from (3.3) 

[T T’h = Tr \fi S(w, ,&I~, 

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

•

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

• Transfer matrices will commute, if we remove the trace (i.e.,
consider monodromy matrices) and assume that

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

• This relation is a cornerstone of quantum integrability.



• Commuting transfer matrices:

210 BAXTER 

FIG. 3. The lattice transformation of Appendix A. A dimer covering of the original lattice 
(solid lines) is equivalent to an eight-vertex model on the superbond lattice (dotted lines). 

vertex. With each such configuration we associate as a weight the product of the 
activities of the dimers on the surrounding four bonds. Noting that there are two 
dimer arrangements corresponding to configuration 7, this gives 

6J1 = w, = z, cog = wq = z’, (A5) 
wg = we = 0, (A@ 
w, = z2 + 2’2, % - - 1, (A7) 

where z, Z’ are the activities of dimers on the horizontal and vertical bonds, 
respectively, of the original lattice. 

Clearly vertices of type 7 and 8 occur in pairs (being sinks and sources of arrows). 
Thus the partition function is unaffected if we replace (A7) by 

w, = w* = (z” + z’2)1/2. W) 

Summing over allowed arrow configurations on the superbond lattice with these 
weights is equivalent to summing over dimer coverings of the original lattice, 
so we have reduced the dimer problem to a zero-field 8-vertex model. 

APPENDIX B 

Here we obtain the conditions under which two transfer matrices commute. Let 
T be the transfer matrix defined by (3.3) and (3.8) and let T’ be similarly defined, 
but with the wj replaced by wj’. Then from (3.3) 

[T T’h = Tr \fi S(w, ,&I~, 

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

•

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

• Transfer matrices will commute, if we remove the trace (i.e.,
consider monodromy matrices) and assume that

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

• This relation is a cornerstone of quantum integrability.



• Commuting transfer matrices:

210 BAXTER 

FIG. 3. The lattice transformation of Appendix A. A dimer covering of the original lattice 
(solid lines) is equivalent to an eight-vertex model on the superbond lattice (dotted lines). 

vertex. With each such configuration we associate as a weight the product of the 
activities of the dimers on the surrounding four bonds. Noting that there are two 
dimer arrangements corresponding to configuration 7, this gives 

6J1 = w, = z, cog = wq = z’, (A5) 
wg = we = 0, (A@ 
w, = z2 + 2’2, % - - 1, (A7) 

where z, Z’ are the activities of dimers on the horizontal and vertical bonds, 
respectively, of the original lattice. 

Clearly vertices of type 7 and 8 occur in pairs (being sinks and sources of arrows). 
Thus the partition function is unaffected if we replace (A7) by 

w, = w* = (z” + z’2)1/2. W) 

Summing over allowed arrow configurations on the superbond lattice with these 
weights is equivalent to summing over dimer coverings of the original lattice, 
so we have reduced the dimer problem to a zero-field 8-vertex model. 

APPENDIX B 

Here we obtain the conditions under which two transfer matrices commute. Let 
T be the transfer matrix defined by (3.3) and (3.8) and let T’ be similarly defined, 
but with the wj replaced by wj’. Then from (3.3) 

[T T’h = Tr \fi S(w, ,&I~, 

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

•

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

• Transfer matrices will commute, if we remove the trace (i.e.,
consider monodromy matrices) and assume that

EIGHT-VERTEX LATTICE MODEL 211 

where the matrix product over J = I,..., N is to be ordered in the same way as in 
(3.5), and the S(ol, p) are 4 by 4 matrices with elements 

S ~:,“I,~.,~ = 1 R(% Y I A A’) R’(y, P I PY $1 
Y 

(B2) 

[using (391. 
Similarly, 

[T’ TI,,B = Tr fi S’(aJ, PJ1, I 033) 
J=l 

where the S’(o1, p) are given by interchanging the primed and unprimed w’s in (B2). 
If we also interchange h with ILL, and h’ with EL’ [this has no effect on (B3)], and j 
with k, the elements of S’(U, p) are 

P4) 

For T and T’ to commute, the right-hand sides of (Bl), (B3) must be the same. 
This will be so if there exists a 4 by 4 nonsingular matrix R such that 

S’(N, p) = RS(ol, ,8) R-r, WI 
or, more conveniently, 

S’(a, P)R = WE, PI, 036) 
for CL = i and p = *. 

Some inspection shows that if such a matrix R exists it must have elements of the 
form 

R A,I1IA’,L1’ (B7) 

Substituting the forms (B2), (B4), (B7) into (B6), performing the matrix multi- 
plications, we find that (B6) is satisfied provided 

W,p,Wc’Xj - M’lWm’Xg + W,Wi’Xl - WjWk’Xm = 0 F3) 

for all permutations (j, k, Z, nz) of (1,2, 3,4). 
There are six such equations (BS). Regarding them as linear homogeneous 

equations for x1 , x2 , x3, x4, we find that they have a nontrivial solution provided 

(Wj2 - wk2)/(w: - wm2) = (w;” - w$/(w;2 - w;> 0-W 

• This relation is a cornerstone of quantum integrability.



II. Quantum integrability

• Quantum Inverse Problem Method was formulated, on the example
of the Sine-Gordon model, in the paper in Теоретическая
и Математическая Физика, 40:2, 1979
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• From Baxter’s 4× 4 matrix R of Boltzmann weights to local
quantum L-operator — 2× 2 matrix Ln(λ) in the ‘auxiliary space’
C2 with entires — operators in the quantum Hilbert space hn on the
n-th site, and to 4× 4 matrix R(λ) such that

R(λ− µ) (Ln(λ)⊗ Ln(µ)) = (Ln(µ)⊗ Ln(λ))R(λ− µ).
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Indeed ,  because  the o p e r a t o r  coeff ic ients  of the m a t r i c e s  L n commute  for  different  n, it follows that 
L,+,L~=L,+~L,, a f t e r  which the p rope r ty  (1.12) follows d i rec t ly  f r o m  the local p rope r ty  (1.10). Thus,  the 
monodromy mat r ix  TL(k)  as  a 2 • 2 ma t r ix  has  the f o r m  

, A~(~) B~(~) 
Tr( ) = t  Cr()~) Dr(~) )  ' 

where  
Dz0~)=AF(~),  C~(~,) = - B r ' ( ~ ) .  (1.13) 

Our  task is  to invest igate  the p r o p e r t i e s  of the o p e r a t o r s  AL()t)  and B L (~) .  To shor ten the exp res s ions  in 
what follows, we shall  omi t  the subsc r ip t  L in these  expres s ions  whenever  there  is no danger  of confusion. 

We begin by es tabl i sh ing s imple  commuta t ion  re la t ions  for  the o p e r a t o r s  A(k) ,  B(k ) ,  C(k) ,  and 
D(k)  for different  k. We then show that there  ex is t s  a X-independent s tate  12 0 (spurious vacuum) such that 

Cr(M~0=0, Ar(k)tio=exp {a(~)L}~20, nz(z)t}0=exp {d(/~)L}t)0 (1.14) 

with ce r t a in  a()~) and d(~), these  sat isfying 
d(X) =a(X). (1.15) 

To e x p r e s s  the commuta t ion  re la t ions  compac t ly ,  it is convenient  to introduce the 4 • 4 ma t r ix  
T(M| the t ensor  fKronecker)  p roduc t  o f  the m a t r i c e s  T ( k )  and T ( p ) .  For  two a r b i t r a r y  m a t r i c e s  M 
and N, the ma t r ix  M| is r ep re sen t ed  in the f o r m  

lZMnNll MnN~ M12Nn 
|MllN~l MllN2~ Mi2N~l 

M (~ N = ~ M.aNn M21N12 M~2NII 
\M'aN21 M~IN~ M~N~ 

Ml~N l~ ~ 
MI~N~ I 

and thus contains all poss ib le  products  of  the ma t r ix  e lements  of M and N. 

We show that there  ex is t s  a numer ica l  4 • 4 ma t r ix  //(~, ~ )  such that 

R (/~, I~) (T(M | (1~)) = ( r  (~t) | )R (~, ~t). (1.16) 

This  p r o p e r t y  follows f r o m  the analogous local p r o p e r t y  of the m a t r i c e s  L~ (X)- 

R (~, ~t) (n~ (1~) | (~t))= (L. (l~) | (~)) B (~., ~), (1.17) 

which we shall  ve ry  shor t ly  ve r i fy  d i rec t ly .  Indeed, for numer ica l  ma t r i c e s  we have the equali ty 

II | II A = II |163 
which is also valid in our  case ,  because ,  as we have a l r eady  noted above, the ope ra to r  coeff ic ients  of  the 
m a t r i c e s  L~ commute  for  different  n. Thus,  f r o m  the s i m i l a r i t y  of the t ensor  products  of the inf ini tes imal  
t rans i t ion  m a t r i c e s  (t .  17) the re  follows s i m i l a r i t y  of  the s a m e  products  of  the monodromy m a t r i c e s  (1.16). 

We have taken this a rgument  f r o m  the well-known paper  of  Baxte r  [17], who used it only to prove  
commuta t iv i ty  of  the t r ace  of the monodromy mat r ix  for  the spin model he was consider ing.  For  our  d i s -  
cuss ions ,  the use  of  (1.16) fully plays a v e r y  impor tant  pa r t .  One can say that this re la t ion  in conjunction 
with (1.14) is the bas i s  for  the proof  of the comple te  in tegrabi l i ty  of  our  model .  Using it, we find not only 
commut ing  in tegra ls  ("var iab les  of  action type"),  but also e igenvec tors  of  the energy  ope ra to r  ("var iables  of  
angle type") .  

We now turn to the calculat ion of the ma t r ix  R. 
sufficient to seek  it in the fo rm 

(i ~ 
b 

R =  c 

0 

Invest igat ion of the re la t ion  (1.17) shows that it is o!) 
C 

b , 
0 

where  b and c a r e  unknown coeff ic ients .  To de te rmine  them, we wri te  down the e lement  of  row 1 and 
column 2 of the re la t ion  (1.17), omit t ing the index n: 

693 

• Explicitly,

Ln(λ) =

 e−
i∆βπn

4
m∆

4

(
λe−

iβϕn
2 − 1

λe
iβϕn

2

)
m∆

4

(
1
λe
− iβϕn2 − λe

iβϕn
2

)
e
i∆βπn

4


where

R̂(λ, µ) =


1 0 0 0
0 b(λ, µ) c(λ, µ) 0
0 c(λ, µ) b(λ, µ) 0
0 0 0 1


with

b(λ, µ) =
i sin γ

sh(α− β + iγ)
and c(λ, µ) =

sh(α− β)

sh(α− β + iγ)
,

where α = log λ, β = logµ.
• Generating vector, algebraic Bethe Ansatz, physical vacuum as filled

Dirac sea, joint spectrum of quantum integrals of motion, etc.



•

Indeed ,  because  the o p e r a t o r  coeff ic ients  of the m a t r i c e s  L n commute  for  different  n, it follows that 
L,+,L~=L,+~L,, a f t e r  which the p rope r ty  (1.12) follows d i rec t ly  f r o m  the local p rope r ty  (1.10). Thus,  the 
monodromy mat r ix  TL(k)  as  a 2 • 2 ma t r ix  has  the f o r m  

, A~(~) B~(~) 
Tr( ) = t  Cr()~) Dr(~) )  ' 

where  
Dz0~)=AF(~),  C~(~,) = - B r ' ( ~ ) .  (1.13) 

Our  task is  to invest igate  the p r o p e r t i e s  of the o p e r a t o r s  AL()t)  and B L (~) .  To shor ten the exp res s ions  in 
what follows, we shall  omi t  the subsc r ip t  L in these  expres s ions  whenever  there  is no danger  of confusion. 

We begin by es tabl i sh ing s imple  commuta t ion  re la t ions  for  the o p e r a t o r s  A(k) ,  B(k ) ,  C(k) ,  and 
D(k)  for different  k. We then show that there  ex is t s  a X-independent s tate  12 0 (spurious vacuum) such that 

Cr(M~0=0, Ar(k)tio=exp {a(~)L}~20, nz(z)t}0=exp {d(/~)L}t)0 (1.14) 

with ce r t a in  a()~) and d(~), these  sat isfying 
d(X) =a(X). (1.15) 

To e x p r e s s  the commuta t ion  re la t ions  compac t ly ,  it is convenient  to introduce the 4 • 4 ma t r ix  
T(M| the t ensor  fKronecker)  p roduc t  o f  the m a t r i c e s  T ( k )  and T ( p ) .  For  two a r b i t r a r y  m a t r i c e s  M 
and N, the ma t r ix  M| is r ep re sen t ed  in the f o r m  

lZMnNll MnN~ M12Nn 
|MllN~l MllN2~ Mi2N~l 

M (~ N = ~ M.aNn M21N12 M~2NII 
\M'aN21 M~IN~ M~N~ 

Ml~N l~ ~ 
MI~N~ I 

and thus contains all poss ib le  products  of  the ma t r ix  e lements  of M and N. 

We show that there  ex is t s  a numer ica l  4 • 4 ma t r ix  //(~, ~ )  such that 

R (/~, I~) (T(M | (1~)) = ( r  (~t) | )R (~, ~t). (1.16) 

This  p r o p e r t y  follows f r o m  the analogous local p r o p e r t y  of the m a t r i c e s  L~ (X)- 

R (~, ~t) (n~ (1~) | (~t))= (L. (l~) | (~)) B (~., ~), (1.17) 

which we shall  ve ry  shor t ly  ve r i fy  d i rec t ly .  Indeed, for numer ica l  ma t r i c e s  we have the equali ty 

II | II A = II |163 
which is also valid in our  case ,  because ,  as we have a l r eady  noted above, the ope ra to r  coeff ic ients  of  the 
m a t r i c e s  L~ commute  for  different  n. Thus,  f r o m  the s i m i l a r i t y  of the t ensor  products  of the inf ini tes imal  
t rans i t ion  m a t r i c e s  (t .  17) the re  follows s i m i l a r i t y  of  the s a m e  products  of  the monodromy m a t r i c e s  (1.16). 

We have taken this a rgument  f r o m  the well-known paper  of  Baxte r  [17], who used it only to prove  
commuta t iv i ty  of  the t r ace  of the monodromy mat r ix  for  the spin model he was consider ing.  For  our  d i s -  
cuss ions ,  the use  of  (1.16) fully plays a v e r y  impor tant  pa r t .  One can say that this re la t ion  in conjunction 
with (1.14) is the bas i s  for  the proof  of the comple te  in tegrabi l i ty  of  our  model .  Using it, we find not only 
commut ing  in tegra ls  ("var iab les  of  action type"),  but also e igenvec tors  of  the energy  ope ra to r  ("var iables  of  
angle type") .  

We now turn to the calculat ion of the ma t r ix  R. 
sufficient to seek  it in the fo rm 

(i ~ 
b 

R =  c 

0 

Invest igat ion of the re la t ion  (1.17) shows that it is o!) 
C 

b , 
0 

where  b and c a r e  unknown coeff ic ients .  To de te rmine  them, we wri te  down the e lement  of  row 1 and 
column 2 of the re la t ion  (1.17), omit t ing the index n: 

693 

• Explicitly,

Ln(λ) =

 e−
i∆βπn

4
m∆

4

(
λe−

iβϕn
2 − 1

λe
iβϕn

2

)
m∆

4

(
1
λe
− iβϕn2 − λe

iβϕn
2

)
e
i∆βπn

4


where

R̂(λ, µ) =


1 0 0 0
0 b(λ, µ) c(λ, µ) 0
0 c(λ, µ) b(λ, µ) 0
0 0 0 1


with

b(λ, µ) =
i sin γ

sh(α− β + iγ)
and c(λ, µ) =

sh(α− β)

sh(α− β + iγ)
,

where α = log λ, β = logµ.

• Generating vector, algebraic Bethe Ansatz, physical vacuum as filled
Dirac sea, joint spectrum of quantum integrals of motion, etc.



•

Indeed ,  because  the o p e r a t o r  coeff ic ients  of the m a t r i c e s  L n commute  for  different  n, it follows that 
L,+,L~=L,+~L,, a f t e r  which the p rope r ty  (1.12) follows d i rec t ly  f r o m  the local p rope r ty  (1.10). Thus,  the 
monodromy mat r ix  TL(k)  as  a 2 • 2 ma t r ix  has  the f o r m  

, A~(~) B~(~) 
Tr( ) = t  Cr()~) Dr(~) )  ' 

where  
Dz0~)=AF(~),  C~(~,) = - B r ' ( ~ ) .  (1.13) 

Our  task is  to invest igate  the p r o p e r t i e s  of the o p e r a t o r s  AL()t)  and B L (~) .  To shor ten the exp res s ions  in 
what follows, we shall  omi t  the subsc r ip t  L in these  expres s ions  whenever  there  is no danger  of confusion. 

We begin by es tabl i sh ing s imple  commuta t ion  re la t ions  for  the o p e r a t o r s  A(k) ,  B(k ) ,  C(k) ,  and 
D(k)  for different  k. We then show that there  ex is t s  a X-independent s tate  12 0 (spurious vacuum) such that 

Cr(M~0=0, Ar(k)tio=exp {a(~)L}~20, nz(z)t}0=exp {d(/~)L}t)0 (1.14) 

with ce r t a in  a()~) and d(~), these  sat isfying 
d(X) =a(X). (1.15) 

To e x p r e s s  the commuta t ion  re la t ions  compac t ly ,  it is convenient  to introduce the 4 • 4 ma t r ix  
T(M| the t ensor  fKronecker)  p roduc t  o f  the m a t r i c e s  T ( k )  and T ( p ) .  For  two a r b i t r a r y  m a t r i c e s  M 
and N, the ma t r ix  M| is r ep re sen t ed  in the f o r m  

lZMnNll MnN~ M12Nn 
|MllN~l MllN2~ Mi2N~l 

M (~ N = ~ M.aNn M21N12 M~2NII 
\M'aN21 M~IN~ M~N~ 

Ml~N l~ ~ 
MI~N~ I 

and thus contains all poss ib le  products  of  the ma t r ix  e lements  of M and N. 

We show that there  ex is t s  a numer ica l  4 • 4 ma t r ix  //(~, ~ )  such that 

R (/~, I~) (T(M | (1~)) = ( r  (~t) | )R (~, ~t). (1.16) 

This  p r o p e r t y  follows f r o m  the analogous local p r o p e r t y  of the m a t r i c e s  L~ (X)- 

R (~, ~t) (n~ (1~) | (~t))= (L. (l~) | (~)) B (~., ~), (1.17) 

which we shall  ve ry  shor t ly  ve r i fy  d i rec t ly .  Indeed, for numer ica l  ma t r i c e s  we have the equali ty 

II | II A = II |163 
which is also valid in our  case ,  because ,  as we have a l r eady  noted above, the ope ra to r  coeff ic ients  of  the 
m a t r i c e s  L~ commute  for  different  n. Thus,  f r o m  the s i m i l a r i t y  of the t ensor  products  of the inf ini tes imal  
t rans i t ion  m a t r i c e s  (t .  17) the re  follows s i m i l a r i t y  of  the s a m e  products  of  the monodromy m a t r i c e s  (1.16). 

We have taken this a rgument  f r o m  the well-known paper  of  Baxte r  [17], who used it only to prove  
commuta t iv i ty  of  the t r ace  of the monodromy mat r ix  for  the spin model he was consider ing.  For  our  d i s -  
cuss ions ,  the use  of  (1.16) fully plays a v e r y  impor tant  pa r t .  One can say that this re la t ion  in conjunction 
with (1.14) is the bas i s  for  the proof  of the comple te  in tegrabi l i ty  of  our  model .  Using it, we find not only 
commut ing  in tegra ls  ("var iab les  of  action type"),  but also e igenvec tors  of  the energy  ope ra to r  ("var iables  of  
angle type") .  

We now turn to the calculat ion of the ma t r ix  R. 
sufficient to seek  it in the fo rm 

(i ~ 
b 

R =  c 

0 

Invest igat ion of the re la t ion  (1.17) shows that it is o!) 
C 

b , 
0 

where  b and c a r e  unknown coeff ic ients .  To de te rmine  them, we wri te  down the e lement  of  row 1 and 
column 2 of the re la t ion  (1.17), omit t ing the index n: 

693 

• Explicitly,

Ln(λ) =

 e−
i∆βπn

4
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4

(
λe−

iβϕn
2 − 1

λe
iβϕn

2

)
m∆

4

(
1
λe
− iβϕn2 − λe

iβϕn
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)
e
i∆βπn
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
where

R̂(λ, µ) =


1 0 0 0
0 b(λ, µ) c(λ, µ) 0
0 c(λ, µ) b(λ, µ) 0
0 0 0 1


with

b(λ, µ) =
i sin γ

sh(α− β + iγ)
and c(λ, µ) =

sh(α− β)

sh(α− β + iγ)
,

where α = log λ, β = logµ.
• Generating vector, algebraic Bethe Ansatz, physical vacuum as filled

Dirac sea, joint spectrum of quantum integrals of motion, etc.
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We obtain some simple eigenvectors of the transfer matrix of the zero-field eight- 
vertex model. These are also eigenvectors of the Hamiltonian of the one-dimensional 
anisotropic Heisenberg chain. We also obtain new equations for the matrix Q(v) intro- 
duced in earlier papers. 

1. INTRODUCTION AND SUMMARY 

In two previous papers [1,2] (the results of which were anounced earlier [3,4]), 
we obtained equations for the eigenvalues of the transfer matrix T of the two- 
dimensional zero-field eight-vertex lattice model, and of the Hamiltonian 2 of the 
one-dimensional anisotropic Heisenberg ring (the “XYZ model”). We were thus 
able to calculate the partition function of the eight-vertex model, and the ground- 
state energy of 2, for infinitely large systems. 

In this and a subsequent paper we shall further obtain expressions for the 
eigenvectors of T. Since 2 and T commute (for appropriate values of their 
parameters), these are also the eigenvectors of %. 

In this present paper, we obtain some eigenvectors which have a particularly 
simple form. In a later paper we shall show that we can generalize these vectors 
to give a basis in which T breaks up into diagonal blocks. The general eigenvectors 
can then be obtained by a Bethe ansatz similar to that used for the “ice-type” 
models [5]. The eigenvectors we shall now obtain can be regarded as akin to the 
n = 0 case of these ice models (but see the end of this section for a fuller discussion 
of this point). 
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We establish an equivalence between the zero-field eight-vertex model and an Ising 
model (with four-spin interaction) in which each spin has L possible values, labeled l,..., L, 
and two adjacent spins must differ by one (to modulus L). Such an Ising model can also be 
thought of as a generalized ice-type model and we will later show that the eigenvectors of 
the transfer matrix can be obtained by a Bethe-type ansatz. 

1. INTRODUCTION AND SUMMARY 

This is the second paper of a series in which we intend to obtain the eigenvectors 
of the transfer matrix T of the zero-held eight-vertex model. Since T commutes 
with the Hamilton X of the one-dimensional anisotropic Heisenberg ring (for 
appropriate values of their parameters), these are also the eigenvectors of X. 

In the previous paper [1], Paper I, we found some special eigenvectors. Equations 
for all the eigenvalues have already been obtained from a functional matrix 
relation 1121. 

In this paper we consider the effect of slightly altering the special eigenvectors 
found in Paper I. We show that this leads us to construct a family of vectors such 
that if $ is a vector of the family, then Tc,!I is a linear combination of vectors of the 
same family. We then observe that with respect to this basis T is the transfer matrix 
of an Ising model (with four-spin interactions) in which each spin can have L values, 
labeled I,..., L, where L is a positive integer. Two adjacent spins must differ by one, 
and we show from this property that we can regard the Ising model as a generalized 
ice-type model [3]. In the next paper of the series we shall obtain the general 
eigenvectors of T by a Bethe-type ansatz. 
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We obtain the eigenvectors of the transfer matrix of the zero-field eight vertex model. 
These are also the eigenvectors of the Hamiltonian of the corresponding one-dimen- 
sional anistropic Heisenberg chain. 

1. INTRODUCTION AND SUMMARY 

This is the third and final paper of a series in which we obtain the eigenvectors 
of the transfer matrix T of the zero-field eight-vertex model. 

In Paper I (referred to as I) [l], we found some special eigenvectors. In Paper II 
(referred to as II) [2] we generalized these to form a basis set of vectors, with 
respect to which T becomes the transfer matrix of an Ising-like problem. In this 
problem each spin can have L values and the four spins round a square interact. 
Most importantly, two adjacent spins must differ by unity. From this last property 
it follows that the problem can be thought of as a generalized ice-type problem 
and we may hope to obtain the eigenvectors of T by an appropriate extension of 
the Bethe ansatz technique that works for the ice models [3]. We show here that 
this is so. 

In Section 8 of 1 we showed that T commutes with the Hamiltonian X of an 
anisotropic one-dimensional Heisenberg chain. Thus the eigenvectors we construct 
here are also those of S. 

In this section we present our results for the eigenvectors and eigenvalues of T, 
and show that the equations for the eigenvalues are the same as those we obtained 
in our original solution of the eight-vertex model [4]. This previous solution gave 
no information regarding the eigenvectors. 
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The quantum method of the inverse problem and the Heisenberg XYZ model 13

from Bethe's formulae and calculated the asymptotic expression for the energy
of the ground state as N   > °°. Twenty four years later des Cloiseaux and
Pearson in [ 5 ] constructed excitations upon the antiferromagnetic ground state
and found the asymptotic expression for their energy. The generalization of
Bethe's method to the XXZ model presents no difficulties of principle. Yang
and Yang ([6] — [8]) showed in 1968 that Bethe's Ansatz in its classical form is
applicable to this model too.

The papers [6] —[8] contain a detailed investigation of the problems arising
in the justification of the limit passages as N  *•  °° in the Bethe—Hulthen
method, and raised this group of problems to a higher mathematical level. At
the same time it became clear that the solution of the completely anisotropic
XYZ model requires to all appearances new technical ideas, and the question
of its solubility remained open right up to 1972.

In 1972 Rodney Baxter in his remarkable papers [9] — [ 10] (the results were
announced by him in 1971 in [ 11 ] — [ 12]) gave a solution for the XYZ model.
He discovered a link between the quantum XYZ model and a problem of two 
dimensional classical physics, the so called eight vertex model (its exact
definition will be given in the main text) , — in fact, it had been his principal
aim in his paper to investigate this. Baxter made use of the ideas of Kramers—
Wannier [13] and, in particular, of Onsager [14] on the transfer matrix, and of
Lieb's solution [ 15] — [ 18] of the special case of the eight vertex model, the
so called six vertex model connected with the quantum XXZ model. In [9] —
[10] he obtained a system of transcendental equations generalising the system
derived from Bethe's method, and with its help he calculated the energy of the
ground state of the XYZ model. In the subsequent series of papers [ 19] —
[21 ] Baxter, by means of a very complicated and non trivial generalization of
Bethe's Ansatz, was able to construct the eigenvectors and to find the eigen 
values of the transfer matrix, and so to solve completely Heisenberg's XYZ
model. In 1973 Johnson, Krinsky, and McCoy [22] , using Baxter's results,
calculated the energy of the excitations of the XYZ model.

Although Baxter's work is rightly considered one of the most important
achievements in statistical physics since the time of the famous paper of
Onsager [ 14], only a few specialists understand his method. Many have made
• use of his results only, whereas the method itself remained totally without
attention. This can be explained partly by the unusual difficulty of his work,
partly by the mass of cleverly constructed devices based on deep technical
intuition.

We became acquainted with Baxter's work in the following way. In reading
the paper of Luther [23] , in which Baxter's results and [22] are applied to the
investigation of the spectrum of the Sine—G ordon quantum model we noticed
that a number of Baxter's formulae resembled the formulae, already familiar to
us, from the inverse problem method. This and other considerations promoted
us, together with !. ". Sklyanin, to create a quantum version of the inverse
problem method (see the survey [24]) , which we applied to a complete

• Quantum L-operator is Ln(λ) =
∑3
i=0 wi(λ)σi ⊗ σin, and in the

isotropic and semi-classical limit it becomes the Lax operator for the
discretized Heisenberg spin chain.

• Quantum R-matrix is the Baxter’s matrix for the eight-vertex model
(note R41 = R14 6= 0), and the relation RLL = LLR is

R12(λ− µ)R13(λ)R23(µ) = R23(µ)R13(λ)R12(λ− µ).
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In the notation (1.48)—(1.50) we can write (1.38) in the following form:

(1.51) S% ( !  µ ) £%L  (!) S #  (µ) =  S% (µ)5#  (!) S% ( !  µ ) .

The relation (1.51) was first proposed by T. N. Yang in 1967 [49] in a dis 
cussion of many particle factorizing S matrices, therefore, it is natural to call
(1.38) the Baxter—Yang relation. Later it was used in the papers by Karovskii
and others [50] , A. B. and "#. $. Zamolodchikov [51]  [ 52] in which
conditions were investigated for the factorizibility of S matrices in various
models of the quantum field theory in two dimensional space time.

Our attention to the cited form of (1.38) was drawn by A. B. Zamolodchikov
after we had met him.

He showed in [51] that (1.51) can be interpreted as a condition for the
associativity of the algebra with the formal generators  {( ) satisfying the
relations

(1.52) !" (!) At (µ) =  Stf ( !   µ) Ak (µ)    (!).

The generators Aj(X) in [51] played the role of operators generating the 'in '
and 'out ' states of a many particle system.

In a recent paper [45] I. V. Cherednik proposed a realization of relations of
the type (1.52) in terms of fibrations over Abelian varieties over the field of
complex numbers. In Appendix II we give an account of Cherednik's results for
our case, which corresponds to Abelian varieties of dimension 1, that is, elliptic
curves.

We turn now to the second section, in which, we hope, the apparent
artificiality of our constructions will become more comprehensible, or at least
more conventional.

§2. Connection with the inverse problem method

The attentive reader will probably have guessed that the term "monodromy
matrix" for £#($) was not chosen accidentally.

The equations (1.11)—(1.13) show that the linear problem

(2.1) %& + 1 =  # & (!)%&

is connected with our model in a natural way. Here %&($) is given by the
expression (1.11) and (1.36), and 4fn is a two dimensional column with
coefficients in SS^.

We consider the matrix solution  „( ) of (2.1) with the boundary condition

where IN is the identity operator in feN. As is known, the monodromy matrix
JT  '(!) of the problem (2.1) on a chain of length N  is defined as the value of
the solution '& (!) when n= N+ 1, that is,

• Algebraic form of Baxter’s generalized Bethe ansatz eigenvectors for
the eight-vertex model:

Ψ(λ1, · · · , λn) =
∑

e2πilθBl+1,l−1(λ1) · · ·Bl+n,l−n(λn)Ωl−nN .

•
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formula connecting the Hamiltonian of the XYZ model with the transfer
matrix of the eight vertex model. The third section is devoted to the solution
of the special case of the six vertex model and the XYZ quantum model con 
nected with it. On this comparatively simple model we explain the appearance
of the generating vector and the algebrization of Bethe's Ansatz. In §4 we
construct a family of states generalizing the generating vector in §3 to the case
of the eight vertex model. Here too we obtain a series of permutation relations
for the operator elements of the monodromy matrix. In §5, using this family
of generating vectors and the permutation relations, we construct an algebraic
generalization of Bethe's Ansatz for finding the eigenvalues and eigenvectors
of the transfer matrix for the eight vertex model. In §6 we calculate the energy
of the ground state of the XYZ model. This section may also serve as an intro 
duction to the method of integral equations in the theory of spin systems,
which was first proposed by Hulthen in [4]. In the conclusion we sum up
briefly and formulate some interesting mathematical problems arising in con 
nection with our account. In Appendix 1 we give a summary of definitions and
formulae from the theory of Jacobi elliptic functions and theta functions.
Appendix 2 is devoted to a geometrical interpretation of the Baxter—Yang
relations from § 1, which was recently given by Cheredrick [45].

In our exposition we follow the tradition of contemporary mathematical
physics and draw attention mainly to the algebraic aspects of the problem at
hand; therefore, our arguments often take on a formal character, especially in
questions of convergence of series, of asymptotic estimates, and the like. A
thorough airing of these questions would take us too far from the basic
problem — to convey to a reader who is a mathematician the beautiful
structures that arise in theoretical physics.

We express our thanks to P. P. Kulish and !. ". Sklyanin for useful
comments and remarks and to A. G. Reiman for a discussion of the results of
[45]. We should also like to express our respect and our gratitude to Rodney J.
Baxter, whose papers we have read with so much pleasure.

The authors dedicate this paper to Academician N. N. Bogolyubov on the
occasion of his seventieth birthday.

§1. Classical statistical physics on a two dimensional lattice and quantum
mechanics on a chain

We take a square lattice of order ! # "     two dimensional torus, that is,
a plane lattice with ! +  1 rows and N  +  1 columns in which the extreme rows
and columns are identified. We give a definite direction, an arrow, to each edge
of the lattice, that is, to each vertical or horizontal section joining adjacent
nodes.

Four edges come together at each node of the lattice, and so there are 16
distinct types of combinations of arrows at a node. We ascribe to each possible
combination a positive number &} (j — I, . . ., 16) that does not depend on
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In the notation (1.48)—(1.50) we can write (1.38) in the following form:

(1.51) S% ( !  µ ) £%L  (!) S #  (µ) =  S% (µ)5#  (!) S% ( !  µ ) .

The relation (1.51) was first proposed by T. N. Yang in 1967 [49] in a dis 
cussion of many particle factorizing S matrices, therefore, it is natural to call
(1.38) the Baxter—Yang relation. Later it was used in the papers by Karovskii
and others [50] , A. B. and "#. $. Zamolodchikov [51]  [ 52] in which
conditions were investigated for the factorizibility of S matrices in various
models of the quantum field theory in two dimensional space time.

Our attention to the cited form of (1.38) was drawn by A. B. Zamolodchikov
after we had met him.

He showed in [51] that (1.51) can be interpreted as a condition for the
associativity of the algebra with the formal generators  {( ) satisfying the
relations

(1.52) !" (!) At (µ) =  Stf ( !   µ) Ak (µ)    (!).

The generators Aj(X) in [51] played the role of operators generating the 'in '
and 'out ' states of a many particle system.

In a recent paper [45] I. V. Cherednik proposed a realization of relations of
the type (1.52) in terms of fibrations over Abelian varieties over the field of
complex numbers. In Appendix II we give an account of Cherednik's results for
our case, which corresponds to Abelian varieties of dimension 1, that is, elliptic
curves.

We turn now to the second section, in which, we hope, the apparent
artificiality of our constructions will become more comprehensible, or at least
more conventional.

§2. Connection with the inverse problem method

The attentive reader will probably have guessed that the term "monodromy
matrix" for £#($) was not chosen accidentally.

The equations (1.11)—(1.13) show that the linear problem

(2.1) %& + 1 =  # & (!)%&

is connected with our model in a natural way. Here %&($) is given by the
expression (1.11) and (1.36), and 4fn is a two dimensional column with
coefficients in SS^.

We consider the matrix solution  „( ) of (2.1) with the boundary condition

where IN is the identity operator in feN. As is known, the monodromy matrix
JT  '(!) of the problem (2.1) on a chain of length N  is defined as the value of
the solution '& (!) when n= N+ 1, that is,

• Algebraic form of Baxter’s generalized Bethe ansatz eigenvectors for
the eight-vertex model:

Ψ(λ1, · · · , λn) =
∑

e2πilθBl+1,l−1(λ1) · · ·Bl+n,l−n(λn)Ωl−nN .
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