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CYIIECTBEHHO-HEJIMHEWHA {1 OTHOMEPHA I MOTEJIb
KRJIACCHYECKON TEOPUN I10JIA

JI. A. Taxrapkan, JI. JI. @axneen

TloKa3aHo, 4TO yPABHEHNE U —Uxx+SiD u=0 ¢ T'PAHIIHBIM yCIOBHEM
u(z, t)=>0(mod 2:1) upn |zl->co, ommchiBaiomiee KIaccHiecKkoe IoOje ¢ cyiie-
CTBeHHO-HEJIUHEHHbIM B3AMMOJEHCTBHEM, ABIETCS BIOJHE WHTETPHpYeMoit
TaMIIBTOHOBOM cmcTeMoii. IloiydeHHEIe pe3ydbTaTsl HHTEPIPETHPYIOTCH B
TePMHHAX YACTHUI[, COOTBETCTBYIONUX OO (T, 1).
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e “One relativistic field generates several particles”.
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e Definition of quantum integrals of motion, their commutativity and
their joint spectrum?



e A. Luther paper “Eigenvalue spectrum of interacting massive
fermions in one dimension”, Phys. Rev. B 14:5, 1976 cites



e A. Luther paper “Eigenvalue spectrum of interacting massive
fermions in one dimension”, Phys. Rev. B 14:5, 1976 cites

ANNALS OF PHYSICS: 70, 193-228 (1972)

Partition Function of the Eight-Vertex Lattice Model
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The partition function of the zero-field “Eight-Vertex” model on a square M by N
lattice is calculated exactly in the limit of M, N large. This model includes the dimer,
ice and zero-field Ising, F and KDP models as special cases. In general the free energy
has a branch point singularity at a phase transition, with an irrational exponent.
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e This relation is a cornerstone of quantum integrability.
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e Quantum Inverse Problem Method was formulated, on the example
of the Sine-Gordon model, in the paper in TeopeTnyeckas
n MaTtematndeckas ®Pusnka, 40:2, 1979
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e From Baxter's 4 x 4 matrix R of Boltzmann weights to local
quantum L-operator — 2 x 2 matrix L, () in the ‘auxiliary space’
C? with entires — operators in the quantum Hilbert space b,, on the

n-th site, and to 4 x 4 matrix R(A) such that

RO = 1) (Ln(N) @ Ln (1)) = (Ln(p) @ Ln(A)) B(A = ).



We have taken this argument from the well-known paper of Baxter [17], who used it only to prove
commutativity of the trace of the monodromy matrix for the spin model he was considering. For our dis-
cussions, the use of (1.16) fully plays a very important part. One can say that this relation in conjunction
with (1.14) is the basis for the proof of the complete integrability of our model. Using it, we find not only
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Generating vector, algebraic Bethe Ansatz, physical vacuum as filled
Dirac sea, joint spectrum of quantum integrals of motion, etc.
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We obtain some simple eigenvectors of the transfer matrix of the zero-field eight-
vertex model. These are also ei of the Hamiltonian of the i i
anisotropic Heisenberg chain. We also obtain new equations for the matrix Q(v) intro-
duced in earlier papers.
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‘We establish an equivalence between the zero-field cight-vertex model and an Ising
model (with four-spin interaction) in which each spin has L possible valucs, labeled 1,..., L,
and two adjacent spins must differ by one (to modulus L). Such an Ising model can also be
thought of as a generalized ice-type model and we will later show that the eigenvectors of
the transfer matrix can be obtained by a Bethe-type ansatz.
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e Baxter’s method and his use of elliptic functions was a stroke
of genius.



ANNALS OF PHYSICS 76, 48-71 (1973)

Eight-Vertex Model in Lattice Statistics and
One-Dimensional Anisotropic Heisenberg Chain.
Ill. Eigenvectors of the Transfer Matrix and Hamiltonian

RODNEY BAXTER*:!

Institute for Theoretical Physics, State University of New York,
Stony Brook, New York 11790

Received September 5, 1972

‘We obtain the e)genvectors of the transfer matrlx of the zero-field elght vertex modcl
These are also the eig of the F of the
° sional anistropic Heisenberg chain.

e Baxter’s method and his use of elliptic functions was a stroke
of genius.

e Faddeev and | gave algebraic formulation formulation of Baxter's
method in the paper in Ycnexn MatemaTtuyeckux Hayk, 34:5, 1979
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In 1972 Rodney Baxter in his remarkable papers [9] —[10] (the results were
announced by him in 1971 in [111—-{12]) gave a solution for the XYZ model.
He discovered a link between the quantum X YZ model and a problem of two-
dimensional classical physics, the so-called eight-vertex model (its exact
definition will be given in the main text), — in fact, it had been his principal
aim in his paper to investigate this. Baxter made use of the ideas of Kramers—
Wannier [13] and, in particular, of Onsager [14] on the transfer matrix, and of
Lieb’s solution [15] —[18] of the special case of the eight-vertex model, the
so-called six-vertex model connected with the quantum XXZ model. In [9] —
[10] he obtained a system of transcendental equations generalising the system
derived from Bethe’s method, and with its help he calculated the energy of the
ground state of the XYZ model. In the subsequent series of papers [19] —

[21] Baxter, by means of a very complicated and non-trivial generalization of
Bethe’s Ansatz, was able to construct the eigenvectors and to find the eigen-
values of the transfer matrix, and so to solve completely Heisenberg’s XYZ
model. In 1973 Johnson, Krinsky, and McCoy [22], using Baxter’s results,
calculated the energy of the excitations of the XYZ model.
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e Quantum R-matrix is the Baxter's matrix for the eight-vertex model
(note Ry = Ry4 # 0), and the relation RLL = LLR is

Ria(A — p)Rig(N) Ras (i) = Ras(p) Ris(A) Ri2(A — p).



In the notation (1.48)—(1.50) we can write (1.38) in the following form:
(1.51) S (h—p) S2h () SH (w) = ST (WS () Shn (v — ).

The relation (1.51) was first proposed by T. N. Yang in 1967 [49] in a dis-
cussion of many-particle factorizing S-matrices, therefore, it is natural to call
(1.38) the Baxter—Yang relation. Later it was used in the papers by Karovskii
and others [50], A. B. and Al. B. Zamolodchikov [51]—[52] in which
conditions were investigated for the factorizibility of S-matrices in various
models of the quantum field theory in two-dimensional space-time.
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[45]. We should also like to express our respect and our gratitude to Rodney J.
Baxter, whose papers we have read with so much pleasure.

The authors dedicate this paper to Academician N. N. Bogolyubov on the
occasion of his seventieth birthday.






