	Proof Theorem 1 00000	Proof Theorem 2 000000	

On the generalised Dirichlet divisor problem

Chiara Bellotti (joint with Andrew Yang)

University of New South Wales, Canberra

NTDU 11

5th September 2023

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Table of contents

- The generalised divisor problem
- Statement of the new results
- Main ideas of the proofs
 - For more details arXiv:2303.05028

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Definitions

Let $d_k(n)$ be the generalised divisor function.

$$\sum_{n\leq x} d_k(n) = x P_{k-1}(\log x) + \Delta_k(x)$$

where $P_{k-1}(t)$ is a degree k-1 polynomial, and $\Delta_k(x)$ is a remainder term.

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Conjecture

Conjecture

For every $k \geq 2$, $\Delta_k(x) \ll_{\varepsilon} x^{1/2-1/(2k)+\varepsilon}$ holds for every $\varepsilon > 0$.

- Unproved for any $k \ge 2$
- This implies the Lindelöf Hypothesis

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Case k large

Karatsuba constant

When k is large, the current best known bounds take the form

$$\Delta_k(x) \ll_{\varepsilon} x^{1-Dk^{-2/3}+\varepsilon},$$

where D > 0 is the Karatsuba constant.

• Under Richert's bound of the form $|\zeta(\sigma + it)| \ll t^{B(1-\sigma)^{3/2}} \log^{2/3} t$ uniformly for $1/2 \le \sigma \le 1$ and B > 0, there exists $c_0 > 0$ for which

$$\Delta_k(x) \ll_{\varepsilon} x^{1-Dk^{-2/3}+\varepsilon}, \quad D = c_0 B^{-2/3}$$

• Best known value B = 4.45 due to Ford (2002)

• B = 4.43795 (B., arXiv:2306.10680)

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Introduction 000●		Proof Theorem 1 00000	Proof Theorem 2	

Literature review

$$\Delta_k(x) \ll_{arepsilon} x^{1-Dk^{-2/3}+arepsilon}$$

Reference	D	k
Karatsuba (1972)	0.116	$k \ge 2$
lvić and Ouellet (1989)	0.196	k > 10
* Kolpakova (2011)	0.282	$k \ge 186$
Heath-Brown (2017)	0.849	$k \ge 2$

• Instead of Richert's bound, Heath-Brown assumes

$$\zeta(\sigma + it) \ll_{\varepsilon} t^{B(1-\sigma)^{3/2} + \varepsilon}, \qquad 1/2 \le \sigma \le 1$$

with
$$B = 8\sqrt{15}/63 = 0.4918...$$

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Statement of the new results

Theorem 1 (B., Yang)

Let k be a fixed positive integer. Then, for $k \ge 30$

$$\Delta_k(x) \ll x^{1 - 1.224(k - 8.37)^{-2/3}}$$

Theorem 2 (B., Yang)

For all sufficiently large fixed k

$$\Delta_k(x) \ll x^{1-1.889k^{-2/3}}.$$

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Some preliminary tools

Carlson's abscissa

For k > 0, Carlson's abscissa σ_k is the infimum of numbers σ for which for any $\varepsilon > 0$

$$\int_1^T |\zeta(\sigma+it)|^{2k} \mathsf{d} t \ll_\varepsilon T^{1+\varepsilon}.$$

Carlson's exponent

Carlson's exponent $m(\sigma)$ is the supremum of all $m\geq$ 4 such that for any arepsilon>0

$$\int_{1}^{T} |\zeta(\sigma+it)|^m \mathrm{d}t \ll_{arepsilon} T^{1+arepsilon}$$

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Theorem 1 (B., Yang)

Let k be a fixed positive integer. Then, for $k \ge 30$

$$\Delta_k(x) \ll x^{1-1.224(k-8.37)^{-2/3}}$$

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

$$\zeta(\sigma + it) \ll_{\varepsilon} t^{B(1-\sigma)^{3/2} + \varepsilon}$$

Upper bound for Carlson's abscissa σ_k

Lower bound for Carlson's exponent $m(\sigma)$

 $\|$

Perron's formula on $\sum_{n \le x} d_k(n)$ + Residue Theorem

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Main idea of the proof is to find σ_k such that for all $\sigma \geq \sigma_k$,

$$\int_1^T |\zeta(\sigma+it)|^{2k} \mathsf{d} t \ll_{\varepsilon} T^{1+\varepsilon}.$$

Use an iterative method.

Chiara Bellotti (joint with Andrew Yang)

Find the smallest upper bound for σ_k such that

$$\int_1^T |\zeta(\sigma+it)|^{2k} \mathsf{d} t \ll_{\varepsilon} T^{1+\varepsilon}, \qquad \sigma \geq \sigma_k.$$

Iterative method:

- We wish to prove an upper bound on σ_k
- **②** Start with a bound on σ_r , for some r < k
- Show that the bound on σ_r implies a similar bound for σ_{r+δ} for some fixed δ > 0

Conclusion of the proof of Theorem 1

$$\Delta_k(x) \ll_{\varepsilon} T^{\varepsilon} \left(x^{\beta} T^{B(k-m_0(\beta))(1-\beta)^{3/2}} + x^{\beta} + \frac{x}{T} \right), \qquad T = x^{f(\beta)}.$$

Chiara Bellotti (joint with Andrew Yang)

University of New South Wales, Canberra

Theorem 2 (B., Yang)

For all sufficiently large fixed k

$$\Delta_k(x) \ll x^{1-1.889k^{-2/3}}.$$

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Chiara Bellotti (joint with Andrew Yang)

University of New South Wales, Canberra

Main idea of the proof is to find σ_k such that for all $\sigma \geq \sigma_k$,

$$\int_1^T |\zeta(\sigma+it)|^{2k} \mathrm{d}t \ll_{\varepsilon} T^{1+\varepsilon}.$$

Use exponential sum estimates.

Chiara Bellotti (joint with Andrew Yang)

Main innovative idea of the proof is to use the approximate functional equation

$$\zeta(s) = \sum_{1 \le n \le T^{1/2}} n^{-s} + \chi(1-s) \sum_{1 \le n \le T^{1/2}} n^{1-s} + o(1)$$

and estimate

$$\int_{T}^{2T} \left| \sum_{n \leq T^{1/2}} n^{-\sigma - it} \right|^{2k} \mathrm{d}t$$

using the mean value theorem for Dirichlet polynomials and exponential sum estimates.

Chiara Bellotti (joint with Andrew Yang)

University of New South Wales, Canberra

- Use Minkowski's inequality.
- **9** By mean value theorem $\int_{T}^{2T} \left| \sum_{n \leq T^{1/k}} n^{-\sigma-it} \right|^{2k} dt \ll_{\varepsilon} T^{1+\varepsilon}$.
- Sor the second term, it suffices to prove that

$$\int_{T}^{2T} \left| \sum_{N \leq n \leq 2N} n^{-\sigma - it} \right|^{2k} \mathrm{d}t \ll_{\varepsilon} T^{1+\varepsilon}, \qquad T^{1/k} < N \leq T^{1/2}.$$

Chiara Bellotti (joint with Andrew Yang) On the generalised Dirichlet divisor problem

An exponential sum estimate

By refining an estimate due to Heath-Brown (2017),

$$\sum_{N < n \le N'} n^{-it} \ll_{\varepsilon} N^{1 - (1 - 3\rho^{-1})\rho^{-2} + \varepsilon}, \qquad \rho = \frac{\log N}{\log t} \ge 3$$

for $N < N' \le 2N$. Replaces the well-known result with c = 49/80 with $c = 1 - 3/\rho$.

Chiara Bellotti (joint with Andrew Yang)

On the generalised Dirichlet divisor problem

Summary

New results

•
$$\Delta_k(x) \ll x^{1-1.224(k-8.37)^{-2/3}}$$
 for $k \ge 30$
• $\Delta_k(x) \ll x^{1-1.889k^{-2/3}}$ for k sufficiently large

Thank you for your attention!

Chiara Bellotti (joint with Andrew Yang)

