Zero-density estimates for L-functions associated to fixed-order Dirichlet characters

Chandler C. Corrigan

Student at the University of New South Wales
Supervised by Dr. Liangyi Zhao
5th of September, 2023

Suppose that χ is a primitive Dirichlet character modulo q, fix $\sigma \in\left(\frac{1}{2}, 1\right)$ and $T \in(2, \infty)$, and consider the rectangle $R(\sigma, T)=[\sigma, 1]+i[-T, T]$.

Suppose that χ is a primitive Dirichlet character modulo q, fix $\sigma \in\left(\frac{1}{2}, 1\right)$ and $T \in(2, \infty)$, and consider the rectangle $R(\sigma, T)=[\sigma, 1]+i[-T, T]$. A zero-density estimate is an upper bound for the number

$$
N(\sigma, T, \chi)=\#\{\varrho \in R(\sigma, T): L(\varrho, \chi)=0\}
$$

where $L(s, \chi)$ is the L-function associated to the character χ.

Suppose that χ is a primitive Dirichlet character modulo q, fix $\sigma \in\left(\frac{1}{2}, 1\right)$ and $T \in(2, \infty)$, and consider the rectangle $R(\sigma, T)=[\sigma, 1]+i[-T, T]$. A zero-density estimate is an upper bound for the number

$$
N(\sigma, T, \chi)=\#\{\varrho \in R(\sigma, T): L(\varrho, \chi)=0\}
$$

where $L(s, \chi)$ is the L-function associated to the character χ.
Generally, these estimates are given as an average over a family \mathcal{F} of primitive Dirichlet characters, that is a sum of the type

$$
\sum_{\chi \in \mathcal{F}(Q)} N(\sigma, T, \chi)
$$

where $\mathcal{F}(Q)$ denotes the set of $\chi \in \mathcal{F}$ with conductor $q \in(Q, 2 Q]$.

Suppose that χ is a primitive Dirichlet character modulo q, fix $\sigma \in\left(\frac{1}{2}, 1\right)$ and $T \in(2, \infty)$, and consider the rectangle $R(\sigma, T)=[\sigma, 1]+i[-T, T]$. A zero-density estimate is an upper bound for the number

$$
N(\sigma, T, \chi)=\#\{\varrho \in R(\sigma, T): L(\varrho, \chi)=0\}
$$

where $L(s, \chi)$ is the L-function associated to the character χ.
Generally, these estimates are given as an average over a family \mathcal{F} of primitive Dirichlet characters, that is a sum of the type

$$
\sum_{\chi \in \mathcal{F}(Q)} N(\sigma, T, \chi)
$$

where $\mathcal{F}(Q)$ denotes the set of $\chi \in \mathcal{F}$ with conductor $q \in(Q, 2 Q]$.
We will consider the families \mathcal{O}_{r} of primitive Dirichlet characters of order $r \geqslant 2$.

Programme

UNSW

Programme

(1) Zero-density estimates

Programme

(1) Zero-density estimates
(2) The method of Montgomery

Programme

(1) Zero-density estimates
(2) The method of Montgomery
(3) Mean-values of Dirichlet polynomials

Programme

(1) Zero-density estimates
(2) The method of Montgomery
(3) Mean-values of Dirichlet polynomials
(4) Main-values of Dirichlet L-functions

Programme

(1) Zero-density estimates
(2) The method of Montgomery
(3) Mean-values of Dirichlet polynomials
(4) Main-values of Dirichlet L-functions
(5) Main results

Programme

(1) Zero-density estimates
(2) The method of Montgomery
(3) Mean-values of Dirichlet polynomials
(4) Main-values of Dirichlet L-functions
(5) Main results
(6) Concluding remarks

Zero-density estimates

Adapting an approach used by Ingham (1937) to estimate the density of zeros of the ζ-function, Montgomery (1971) showed that

$$
\sum_{Q<q \leqslant 2 Q} \sum_{\chi \bmod q}^{*} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\frac{6-6 \sigma}{2-\sigma}+\varepsilon} T^{\frac{3-3 \sigma}{2-\sigma}+\varepsilon}
$$

Zero-density estimates

Adapting an approach used by Ingham (1937) to estimate the density of zeros of the ζ-function, Montgomery (1971) showed that

$$
\sum_{Q<q \leqslant 2 Q} \sum_{\chi \bmod q}^{*} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\frac{6-6 \sigma}{2-\sigma}+\varepsilon} T^{\frac{3-3 \sigma}{2-\sigma}+\varepsilon}
$$

For the case $\mathcal{F}=\mathcal{O}_{2}$, analogous results exist.

Zero-density estimates

Adapting an approach used by Ingham (1937) to estimate the density of zeros of the ζ-function, Montgomery (1971) showed that

$$
\sum_{Q<q \leqslant 2 Q} \sum_{\bmod q}^{*} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\frac{6-6 \sigma}{2-\sigma}+\varepsilon} T^{\frac{3-3 \sigma}{2-\sigma}+\varepsilon}
$$

For the case $\mathcal{F}=\mathcal{O}_{2}$, analogous results exist.

- (Jutila, 1975) For any $Q, T \geqslant 2$, we have

$$
\sum_{\chi \in \mathcal{O}_{2}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll}(Q T)^{\frac{7-6 \sigma}{6-4 \sigma}+\varepsilon}
$$

Zero-density estimates

Adapting an approach used by Ingham (1937) to estimate the density of zeros of the ζ-function, Montgomery (1971) showed that

$$
\sum_{Q<q \leqslant 2 Q} \sum_{\bmod q}^{*} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\frac{6-6 \sigma}{2-\sigma}+\varepsilon} T^{\frac{3-3 \sigma}{2-\sigma}+\varepsilon}
$$

For the case $\mathcal{F}=\mathcal{O}_{2}$, analogous results exist.

- (Jutila, 1975) For any $Q, T \geqslant 2$, we have

$$
\sum_{\chi \in \mathcal{O}_{2}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll}(Q T)^{\frac{7-6 \sigma}{6-4 \sigma}+\varepsilon}
$$

- (C. and Zhao, 2023) For any $Q, T \geqslant 2$, we have

$$
\sum_{\chi \in \mathcal{O}_{2}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\frac{3-3 \sigma}{2-\sigma}+\varepsilon} T^{\frac{4-4 \sigma}{2-\sigma}+\varepsilon}
$$

Results weaker in the Q-aspect can be derived for the families \mathcal{O}_{3} and \mathcal{O}_{4}.

Results weaker in the Q-aspect can be derived for the families \mathcal{O}_{3} and \mathcal{O}_{4}.

- (C., 2023) For $Q, T \geqslant 2$ with $T \gg Q^{\frac{2}{3}}$, we have

$$
\sum_{\chi \in \mathcal{O}_{3}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\min \left(\frac{19-16 \sigma}{12-6 \sigma}, \frac{13-13 \sigma}{6-3 \sigma}\right)+\varepsilon} T^{\frac{4-4 \sigma}{2-\sigma}+\varepsilon} .
$$

Results weaker in the Q-aspect can be derived for the families \mathcal{O}_{3} and \mathcal{O}_{4}.

- (C., 2023) For $Q, T \geqslant 2$ with $T \gg Q^{\frac{2}{3}}$, we have

$$
\sum_{\chi \in \mathcal{O}_{3}(Q)} N(\sigma, T, \chi) \ll Q^{\min \left(\frac{19-16 \sigma}{12-6 \sigma}, \frac{13-13 \sigma}{6-3 \sigma}\right)+\varepsilon} T^{\frac{4-4 \sigma}{2-\sigma}+\varepsilon}
$$

- (C., 2023) For $Q, T \geqslant 2$ with $T \gg Q^{\frac{1}{2}}$, we have

$$
\sum_{\chi \in \mathcal{O}_{4}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\min \left(\frac{6-5 \sigma}{4-2 \sigma}, \frac{4-4 \sigma}{2-\sigma}\right)+\varepsilon} T^{\frac{4-4 \sigma}{2-\sigma}+\varepsilon}
$$

Results weaker in the Q-aspect can be derived for the families \mathcal{O}_{3} and \mathcal{O}_{4}.

- (C., 2023) For $Q, T \geqslant 2$ with $T \gg Q^{\frac{2}{3}}$, we have

$$
\sum_{\chi \in \mathcal{O}_{3}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\min \left(\frac{19-16 \sigma}{12-6 \sigma}, \frac{13-13 \sigma}{6-3 \sigma}\right)+\varepsilon} T^{\frac{4-4 \sigma}{2-\sigma}+\varepsilon} .
$$

- (C., 2023) For $Q, T \geqslant 2$ with $T \gg Q^{\frac{1}{2}}$, we have

$$
\sum_{\chi \in \mathcal{O}_{4}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\min \left(\frac{6-5 \sigma}{4-2 \sigma}, \frac{4-4 \sigma}{2-\sigma}\right)+\varepsilon} T^{\frac{4-4 \sigma}{2-\sigma}+\varepsilon}
$$

These results are all derived by the method used by Montgomery to obtain his result above. Conjecturally, for all $Q, T \geqslant 2$ we expect to have

Results weaker in the Q-aspect can be derived for the families \mathcal{O}_{3} and \mathcal{O}_{4}.

- (C., 2023) For $Q, T \geqslant 2$ with $T \gg Q^{\frac{2}{3}}$, we have

$$
\sum_{\chi \in \mathcal{O}_{3}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\min \left(\frac{19-16 \sigma}{12-6 \sigma}, \frac{13-13 \sigma}{6-3 \sigma}\right)+\varepsilon} T^{\frac{4-4 \sigma}{2-\sigma}+\varepsilon} .
$$

- (C., 2023) For $Q, T \geqslant 2$ with $T \gg Q^{\frac{1}{2}}$, we have

$$
\sum_{\chi \in \mathcal{O}_{4}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\min \left(\frac{6-5 \sigma}{4-2 \sigma}, \frac{4-4 \sigma}{2-\sigma}\right)+\varepsilon} T^{\frac{4-4 \sigma}{2-\sigma}+\varepsilon}
$$

These results are all derived by the method used by Montgomery to obtain his result above. Conjecturally, for all $Q, T \geqslant 2$ we expect to have

$$
\sum_{\chi \in \mathcal{O}_{r}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{<}(Q T)^{2(1-\sigma)+\varepsilon}
$$

The method of Montgomery

The method uses zero-detecting polynomials to reduce the problem to estimating mean-values of the type

The method of Montgomery

The method uses zero-detecting polynomials to reduce the problem to estimating mean-values of the type

$$
\mathfrak{S}_{k}(Q, T)=\sum_{\chi \in \mathcal{F}(Q)_{-}} \int^{T}\left|\sum_{n \leqslant N}^{\prime} a_{n} \chi(n) n^{-i t}\right|^{2 k} d t
$$

The method of Montgomery

The method uses zero-detecting polynomials to reduce the problem to estimating mean-values of the type

$$
\mathfrak{S}_{k}(Q, T)=\sum_{\chi \in \mathcal{F}(Q)_{-}} \int_{n}^{T}\left|\sum_{n \leqslant N}^{\prime} a_{n} \chi(n) n^{-i t}\right|^{2 k} \mathrm{~d} t
$$

and

$$
\mathfrak{L}_{k}(Q, T)=\sum_{\chi \in \mathcal{F}(Q)_{-}} \int^{T}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{2 k} \mathrm{~d} t
$$

where $k \geqslant 1$ is an integer.

The method of Montgomery

The method uses zero-detecting polynomials to reduce the problem to estimating mean-values of the type

$$
\mathfrak{S}_{k}(Q, T)=\sum_{\chi \in \mathcal{F}(Q)_{-}} \int^{T}\left|\sum_{n \leqslant N}^{\prime} a_{n} \chi(n) n^{-i t}\right|^{2 k} \mathrm{~d} t
$$

and

$$
\mathfrak{L}_{k}(Q, T)=\sum_{\chi \in \mathcal{F}(Q)_{-}} \int^{T}\left|L\left(\frac{1}{2}+i t, \chi\right)\right|^{2 k} \mathrm{~d} t
$$

where $k \geqslant 1$ is an integer.
In the literature, generally $\mathfrak{S}_{1}(Q, T)$ and either $\mathfrak{L}_{1}(Q, T)$ or $\mathfrak{L}_{2}(Q, T)$ have been used to derive zero-density estimates.

We consider the polynomials $\Delta(Q, T, N)$ for which the bound

$$
\mathfrak{S}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q N)^{\varepsilon} \Delta(Q, T, N) \sum_{n \leqslant N}^{\prime}\left|a_{n}\right|^{2}
$$

holds. In practice, a bound for $\Delta(Q, T, N)$ can be obtained from the corresponding large sieve estimate. We then have the following.

We consider the polynomials $\Delta(Q, T, N)$ for which the bound

$$
\mathfrak{S}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q N)^{\varepsilon} \Delta(Q, T, N) \sum_{n \leqslant N}^{\prime}\left|a_{n}\right|^{2}
$$

holds. In practice, a bound for $\Delta(Q, T, N)$ can be obtained from the corresponding large sieve estimate. We then have the following.

Lemma 1

Suppose that $X, Y \geqslant 2$ are such that $X \ll Y \ll(Q T)^{A}$ for some absolute constant A. Then

$$
\begin{aligned}
\sum_{\chi \in \mathcal{F}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll}(Q T)^{\varepsilon}(& \mathfrak{L}_{k}(Q, T)^{\frac{1}{k+1}} \Delta(Q, T, X)^{\frac{k}{k+1}} Y^{\frac{k}{k+1}}(1-2 \sigma) \\
& \left.+\Delta(Q, T, X) X^{1-2 \sigma}+\Delta(Q, T, Y) Y^{1-2 \sigma}\right)
\end{aligned}
$$

for any $k \geqslant 1$, where the implied constant does not depend on k.

Estimating $\mathfrak{S}_{1}(Q, T)$

Let $\left(A_{h}\right)_{h \leqslant H}$ and $\left(B_{h}\right)_{h \leqslant H}$ be sequences of non-negative reals, and define

$$
D(Q, N)=\sum_{h \leqslant H} Q^{A_{h}} N^{B_{h}} \quad \text { and } \quad \Delta(Q, T, N)=\sum_{h \leqslant H} Q^{A_{h}} N^{B_{h}} T^{1-B_{h}}
$$

Estimating $\mathfrak{S}_{1}(Q, T)$

Let $\left(A_{h}\right)_{h \leqslant H}$ and $\left(B_{h}\right)_{h \leqslant H}$ be sequences of non-negative reals, and define

$$
D(Q, N)=\sum_{h \leqslant H} Q^{A_{h}} N^{B_{h}} \quad \text { and } \quad \Delta(Q, T, N)=\sum_{h \leqslant H} Q^{A_{h}} N^{B_{h}} T^{1-B_{h}}
$$

If $D(Q, N)$ is such that

$$
\sum_{\chi \in \mathcal{F}(Q)}\left|\sum_{n \leqslant N}^{\prime} a_{n} \chi(n)\right|^{2} \underset{\varepsilon}{\ll}(Q N)^{\varepsilon} D(Q, N) \sum_{n \leqslant N}^{\prime}\left|a_{n}\right|^{2}
$$

for all $Q, N \geqslant 2$, then we can show that

Estimating $\mathfrak{S}_{1}(Q, T)$

Let $\left(A_{h}\right)_{h \leqslant H}$ and $\left(B_{h}\right)_{h \leqslant H}$ be sequences of non-negative reals, and define

$$
D(Q, N)=\sum_{h \leqslant H} Q^{A_{h}} N^{B_{h}} \quad \text { and } \quad \Delta(Q, T, N)=\sum_{h \leqslant H} Q^{A_{h}} N^{B_{h}} T^{1-B_{h}}
$$

If $D(Q, N)$ is such that

$$
\sum_{\chi \in \mathcal{F}(Q)}\left|\sum_{n \leqslant N}^{\prime} a_{n} \chi(n)\right|^{2} \underset{\varepsilon}{\ll}(Q N)^{\varepsilon} D(Q, N) \sum_{n \leqslant N}^{\prime}\left|a_{n}\right|^{2}
$$

for all $Q, N \geqslant 2$, then we can show that

$$
\mathfrak{S}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q N)^{\varepsilon} \Delta(Q, T, N) \sum_{n \leqslant N}^{\prime}\left|a_{n}\right|^{2} .
$$

The polynomials $D(Q, N)$ are essentially large sieve estimates.

The polynomials $D(Q, N)$ are essentially large sieve estimates.

- (Heath-Brown, 1995) For $\mathcal{F}=\mathcal{O}_{2}$, we have

$$
D(Q, N) \ll Q+N
$$

The polynomials $D(Q, N)$ are essentially large sieve estimates.

- (Heath-Brown, 1995) For $\mathcal{F}=\mathcal{O}_{2}$, we have

$$
D(Q, N) \ll Q+N
$$

- (Baier and Young, 2010) For $\mathcal{F}=\mathcal{O}_{3}, \mathcal{O}_{6}$, we have

$$
D(Q, N) \ll \min \left(Q^{\frac{5}{3}}+N, Q^{\frac{11}{9}}+Q^{\frac{2}{3}} N\right)
$$

The polynomials $D(Q, N)$ are essentially large sieve estimates.

- (Heath-Brown, 1995) For $\mathcal{F}=\mathcal{O}_{2}$, we have

$$
D(Q, N) \ll Q+N
$$

- (Baier and Young, 2010) For $\mathcal{F}=\mathcal{O}_{3}, \mathcal{O}_{6}$, we have

$$
D(Q, N) \ll \min \left(Q^{\frac{5}{3}}+N, Q^{\frac{11}{9}}+Q^{\frac{2}{3}} N\right)
$$

- (Gao and Zhao, 2021) For $\mathcal{F}=\mathcal{O}_{4}$, we have

$$
D(Q, N) \ll \min \left(Q^{\frac{3}{2}}+N, Q^{\frac{7}{6}}+Q^{\frac{2}{3}} N\right)
$$

The polynomials $D(Q, N)$ are essentially large sieve estimates.

- (Heath-Brown, 1995) For $\mathcal{F}=\mathcal{O}_{2}$, we have

$$
D(Q, N) \ll Q+N
$$

- (Baier and Young, 2010) For $\mathcal{F}=\mathcal{O}_{3}, \mathcal{O}_{6}$, we have

$$
D(Q, N) \ll \min \left(Q^{\frac{5}{3}}+N, Q^{\frac{11}{9}}+Q^{\frac{2}{3}} N\right)
$$

- (Gao and Zhao, 2021) For $\mathcal{F}=\mathcal{O}_{4}$, we have

$$
D(Q, N) \ll \min \left(Q^{\frac{3}{2}}+N, Q^{\frac{7}{6}}+Q^{\frac{2}{3}} N\right)
$$

- (Balestrieri and Rome, 2023) For $\mathcal{F}=\mathcal{O}_{r}$ where $r \geqslant 2$, we have

$$
D(Q, N) \ll \min \left(Q^{2}+N, Q^{\frac{4}{3}}+Q^{\frac{2}{3}} N\right)
$$

Estimating $\mathfrak{L}_{1}(Q, T)$

For $\mathcal{F}=\mathcal{O}_{2}$, Jutila (1971) showed that

$$
\mathfrak{L}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{1+\varepsilon},
$$

which we generalise in the following.

Estimating $\mathfrak{L}_{1}(Q, T)$

For $\mathcal{F}=\mathcal{O}_{2}$, Jutila (1971) showed that

$$
\mathfrak{L}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{1+\varepsilon},
$$

which we generalise in the following.
Lemma 2
Let $r \geqslant 3$, and suppose that $T^{2 r-1} \gg Q^{2 r-5}$. Then

$$
\mathfrak{L}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{1+\varepsilon} \quad \text { for } \quad \mathcal{F}=\mathcal{O}_{r}
$$

Estimating $\mathfrak{L}_{1}(Q, T)$

For $\mathcal{F}=\mathcal{O}_{2}$, Jutila (1971) showed that

$$
\mathfrak{L}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{1+\varepsilon},
$$

which we generalise in the following.
Lemma 2
Let $r \geqslant 3$, and suppose that $T^{2 r-1} \gg Q^{2 r-5}$. Then

$$
\mathfrak{L}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{1+\varepsilon} \quad \text { for } \quad \mathcal{F}=\mathcal{O}_{r}
$$

Results which are weaker in the T-aspect exist for the case $k=2$.

Estimating $\mathfrak{L}_{1}(Q, T)$

For $\mathcal{F}=\mathcal{O}_{2}$, Jutila (1971) showed that

$$
\mathfrak{L}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{1+\varepsilon},
$$

which we generalise in the following.
Lemma 2
Let $r \geqslant 3$, and suppose that $T^{2 r-1} \gg Q^{2 r-5}$. Then

$$
\mathfrak{L}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{1+\varepsilon} \quad \text { for } \quad \mathcal{F}=\mathcal{O}_{r}
$$

Results which are weaker in the T-aspect exist for the case $k=2$.

- (Heath-Brown, 1995) For \mathcal{O}_{2}, we have $\mathfrak{L}_{2}(Q, T)<_{\varepsilon} Q^{1+\varepsilon} T^{2+\varepsilon}$.

Estimating $\mathfrak{L}_{1}(Q, T)$

For $\mathcal{F}=\mathcal{O}_{2}$, Jutila (1971) showed that

$$
\mathfrak{L}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{1+\varepsilon},
$$

which we generalise in the following.
Lemma 2
Let $r \geqslant 3$, and suppose that $T^{2 r-1} \gg Q^{2 r-5}$. Then

$$
\mathfrak{L}_{1}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{1+\varepsilon} \quad \text { for } \quad \mathcal{F}=\mathcal{O}_{r}
$$

Results which are weaker in the T-aspect exist for the case $k=2$.

- (Heath-Brown, 1995) For \mathcal{O}_{2}, we have $\mathfrak{L}_{2}(Q, T)<_{\varepsilon} Q^{1+\varepsilon} T^{2+\varepsilon}$.
- (C., 2023) For \mathcal{O}_{r} and $T \gg Q$ we have $\mathfrak{L}_{2}(Q, T)<_{\varepsilon} Q^{1+\varepsilon} T^{2+\varepsilon}$.

Main results

The following result improves on the aforementioned estimate of Jutila for all $Q, T \geqslant 2$, and the estimate of C. and Zhao whenever $T^{4-4 \sigma} \gg Q^{2 \sigma-1}$.

Main results

The following result improves on the aforementioned estimate of Jutila for all $Q, T \geqslant 2$, and the estimate of C. and Zhao whenever $T^{4-4 \sigma} \gg Q^{2 \sigma-1}$.

Theorem 1

$$
\sum_{\chi \in \mathcal{O}_{2}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll}(Q T)^{\frac{4-4 \sigma}{3-2 \sigma}+\varepsilon}
$$

Main results

The following result improves on the aforementioned estimate of Jutila for all $Q, T \geqslant 2$, and the estimate of C. and Zhao whenever $T^{4-4 \sigma} \gg Q^{2 \sigma-1}$.

Theorem 1

$$
\sum_{\chi \in \mathcal{O}_{2}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll}(Q T)^{\frac{4-4 \sigma}{3-2 \sigma}+\varepsilon}
$$

The following result pertaining to \mathcal{O}_{r} with $r \geqslant 3$ is valid only when $T^{2 r-1} \gg Q^{2 r-5}$.

Theorem 2

$$
\sum_{\chi \in \mathcal{O}_{r}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\min \left(\frac{6-4 \sigma}{3}, \frac{6-6 \sigma}{3-2 \sigma}\right)+\varepsilon} T^{\frac{4-4 \sigma}{3-2 \sigma}+\varepsilon}
$$

Concluding Remarks

Lemma 1 is stronger for k than it is for $k-1$ if a sharp bound is known for $\mathfrak{L}_{k}(Q, T)$. However, for arbitrarily large k, there are no sharp bounds known on $\mathfrak{L}_{k}(Q, T)$.

Concluding Remarks

Lemma 1 is stronger for k than it is for $k-1$ if a sharp bound is known for $\mathfrak{L}_{k}(Q, T)$. However, for arbitrarily large k, there are no sharp bounds known on $\mathfrak{L}_{k}(Q, T)$.

For $k \geqslant 2$, we can show using the same method as in Lemma 2 that

$$
\mathfrak{L}_{k}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{k+\varepsilon}
$$

Concluding Remarks

Lemma 1 is stronger for k than it is for $k-1$ if a sharp bound is known for $\mathfrak{L}_{k}(Q, T)$. However, for arbitrarily large k, there are no sharp bounds known on $\mathfrak{L}_{k}(Q, T)$.

For $k \geqslant 2$, we can show using the same method as in Lemma 2 that

$$
\mathfrak{L}_{k}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{k+\varepsilon} .
$$

Following the approach used by Heath-Brown (1995), we get

$$
\mathfrak{L}_{k}(Q, T) \underset{\varepsilon}{\ll} Q^{\frac{1}{2} k+\varepsilon} T^{\frac{1}{2} k+1+\varepsilon} .
$$

Concluding Remarks

Lemma 1 is stronger for k than it is for $k-1$ if a sharp bound is known for $\mathfrak{L}_{k}(Q, T)$. However, for arbitrarily large k, there are no sharp bounds known on $\mathfrak{L}_{k}(Q, T)$.

For $k \geqslant 2$, we can show using the same method as in Lemma 2 that

$$
\mathfrak{L}_{k}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{k+\varepsilon}
$$

Following the approach used by Heath-Brown (1995), we get

$$
\mathfrak{L}_{k}(Q, T) \underset{\varepsilon}{\ll} Q^{\frac{1}{2} k+\varepsilon} T^{\frac{1}{2} k+1+\varepsilon} .
$$

However, we can get a better estimate simply appealing to the Weyl-bound $L\left(\frac{1}{2}+i t, \chi\right) \ll_{\varepsilon} q^{\frac{1}{6}+\varepsilon}(|t|+1)^{\frac{1}{6}+\varepsilon}$ due to Petrow and Young (2023).

Using the Weyl-bound and averaging trivially over $\chi \in \mathcal{O}_{r}(Q)$ and $t \in[-T, T]$, we see that

$$
\mathfrak{L}_{k}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{\frac{1}{3} k+1+\varepsilon} .
$$

Using the Weyl-bound and averaging trivially over $\chi \in \mathcal{O}_{r}(Q)$ and $t \in[-T, T]$, we see that

$$
\mathfrak{L}_{k}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{\frac{1}{3} k+1+\varepsilon}
$$

We derive the following by taking k to be sufficiently large in Lemma 1.
Proposition 1

$$
\sum_{\chi \in \mathcal{O}_{2}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll}(Q T)^{\frac{8}{3}(1-\sigma)+\varepsilon}
$$

Using the Weyl-bound and averaging trivially over $\chi \in \mathcal{O}_{r}(Q)$ and $t \in[-T, T]$, we see that

$$
\mathfrak{L}_{k}(Q, T) \underset{\varepsilon}{\ll}(Q T)^{\frac{1}{3} k+1+\varepsilon}
$$

We derive the following by taking k to be sufficiently large in Lemma 1.
Proposition 1

$$
\sum_{\chi \in \mathcal{O}_{2}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll}(Q T)^{\frac{8}{3}(1-\sigma)+\varepsilon}
$$

Proposition 2

$$
\sum_{\chi \in \mathcal{O}_{r}(Q)} N(\sigma, T, \chi) \underset{\varepsilon}{\ll} Q^{\min \left(\frac{8-6 \sigma}{3}, \frac{14-14 \sigma}{3}\right)+\varepsilon} T^{\frac{8}{3}(1-\sigma)+\varepsilon}
$$

Thank you for your attention
$14 / 14$

