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where L(s, x) is the L-function associated to the character .

Generally, these estimates are given as an average over a family F of
primitive Dirichlet characters, that is a sum of the type

> N(o, T, x),

XEF(Q)

where F(Q) denotes the set of x € F with conductor g € (Q,2Q)].

We will consider the families O, of primitive Dirichlet characters of
order r > 2.
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The method of Montgomery

The method uses zero-detecting polynomials to reduce the problem to
estimating mean-values of the type

-
/ 12k
Gk (Q,T) = Z /‘Zanx(n)n_’t dt
XEF(Q)p n<N
and
-
£(Q, T) = Z /\L(;+it,x)]2kdt,
X€EF(Q) T

where k > 1 is an integer.

In the literature, generally &1(Q, T) and either £,(Q, T) or £2(Q, T)
have been used to derive zero-density estimates.
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corresponding large sieve estimate. We then have the following.
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holds. In practice, a bound for A(Q, T, N) can be obtained from the
corresponding large sieve estimate. We then have the following.

Lemma 1

Suppose that X, Y > 2 are such that X < Y < (QT)” for some absolute
constant A. Then

§ " N(o, T,x) < (QT)° (Sk(Q, T)RTA(Q, T, X)®1 Y Fir(1-29)
€
x€F(Q) FAQ, T, X)X12 4 A(Q, T, Y) Y1—2U>

for any k > 1, where the implied constant does not depend on k.
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® (Gao and Zhao, 2021) For F = O4, we have
D(Q, N) < min (Q7 + N, Q% + Q3N).
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D(Q, N) < min (Q*+ N, Q5 + Q3N).
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Main results

The following result improves on the aforementioned estimate of Jutila for
all Q, T > 2, and the estimate of C. and Zhao whenever T#747 > Q%71

Theorem 1

S N, Tx) < (@)%t
X€02(Q) y

The following result pertaining to O, with r > 3 is valid only when
T2r—1 > Q2r—5.
Theorem 2
3 N Tx) < Q™" (S5t 8o ) e T ite e
X€OH(Q) c
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However, we can get a better estimate simply appealing to the Weyl-bound
1 1
L( +it,x) < q5*°(|t| + 1)s due to Petrow and Young (2023).
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We derive the following by taking k to be sufficiently large in Lemma 1.

Proposition 1
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