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Suppose that χ is a primitive Dirichlet character modulo q, fix σ ∈
(
1
2 , 1

)
and T ∈ (2,∞), and consider the rectangle R(σ,T ) = [σ, 1] + i [−T ,T ].

A zero-density estimate is an upper bound for the number

N(σ,T , χ) = #{ϱ ∈ R(σ,T ) : L(ϱ, χ) = 0},

where L(s, χ) is the L-function associated to the character χ.

Generally, these estimates are given as an average over a family F of
primitive Dirichlet characters, that is a sum of the type∑

χ∈F(Q)

N(σ,T , χ),

where F(Q) denotes the set of χ ∈ F with conductor q ∈ (Q, 2Q].

We will consider the families Or of primitive Dirichlet characters of
order r ⩾ 2.
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Zero-density estimates

Adapting an approach used by Ingham (1937) to estimate the density of
zeros of the ζ-function, Montgomery (1971) showed that∑

Q<q⩽2Q

∑∗

χ mod q

N(σ,T , χ) ≪
ε

Q
6−6σ
2−σ

+εT
3−3σ
2−σ

+ε.

For the case F = O2, analogous results exist.

• (Jutila, 1975) For any Q,T ⩾ 2, we have∑
χ∈O2(Q)

N(σ,T , χ) ≪
ε
(QT )

7−6σ
6−4σ

+ε.

• (C. and Zhao, 2023) For any Q,T ⩾ 2, we have∑
χ∈O2(Q)

N(σ,T , χ) ≪
ε

Q
3−3σ
2−σ

+εT
4−4σ
2−σ

+ε.
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Results weaker in the Q-aspect can be derived for the families O3 and O4.

• (C., 2023) For Q,T ⩾ 2 with T ≫ Q
2
3 , we have∑

χ∈O3(Q)

N(σ,T , χ) ≪
ε

Qmin
(

19−16σ
12−6σ

, 13−13σ
6−3σ

)
+εT

4−4σ
2−σ

+ε.

• (C., 2023) For Q,T ⩾ 2 with T ≫ Q
1
2 , we have∑

χ∈O4(Q)

N(σ,T , χ) ≪
ε

Qmin
(

6−5σ
4−2σ

, 4−4σ
2−σ

)
+εT

4−4σ
2−σ

+ε.

These results are all derived by the method used by Montgomery to obtain
his result above. Conjecturally, for all Q,T ⩾ 2 we expect to have∑

χ∈Or (Q)

N(σ,T , χ) ≪
ε
(QT )2(1−σ)+ε.
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The method of Montgomery

The method uses zero-detecting polynomials to reduce the problem to
estimating mean-values of the type

Sk(Q,T ) =
∑

χ∈F(Q)

T∫
−T

∣∣∣∑′

n⩽N

anχ(n)n
−it

∣∣∣2k dt
and

Lk(Q,T ) =
∑

χ∈F(Q)

T∫
−T

∣∣L(12 + it, χ
)∣∣2k dt,

where k ⩾ 1 is an integer.

In the literature, generally S1(Q,T ) and either L1(Q,T ) or L2(Q,T )
have been used to derive zero-density estimates.
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We consider the polynomials ∆(Q,T ,N) for which the bound

S1(Q,T ) ≪
ε
(QN)ε∆(Q,T ,N)

∑′

n⩽N

|an|2

holds. In practice, a bound for ∆(Q,T ,N) can be obtained from the
corresponding large sieve estimate. We then have the following.

Lemma 1

Suppose that X ,Y ⩾ 2 are such that X ≪ Y ≪ (QT )A for some absolute
constant A. Then∑
χ∈F(Q)

N(σ,T , χ) ≪
ε
(QT )ε

(
Lk(Q,T )

1
k+1∆(Q,T ,X )

k
k+1Y

k
k+1

(1−2σ)

+∆(Q,T ,X )X 1−2σ +∆(Q,T ,Y )Y 1−2σ
)

for any k ⩾ 1, where the implied constant does not depend on k.
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Estimating S1(Q,T )

Let (Ah)h⩽H and (Bh)h⩽H be sequences of non-negative reals, and define

D(Q,N) =
∑
h⩽H

QAhNBh and ∆(Q,T ,N) =
∑
h⩽H

QAhNBhT 1−Bh .

If D(Q,N) is such that∑
χ∈F(Q)

∣∣∣∑′

n⩽N

anχ(n)
∣∣∣2 ≪

ε
(QN)εD(Q,N)

∑′

n⩽N

|an|2

for all Q,N ⩾ 2, then we can show that

S1(Q,T ) ≪
ε
(QN)ε∆(Q,T ,N)

∑′

n⩽N

|an|2.
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The polynomials D(Q,N) are essentially large sieve estimates.

• (Heath-Brown, 1995) For F = O2, we have

D(Q,N) ≪ Q + N.

• (Baier and Young, 2010) For F = O3,O6, we have

D(Q,N) ≪ min
(
Q

5
3 + N,Q

11
9 + Q

2
3N

)
.

• (Gao and Zhao, 2021) For F = O4, we have

D(Q,N) ≪ min
(
Q

3
2 + N,Q

7
6 + Q

2
3N

)
.

• (Balestrieri and Rome, 2023) For F = Or where r ⩾ 2, we have

D(Q,N) ≪ min
(
Q2 + N,Q

4
3 + Q

2
3N

)
.
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Estimating L1(Q,T )

For F = O2, Jutila (1971) showed that

L1(Q,T ) ≪
ε
(QT )1+ε,

which we generalise in the following.

Lemma 2

Let r ⩾ 3, and suppose that T 2r−1 ≫ Q2r−5. Then

L1(Q,T ) ≪
ε
(QT )1+ε for F = Or .

Results which are weaker in the T -aspect exist for the case k = 2.

• (Heath-Brown, 1995) For O2, we have L2(Q,T ) ≪ε Q
1+εT 2+ε.

• (C., 2023) For Or and T ≫ Q we have L2(Q,T ) ≪ε Q
1+εT 2+ε.
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Main results

The following result improves on the aforementioned estimate of Jutila for
all Q,T ⩾ 2, and the estimate of C. and Zhao whenever T 4−4σ ≫ Q2σ−1.

Theorem 1 ∑
χ∈O2(Q)

N(σ,T , χ) ≪
ε

(
QT )

4−4σ
3−2σ

+ε,

The following result pertaining to Or with r ⩾ 3 is valid only when
T 2r−1 ≫ Q2r−5.

Theorem 2 ∑
χ∈Or (Q)

N(σ,T , χ) ≪
ε

Qmin
(

6−4σ
3

, 6−6σ
3−2σ

)
+εT

4−4σ
3−2σ

+ε.

11 / 14



Main results

The following result improves on the aforementioned estimate of Jutila for
all Q,T ⩾ 2, and the estimate of C. and Zhao whenever T 4−4σ ≫ Q2σ−1.

Theorem 1 ∑
χ∈O2(Q)

N(σ,T , χ) ≪
ε

(
QT )

4−4σ
3−2σ

+ε,

The following result pertaining to Or with r ⩾ 3 is valid only when
T 2r−1 ≫ Q2r−5.

Theorem 2 ∑
χ∈Or (Q)

N(σ,T , χ) ≪
ε

Qmin
(

6−4σ
3

, 6−6σ
3−2σ

)
+εT

4−4σ
3−2σ

+ε.

11 / 14



Main results

The following result improves on the aforementioned estimate of Jutila for
all Q,T ⩾ 2, and the estimate of C. and Zhao whenever T 4−4σ ≫ Q2σ−1.

Theorem 1 ∑
χ∈O2(Q)

N(σ,T , χ) ≪
ε

(
QT )

4−4σ
3−2σ

+ε,

The following result pertaining to Or with r ⩾ 3 is valid only when
T 2r−1 ≫ Q2r−5.

Theorem 2 ∑
χ∈Or (Q)

N(σ,T , χ) ≪
ε

Qmin
(

6−4σ
3

, 6−6σ
3−2σ

)
+εT

4−4σ
3−2σ

+ε.

11 / 14



Concluding Remarks

Lemma 1 is stronger for k than it is for k − 1 if a sharp bound is known
for Lk(Q,T ). However, for arbitrarily large k, there are no sharp bounds
known on Lk(Q,T ).

For k ⩾ 2, we can show using the same method as in Lemma 2 that

Lk(Q,T ) ≪
ε
(QT )k+ε.

Following the approach used by Heath-Brown (1995), we get

Lk(Q,T ) ≪
ε

Q
1
2
k+εT

1
2
k+1+ε.

However, we can get a better estimate simply appealing to the Weyl-bound

L
(
1
2 + it, χ

)
≪ε q

1
6
+ε(|t|+ 1)

1
6
+ε due to Petrow and Young (2023).
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Using the Weyl-bound and averaging trivially over χ ∈ Or (Q) and
t ∈ [−T ,T ], we see that

Lk(Q,T ) ≪
ε
(QT )

1
3
k+1+ε.

We derive the following by taking k to be sufficiently large in Lemma 1.

Proposition 1 ∑
χ∈O2(Q)

N(σ,T , χ) ≪
ε
(QT )

8
3
(1−σ)+ε

Proposition 2∑
χ∈Or (Q)

N(σ,T , χ) ≪
ε

Qmin
(

8−6σ
3

, 14−14σ
3

)
+εT

8
3
(1−σ)+ε
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Thank you for your attention
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